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Abstract— Distributed data mining has recently caught a lot
of attention as there are many cases where pooling distributed
data for mining is probibited, due to either huge data volume or
data privacy. In this paper, we addressed the issue of learning a
global cluster model, known as the latent class model, by mining
distributed data sources. Most of the existing model learning
algorithms (e.g., EM) require  access to all the available training
data. Instead, we studied a methodology based on periodic model
exchange and merge, and applied it to Web structure modeling.
In addition, we have tested a number of variations of the basic
idea, including confining the exchange to some privacy friendly
parameters and varying the number of distributed sources. Ex-
perimental results show that the proposed distributed learning
scheme is effective with accuracy close to the case with all the
data physically shared for the learning. Also, our results show
empirically that sharing less model parameters as a further
mechanism for privacy control does not result in significant
performance degradation for our application.

Index Terms— Distributed data mining, model-based learning,
latent class model, privacy preservation

I. INTRODUCTION

Most of the machine learning and data mining algorithms
work with a rather basic assumption that all the training data
can be pooled together in a centralized data repository. Re-
cently, there exist a growing number of cases that the data have
to be physically distributed due to some constraints. Examples
include the data privacy concern in commercial enterprises
where customers’ private information are supposed not to be
disclosed to other parties without their consent. Another exam-
ple is mining individuals’ incoming e-mails for some global
patterns of junk mails, and sharing personal emails with others
is a scenario which is almost impossible. Additional relevant
examples including distributed medical data analysis, intrusion
detection, data fusion in sensor networks, etc.[9] This calls for
a lot of recent research interest on distributed machine learning
and data mining [7].

A common methodology for distributed machine learning
and data mining is of two-stage type — first performing local
data analysis and then combining the local results forming the
global one. For example, in [10], a meta-learning process was
proposed as an additional learning process for combining a set
of locally learned classifiers (decision trees in particular) for
a global classifier. A related implementation has been realized
under a Grid platform known as the Knowledge Grid [11].
In [9], Kargupta et al. proposed what they called collective
data mining and the distributed data are assumed to possess
different sets of features, each being considered as an orthog-
onal basis. The orthogonal bases are then combined to give
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the overall result. They have applied it to learning Bayesian
Networks for Web log analysis [12], [8].

Regarding incorporation of local data privacy control in
distributed data mining, Clifton et al. [13], [14], [15] and Du
et al. [16], [17], [18] have proposed solutions to distributed
association rules mining with privacy preserving capability.
Under the premise that parties prefer to share the local data
mining results instead of the original local data, each party
site learns and disclose only their local patterns, which will
eventually be aggregated together to form some global pat-
terns. Other than taking associated rule mining, Merugu et al.
[19], [20], [21], [22], [23] works on mining global clusters
(in the form of Gaussian mixture model) of high dimension
feature vectors which are distributed in different sites. Their
proposed method starts with creating local cluster models and
then resampling from the combined models “virtual” global
samples for training the global model. A quantitative data
privacy measure was proposed and they pointed out that some
trade-off between the global model accuracy and local data
privacy has to be made.

All the aforementoned methods adopt the two-stage method-
ology for distributed data mining. The instrinsic limitation
is that patterns which emerge only when the local data are
aggregated cannot be discovered at all. In this paper, instead
of taking the two-stage methodology, we propose to allow
the local data mining stage and the result combining stage to
interleave. In particular, we choose the latent class model as
an example, where the iterative expectation and minimization
algorithm is typically used for estimating the model parameters
based on some training data. We learn local latent class models
based on the local data but allow the immediately learned
model parameters to be exchanged. For merging the exchange
models which are supposed to be heterogeneous, relative en-
tropy is used as the measure for aligning, and thus merging,
of the local latent classes. The main rationale of the proposed
methodology lies on the conjecture that periodic sharing of
intermediate local analysis results can reduce the biases due
to the local data and thus help learn a more accurate global
model. For performance evaluation, experiments on applying
the proposed methodology to Web cluster analysis using both
Web contents and links have been conducted where the We-
bKB dataset is used for benchmarking. A few variations of
the proposed methodology have also been proposed by con-
sidering the situation that a higher level of privacy is required
as well as that the degree of data distribution is different. We
found that the proposed periodic model exchange methodoloy
can achieve an global model accuracy higher than the case
using the two-stage methodology, and sometimes can even
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outperform the situation with all the data physically pooled
together for the model learning. While the gain is due to the
additional communication effort, we also provide the compu-
tational complexity and the communication cost analysis for
comparing different model exchange settings.

