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Abstract— Bilevel decision techniques are mainly developed for 

solving decentralized management problems with decision makers in 
a hierarchical organization. Organizational bilevel decision-making, 
such as planning of land-use, transportation and water resource, all 
may involve uncertain factors. The parameters shown in a bileved 
programming model, either in the objective functions or constraints, 
are thus often imprecise, which is called fuzzy parameter bilevel 
programming (FPBLP) problem. Following our previous work [1, 2], 
this study first proposes a model of FPBLP. It then gives the 
definition of optimal solution for an FPBLP problem. Based on the 
definition and related theorems, this study develops a fuzzy number 
based Kuhn-Tucher approach to solve the proposed FPBLP problem. 
Finally, an example further illustrates the power of the fuzzy number 
based Kuhn-Tucher approach. 
 

Index Terms— Linear bilevel programming, Kuhn-Tucker 
approach, Fuzzy set, Optimization. 
 

I. INTRODUCTION 
HE execution of many decisions in businesses is sequential, 
from a higher level (leader) to a lower level (follower); each 

unit independently optimizes its own objective, but is affected by 
other unit’s actions through externalities. This is called bilevel 
programming (BLP) problem (also called bilevel decision or 
bilevel optimization problems). BLP was first introduced by Von 
Stackelberg [3] in the context of unbalanced economic markets [4, 
5]. In a BLP problem, each decision maker (leader or follower) 
tries to optimize his/her own objective function with partially or 
without considering the objective of the other level, but the 
decision of each level affects the objective optimization of the 
other level [6]. 

There have been nearly two dozen algorithms [5, 7-10] 
proposed for solving BLP problems since the field caught the 
attention of researchers in the mid-1970s [11-19]. Although BLP 
theory and technology have been applied with remarkable success 
in different domains [20-22], existing approaches mainly support 
the decision situation in which the objective functions and 
constraints are characterized with precise parameters. Therefore, 
the parameters are required to be fixed at some values in an 
experimental and/or subjective manner through the experts’ 
understanding of the nature of the parameters in the 
problem-formulation process. It has been observed that, in most 
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real-world situations, particularly in critical resource planning,  
such as planning of land-use, transportation and water resource, 
the possible values of these parameters are often only imprecisely 
or ambiguously known to these experts. It results in a difficulty to 
fix parameters in the objective functions or constraints of a bilevel 
programming model. With this observation, it would be certainly 
more appropriate to interpret the experts’ understanding of 
parameters as fuzzy numerical data which can be represented by 
means of fuzzy sets theory [23]. A bilevel programming problem 
in which the parameters either in objective function or in 
constrains are described by fuzzy values is called a fuzzy 
parameter bilevel programming (FPBLP) problem. 

The FPBLP problem was first explored by Sakawa et al. in 2000 
[24]. Sakawa et al. formulates bilevel programming problems with 
fuzzy parameters from the perspective of experts’ imprecision and 
proposes a fuzzy programming method for fuzzy bilevel 
programming problems. However, Sakawa’s work is mainly 
based on the definition of solution for bilevel programming 
proposed by Bard [5, 15]. One deficiency of Bard’s  linear BLP 
theory is that it could not well solve a linear bilevel programming 
problem when the upper-level constraint functions are of arbitrary 
linear form. Our recent research work has extended Bard’s theory 
of bilevel programming by proposing a new definition of optimal 
solution for linear bilevel programming which can overcome the 
arbitrary linear form problem indicated above [1]. We have then 
proposed an extended Kuhn-Tucher approach, based on our 
definition of optimal solution, for solving linear bilevel problems 
[2]. 

Following our previous research results shown in [1, 2], this 
study aims at solving a FPBLP problem by transferring it into a 
non-fuzzy bilevel programming problem. This paper first 
proposes a model of FPBLP problem, then gives a definition of the 
optimal solution for the FPBLP problem. Based on the definition 
and related theorems, this paper develops a fuzzy number based 
Kuhn-Tucher approach to solve the proposed FPBLP problem. As 
this paper only deals with linear bilevel problem, so bilevel 
programming means linear bilevel programming in this paper. 