The remaining of the paper is organized as follow. Section
2 describes a particular latent class model for modeling hy-
perlinked Web pages. Section 3 explains how the proposed
periodic model-exchange methodology can be applied to the
distributed model learning. Also, the computational complex-
ity as well as the communication overhead involved are ana-
lyzed. Details about the experimental setup for evaluating the
different variations of the basic idea as well as the correspond-
ing results can be found in Section 4. Section 5 concludes the
paper and proposes some possible future research directions.

Local Servers… ...

… ... Local Data Sources

Global Server

Fig. 1. A senario with a single global server mediating multiple physically
distributed local servers.

II. LATENT CLASS MODELS AND WEB STRUCTURE

ANALYSIS

The latent class model (LCM) is a statistical model under
the family of mixture models. It has been adopted for modeling
the co-occurence of multiple random variables with applica-
tions to a number of areas. A particular latent class model for
analyzing Web contents and Web links was proposed in [2],
which can be considered as a joint model of two related latent
class models called PLSA [5] (for Web contents ) and PHITS
[1] (for Web links).

Let ti denote the ith term, dj the jth document, cl the
document being cited (or linked), N ij the observed frequency
that ti exists in dj , Alj the observed frequency that c l is being
linked by dj .

By assuming that given an underlying latent factor zk, ti and
cl are independent of dj and are independent of each other,
the log likelihood L of the observed data (Web pages) can be
given as

L =
∑

j

[
α

∑
i

Nij log
∑

k

P (ti|zk)P (zk|dj) (1)

+(1 − α)
∑

l

Alj log
∑

k

P (cl|zk)P (zk|dj)

]

where α determines the relative importance between observed
terms (used in PLSA) and observed links (used in PHITS).
Data normalization is adopted as in [2] to reduce the bias due
to different document sizes. Model parameters {P (t i|zk), P (cl|zk), P (zk|dj

are estimated using the tempered Expectation and Maximiza-
tion (EM) algorithm [2] so as to avoid the local minimum
problem of the standard EM algorithm.

III. MODEL EXCHANGE METHODOLOGY FOR LCM
LEARNING

As mentioned in Section 1, the main focus of this paper is to
explore how well physically separately datasets can be used
to learn a global cluster model (LCM in our case) through
periodic model exchange. The traditional methodolody of dis-
tributed learning is to do it in a two-stage manner — finishing
local analysis and then merging the local results. For LCM
learning, it corresponds to learning the local LCMs {LCM lm}
first based on terms and hyperlinks information observed at
each distributed site, and then performing the model merging
subsequently to form the global model LCM gm. In this paper,
we view this methodology as an one-shot model exchange
scheme. Based on this scheme, only the standard LCM learn-
ing process is needed at each site and the accuracy of the
global estimate is determined only by how well the local
models are merged.

Instead of only exchanging models at the final stage, we here
propose a multiple model exchange scheme, where the two
stages of learning interleave to perform some cross learning.
Other than accessing its local set of data, each local data
source will, now, receive from time to time models of the
other data sources to help the model estimation task. The
EM step implementation needed at each local site for LCM
learning will be affected as parameters of local and non-local
models are needed to be merged for each exchange before
the sequent EM steps can be proceeded. After all the models
in the distributed sites converge, the finally merged LCM is
denoted as LCM gm.

In the following, details of the one-shot and multiple model
exchange schemes are explained. Also, the computational com-
plexity as well as the communication overhead of the proposed
schemes will be discussed as both are important for serious
applications.