Following the introduction, Section 2 reviews related 
definitions, theorems and properties of fuzzy number, BLP 
solution and Kuhn-Tucher approach for solving an BLP problem. 
A definition of optimal solution and a fuzzy number based 
Kuhn-Tucher approach for solving FPBLP problems are 
presented in Section 3. A numeral example is shown in Section 4 
for illustrating the proposed fuzzy number based Kuhn-Tucher 
approach. Conclusion and further study are discussed in Section 5. 
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II. PRELIMINARIES 

A. Fuzzy Numbers 
In this section, we present some basic concepts, definitions and 

theorems that are to be used in the subsequent sections. The work 
presented in this section can also be found from our recent paper 
in [25]. 

Let R be the set of all real numbers, Rn be n-dimensional 
Euclidean space, and x = (x1, x2, …, xn)T, y = (y1, y2, …, yn)T ∈ Rn 
be any two vectors, where xi, yi ∈ R, i = 1,2, …, n and T  denotes 
the transpose of the vector. Then we denote the inner product of x 
and y by ., yx  For any two vectors x, y ∈ Rn, we write yx >  iff 

;,,2,1, niyx ii L=∀>  yx > iff yx > and yx ≠ ; x > y iff  xi > yi, ∀ i = 

1,2, …, n. 
Definition 2.1 A fuzzy number a~  is defined as a fuzzy set on R, 

whose membership function 
a~µ satisfies the following conditions: 

1. 
a~µ  is a mapping from R to the closed interval [0, 1]; 

2. it is normal, i.e., there exists x ∈ R such that ( ) 1~ =xaµ ; 

3. for any λ ∈ (0, 1],  aλ = {x; a~µ (x) ≥ λ} is a closed interval, 
denoted by ],[ RL aa λλ

. 
Let F(R) be the set of all fuzzy numbers. By the decomposition 

theorem of fuzzy set, we have 
,],[~

]1,0[
U
∈

=
λ

λλλ RL aaa  (2.1) 

for every a~ ∈ F(R). 
Let )(* RF  be the set of all finite fuzzy numbers on R. 
Theorem 2.1 Let a~  be a fuzzy set on R, then a~ ∈ F(R) if and 

only if 
a~µ satisfies 

⎪
⎩

⎪
⎨

⎧

>
<

∈
= ,

)(
)(

],[1
)(~

nxxR
mxxL

nmx
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where L(x) is the right-continuous monotone increasing 
function, 0 < L(x) < 1 and 0)(lim =−∞→ xLx

, R(x) is the 

left-continuous monotone decreasing function, 0 < R(x) < 1 and 

0)(lim =∞→ xRx
. 

Corollary 2.1 For every )(~ RFa ∈ and λ1, λ2 ∈ [0, 1], if 
,21 λλ <  

then .
12 λλ aa ⊂  

Definition 2.2 For any )(
~

,~ RFba ∈ and ,0 R∈< λ  the sum of 

ba ~and~  and the scalar product of λ and a~ are defined by the 
membership functions 

)},(),({minsup)( ~~~~ vut bavutba µµµ
+=+

=  (2.2) 

)},(),({minsup)( ~~~~ vut
bavutba

µµµ
−=−

=  (2.2) 

).(sup)( ~~ ut a
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a µµ
λ

λ
=

=  (2.3) 

Theorem 2.2 For any )(~,~ RFba ∈ and ,0 R∈< α  
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Definition 2.3 Let .,,2,1),(~ niRFai L=∈  We define 
)~,,~,~(~

21 naaaa L=  

),(
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xx
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where x = (x1, x2, …, xn)T ∈ Rn, and a~ is called an n-dimensional 
fuzzy number on Rn. If ,,,2,1),(~ * niRFai L=∈  a~ is called an 
n-dimensional finite fuzzy number on Rn. 