A. One-shot model exchange scheme

In this model exchange scheme, we perform only two main
steps, namely local model learning and model merging. Figure
2 shows the overview of the one-shot model exchange scheme.
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1) Local model learning: The local model learning step
first estimates the parameters of LCM lm

p using the local term-
document matrix N p

ij and link-document matrix Ap
lj observed

at the pth site.1 One can follow the computation as described
in Section II to estimate the model parameters’ values. For
setting the value of α, it is believed that different sites, possess-
ing different data, may require a different value of for optimal
performance. In this paper, we learn multiple LCM lms within
a site by varying α from zero to one, with lower and upper
extremes corresponding to PHITS and PLSA, as explained in
[2]. To find the optimal one, we first use a factored nearest
neighbor approach for measuring the factoring accuracy. In
particular, for a learned LCM corresponding to a given value
of α, a Web page dj is considered to be correctly factored by
that LCM if it belongs to the same class2 of its neighbors. To
define the neighborhood, we compute the cosine value of the
Web pages’ projections on the factor space, given as

sim(�P (z|di), �P (z|dj)) =
�P (z|di) · �P (z|dj)

‖ �P (z|di)‖ · ‖ �P (z|dj)‖
. (2)

The model associated to an α which gives the highest overall
accuracy will be chosen for the subsequent merging.

2) Model merging: It is common that distributed data sources
are heterogeneous. For example, in our case, the data at dif-
ferent Web sites are best described by different parameter
sets, involving different terms, links as well as different latent
classes (hidden patterns) captured by z. In order to combine
different local models {LCM lm

p } to form a global one, we
first need to assume that the unique identity of each data item
can be identified to the extent that repeated appearance of them
in different sites can be found. Thus, those repeated data items,
after merging, can be re-indexed to aggregate their effect in
the learning process. After reindexing, the latent parts of the
local models whose identities can never be pre-defined have
to be aligned before they can be merged.

Re-indexing: For each local model, we first enlarge and re-
index the set of model parameters {P (z|d), P (t|z), P (c|z)} by
noting the difference between the local model and the other
non-local models received from the other data sources. The
parameters of the unseen variables are first initialized to zero.

Latent variables matching: As the latent part of each local
LCM is induced from their corresponding training datasets, it
is hard to have a pre-agreed way to know how they should be
matched. Here, we propose to use the relative entropy between
the probability distributions of the latent variables for a pair
of local LCMs to align their latent variables.

For our application domain, two cases are to be considered:
a) Web pages in different sites are non-overlapping, and b)
some Web pages are shared in different sites. For the former
case, we merely need to consider P (ti|zk) and the relative
entropy of a pair of latent variables zk and zk′ corresponding

1Note that cross-site links are not considered in this pilot study, which
however is an important part to be included in our future work.

2The class labels are available in the training set.

to two local models LCM lm
p and LCM lm

p′ is given as

H1p,p′(zk, zk′) = (3)∑
i

Pp(ti|zk) log
Pp(ti|zk)
Pp′(ti|zk′)

.

For the latter case, we use P (ti, cl|zk) for computing the
relative entropy, given as

H2p,p′(zk, zk′) = (4)∑
i

∑
l

Pp(ti, cl|zk) log
Pp(ti, cl|zk)
Pp′(ti, cl|zk′)

.

Two latent classes are considered to be closely matched if the
value of their relative entropy is close to zero. The best one-
to-one matching between the two sets of latent class mod-
els are computed based on the matrix {H1p,p′(zk, zk′)} or
{H2p,p′(zk, zk′)}. In this paper, we only consider the case
where the LCMs have identical numbers of latent variables
and assume that their latent variables possess the one-to-one
correspondence property. In general, these assumptions should
be relaxed.

Parameter merging: After the latent variables are matched,
we can readily combine the local and non-local model param-
eters. For simplicity, we use simple averaging for the merge. A
weighted sum based on some accuracy or uncertainty measures
of the local models may worth further research effort.

Fig. 2. Overview of one-shot model exchange scheme.

B. Multiple model exchange scheme

Under the multiple model exchange scheme, the local learn-
ing and model merging steps for one-shot model exchange
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interleave during the learning process, which we call it cross
learning. Cross learning is here defined as learning a local
model with the use of non-local information during the learn-
ing process. Local model parameterss are exchanged at the
intermediate stages, instead of the final stage. Similar to the
one-shot model exchange scheme, such a cross learning pro-
cess involves four steps, namely re-indexing, latent variables
matching, parameter merging and local model parameter es-
timation. Most of them are identical to those for the one-
shot model exchange, except for some minor implementation
details. However, as the model exchange happens multiple
times, the exchanging and merging steps could have much
more influence on the overall performance. The main rationale
is that periodic sharing of intermediate local analysis results
can reduce the biases due to the local data and thus help learn
a more accurate overall global model. Figure 3 shown the
overview of the periodic model exchange scheme.

Fig. 3. Overview of multiple model exchange scheme.

C. Communication overhead and computational complexity

In this section, the asymptotic communication overhead and
computational complexity of the two model exchange schemes
are discussed in detail. Table I shows the notations used. Here,
the communication overhead (CO) per model exchange in-
cludes parameters transmission. Related overheads for the two

TABLE I

NOTATIONS

Notation Definition
M/Mg Number of local/global Web pages
N/Ng Number of local/global hyperlinks
P/Pg Number of local /global terms

Q Number of latent variables
R Number of distributed sources

Iter Number of EM iterations
Iex Number of non-local parameters ex-

changes
CO Overhead of parameters transmission

per model exchange

schemes are basically the same, given as

CO = O(Q(M + N + P )/bandwidth)

= O(rQ(M + N + P ))

For the computational complexity, we compare the perfor-
mance of the two exchange schemes (Oone, Omultiple) as well
as the case with a single centralized server hosting all the data
(Ocentral). They are given as

Ocentral = O(IterMgQ(Ng + Pg))

Oone = O(IterMQ(N + P ))

Omultiple = O(IterMQ(N + P )

For the overall complexity (Ooverall), we add up the com-
munication overheads and the computational ones, given as

Oall
central = O(IterMgQ(Ng + Pg))

Oall
one = O(IterQ((N + P )(M + r) + rM))

Oall
multiple = O(IterQ((N + P )(M + rIex) + rM))

= Oall
one + O(rIterIexQ(N + P )).

Thus, it is noted that the communication overhead (CO) be-
comes insignificant when the size of the dataset (of the order
M(N+P )) is much larger than that of the models (of the order
(M +N +P )). The overall computational complexity will still
be dominated by the local learning processes. Furthermore, M
is much smaller than Mg in general as R increases (that is the
data are more distributed). Therefore, the parallellism gained
by the independent learning of the local models {LCM lm}
should result in a shorter overall learning time when compared
with that of the global model LCM gm.

D. Model exchange scheme with additional privacy preserving
cabability

One of the important motivations for sharing models instead
of data is related to data privacy. For the aforementioned appli-
cation on Web structure analysis, sharing local LCM models
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assumes the knowledge of a set of unique identifiers for all
the Web pages at different data sources, no matter they are for
public access or within the intranets. While each site can re-
label all the identifiers based on the URLs of the Web pages,
sharing those identifiers may still cause privacy and security
concern of internal users of different sites. The situation will
become even more obvious if we replace each Web page by
a customer and each hyperlink by a product that a customer
has purchased [24]. There will not be a company willing to
share with others their transaction records. One effective way
to alleviate the aforementioned privacy issue is to share only
aggregated information. In our case, the model parameters
belonging to this category (which we refer as the most privacy-
friendly parameters as illustrated in Figure 4) is P (t|z).

Fig. 4. Privacy-friendly parameters of LCM.

By sharing only P (t|z), we gain additional advantage due
to the reduced requirement of communication cost as well
as computational complexity. Note that as the value of N
and M increases, the increase in P will soon be saturated
if the vocabulary under a particular domain is exhausted. The
corresponding overall complexity can be reduced to:

Oall
multiple = Oall

one + O(rQPIterIex).

IV. PERFORMANCE EVALUATION

We have applied the proposed model exchange approach
to the WebKB dataset [6]. As this study is novel and there
are no directly related works in the literature, we conduct
our experiments to compare the commonly adopted two-stage
approach and the proposed multiple model exchange approach.
While our experiment focuses only on learning LCM in a
distributed manner, we believe that the approach should also
apply to distributed learning of other statistical models.

For the training and testing dataset, a total of 546 web
pages, which are pre-classified into 3 categories: course, de-
partment and student in WebKB, have been used and each
class contains 182 pages. In the following, we describe the
data pre-processing steps adopted and how the experiments
were designed and conducted.

A. Web page preprocessing

As mentioned in Section II, the term-document matrix N ij

and hyperlink-document matrix A lj are required for the LCM

learning. Hyperlinks between Web pages can easily be identi-
fied based on the anchor tags for computing A lj . For Web page
contents, we removed all the html tags as well as the contents
between the <SCRIPT> tags. Also, stopwords removal and
stemming [4] were applied subsequently. The remaining terms
were all changed to be of lower case. We then extracted only
terms with their document frequencies bigger than a threshold
value [3]. We have tested the threshold of 5, 10, and 20
(denoted as DF05, DF10, DF20), resulting in datasets with
their numbers of distinct words equal 1629, 957 and 550
respectively. The factored nearest neighbor approach (1-nn and
3-nn), as described in Section III-A.1, is used for comparing
their accuracy and the corresponding results are shown in
Table II. We found that DF10 and DF20 outperform DF5 and
the performance of DF10 and DF20 are comparable. As a
smaller number of terms implies lower computational com-
plexity as shown in the previous section, DF20 was used in
the subsequent experiments.

TABLE II

CLASSIFICATION ACCURACY (%) FOR D05, D10 AND D20.

1-nn (%) 3-nn (%)
D05 81.46 82.71
D10 86.30 85.20
D20 86.41 86.81

B. Experiment setups for different model exchange schemes

We performed a number of experiments for learning latent
class models using the one-shot and multiple model exchange
schemes with 1) different parameter exchange periods to indi-
cate different degrees of non-local data availability 2) different
numbers of distributed data sources to indicate different de-
grees of data distribution. In particular, we have tried different
exchange periods, 2, 5, 10, 15, 20 and ∞ (which degenerates
to one-shot model exchange case) and performed the experi-
ments with 2 to 6 distributed data sources. For preparing the
distributed data sources, we partitioned the WebKB dataset so
that part of Web pages in one partition also appear in some
others. Classification accuracy (as described in Section III-
A.1) and the training time are the performance measures we
adopted. As the local models learned at the distributed sites
have to synchronize at each model exchange stage, in our
experiment, we recorded the maximum computational time
among those needed by the distributed servers. To contrast
the additional privacy concern mentioned in Section III-D, we
deliberately learned an LCM by exchanging all three sets of
model parameters, i.e., P (t|z), P (c|z) and P (z|d), and another
only the privacy-friendly parameters, i.e., P (t|z) for perfor-
mance comparison. Lastly, as the EM algorithm only gives
sub-optimal solutions, for each LCM training, we have tried
ten different random initializations and reported the average
performance of the ten cases.
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C. Experimental Results

1) Performance comparison for exchange different sets of
model parameters: The classification accuracy and the train-
ing time associated to the distributed LCM learning with all
parameters exchanged and with only the privacy-friendly pa-
rameters exchanged for two distributed sets are tabulated in
Table III and IV, respectively.

TABLE III

CLASSIFICATION ACCURACY (%) AND TRAINING TIME (SEC) BASED ON

EXCHANGING THE FULL SET OF PARAMETERS.

Exchange 1-nn 3-nn Time
period (%) (%) (mm:ss)
∞ 81.85 80.90 0:54

20 77.93 78.64 1:47

15 78.04 77.91 1:41

10 78.59 79.38 2:11

5 80.73 82.11 2:17

2 83.26 84.71 2:29

TABLE IV

CLASSIFICATION ACCURACY (%) AND TRAINING TIME (SEC) BASED ON

EXCHANGING ONLY THE PRIVACY-FRIENDLY PARAMETERS.

1-nn 3-nn Time
(%) (%) (mm:ss)

∞ 83.11 82.75 0:56

20 84.45 81.45 0:55

15 82.03 81.47 0:57

10 80.93 81.32 1:03

5 83.11 83.10 1:06

2 87.51 87.55 1:43

According to Table III and IV, it is observed that the per-
formance of exchanging only the privacy-friendly parameters
is always better than that of exchanging the full set of model
parameters. In addition, as expected, the computational time
for exchanging only the privacy-friendly parameters is sig-
nificantly less than that for exchanging all model parameters
because of the reduced communication overhead. This effect is
especially obvious for cases with higher exchange frequencies.
Therefore, in the following experiments, we only adopt the
scheme of exchanging {P (t|z)}.

TABLE V

CLASSIFICATION ACCURACY (%) EVALUATED BY 1-NN BASED ON

DIFFERENT DEGREES OF DATA DISTRIBUTION AND DIFFERENT MODEL

EXCHANGE PERIODS.

∞ 20 15 10 5 2
2 sets 83.11 81.45 82.03 80.93 83.11 87.51
3 sets 87.23 86.74 86.52 86.43 85.55 85.82

4 sets 84.93 85.53 87.57 87.14 79.43 83.86

5 sets 77.01 79.38 79.93 84.40 79.74 83.22

6 sets 76.85 79.62 82.05 83.46 81.52 83.55

2) Performance sensitivity on different degrees of data dis-
tribution and different model exchange periods: In Table V

TABLE VI

CLASSIFICATION ACCURACY (%) EVALUATED BY 3-NN BASED ON

DIFFERENT DEGREES OF DATA DISTRIBUTION AND DIFFERENT MODEL

EXCHANGE PERIODS.

∞ 20 15 10 5 2
2 sets 82.75 81.45 81.47 81.32 83.10 87.55
3 sets 87.45 87.40 87.73 87.42 85.55 86.65

4 sets 84.30 85.27 87.29 87.78 85.95 85.79

5 sets 78.11 79.41 80.29 84.07 84.45 85.11
6 sets 75.66 78.74 82.05 83.04 84.18 85.55

TABLE VII

TRAINING TIME (SEC) BASED ON DIFFERENT DEGREES OF DATA

DISTRIBUTION.

∞ 20 15 10 5 2
2 sets 0:56 0:55 0:57 1:03 1:06 1:43

3 sets 0:50 0:52 0:55 0:50 1:37 1:34

4 sets 0:40 0:41 0:41 0:41 1:33 1:30

5 sets 0:37 0:33 0:41 0:42 1:29 1:28

6 sets 0:30 0:33 0:33 0:35 1:24 1:24

to VII, the classification accuracy evaluated based on the 1-nn
and 3-nn factoring approaches as well as the training time for
learning the LCM based on different experiment settings are
reported. According to Table V and VI, the accuracy decreases
monotonically as the number of distributed sources increases.
It is possibly due to the fact that when data are distributed to
different sites, the amount of available information for each
source decreases. Therefore, the overall performance is re-
duced. The gain, as shown in Table VII, is that the training
time is reduced (due to the parallellism). By allowing model
exchange, as observed in Table V and VI, we found that the
accuracy can be significantly increases, the trend is not espe-
cially clear though. In general, allowing parameters exchange
more frequently can result in better overall performance of the
global model.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a methodology for learning
a global latent model from distributed data sources by multiple
model exchanges with promising results. With the option to
exchange only the privacy-friendly parameters, our empirical
results show that the overall model gives acceptable and some-
times even better accuracy. In addition, we observed that while
the increase in the number of distributed sites can lower the
overall accuracy of the global model, the interpolating effect
caused by the model exchange can improve the accuracy to
some extent.

While this work provides us some interesting and encour-
aging results for exploring distributed data mining through
model (or generally speaking knowledge) exchange, there still
exist a number of areas worth further research effort. What
we have proposed in this paper is a model-specific method-
ology for distributed data mining. Ways for generalizing the
proposed methodology so as to be applied to different types
of models is one of the worth-pursuing research directions.
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In addition, the way we exchange all local model parameters
or privacy-friendly parameters is based on some fixed time
periods. one can go one step further to derive adaptive on-
demand model exchange strategies for minimizing the com-
munication cost while still maintaining the desired accuracy.
Furthermore, there still exist no guarantee for the convergence
of the global model. We are currently investigating different
discounting strategies for addressing the model convergence
issue.
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