Let )( nRF and F*(Rn) be the set of all n-dimensional fuzzy 
numbers and the set of all n-dimensional finite fuzzy numbers on 
Rn respectively. 

Proposition 2.1 For every aRFa n ~),(~ ∈ is normal. 
Proposition 2.2 For every ),(~ nRFa ∈ the λ-section of a~ is an 

n-dimensional closed rectangular region for any ]1,0[∈λ . 
Proposition 2.3 For every )(~ nRFa ∈ and λ1, λ2 ∈[0,1], if 

,21 λλ < then .
12 λλ aa ⊂  

Definition 2.4 For any n-dimensional fuzzy numbers 
),(

~
,~ nRFba ∈ we define 
1. ba ~~ f  iff  L

i
L

i ba λλ >  and ];1,0(,,,2,1, ∈=> λλλ niba R
i

R
i L  

2. ba ~~ f  iff  L
i

L
i ba λλ >  and ];1,0(,,,2,1, ∈=> λλλ niba R

i
R

i L  

3. ba ~~ f iff  L
i

L
i ba λλ >  and  ].1,0(,,,2,1, ∈=> λλλ niba R

i
R

i L  
We call the binary relations ff  ,  and f a fuzzy max order, a 

strict fuzzy max order and a strong fuzzy max order, respectively. 
 

B. The Extended Kuhn-Tucker Approach for Linear Bilevel 
Programming 

Let write a linear programming (LP) as follows. 
cxxf =)(min  

subject to bAx <  

0>x , 

where c  is an n-dimensional row vector, b  an m-dimensional 
column vector, A  an nm ×  matrix with nm ≤ , and nRx ∈ . 

Let mR∈λ  and nR∈µ  be the dual variables associated with 
constraints bAx >  and 0≥x , respectively. Bard [5] gave the 

following proposition. 
Proposition 2.4 [5] A necessary and sufficient condition that 
)( *x  solves above LP is that there exist (row) vectors *λ , *µ  such 

that ),,( *** µλx  solves: 
cA −=− µλ  

0>− bAx  

0)( =− bAxλ  
0=xµ  

0,0,0 >>> µλx  
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For nRXx ⊂∈ , mRYy ⊂∈ , 1: RYXF →× , and 
1: RYXf →× , a linear BLP problem is given by Bard [4]: 

ydxcyxF
Xx 11),(min +=

∈
 (2.5a) 

subject to 
111 byBxA <+  (2.5b) 

ydxcyxf
Yy 22),(min +=

∈
 (2.5c) 

subject to 
222 byBxA <+  (2.5d) 

where 1c , nRc ∈2
, 1d , mRd ∈2

, pRb ∈1
, qRb ∈2 , npRA ×∈1 , 

mpRB ×∈1 , nqRA ×∈2 , mqRB ×∈2
. 

Definition 2.5 [1] 
(a) Constraint region of the linear BLP problem: 

},,,:),{( 222111 byBxAbyBxAYyXxyxS <+<+∈∈=  

(b) Feasible set for the follower for each fixed Xx ∈ : 
},,:{)( 222111 byBxAbyBxAYyXxXS <+<+∈∃∈=  

(c) Projection of S  onto the leader’s decision space: 
},,:{)( 222111 byBxAbyBxAYyXxXS <+<+∈∃∈=  

(d) Follower’s rational reaction set for )(XSx ∈ : 
)]}(ˆ:)ˆ,(min[arg:{)( xSyyxfyYyxP ∈∈∈=  

where  
)}(ˆ),ˆ,(),(:)({)](ˆ:)ˆ,(min[arg xSyyxfyxfxSyxSyyxf ∈<∈=∈  

(e) Inducible region: 
)}(,),(:),{( xPySyxyxIR ∈∈=  

Definition 2.6 [1] ),( ** yx  is said to be a complete optimal 
solution, if  and only if there exists Syx ∈),( **  such that 

),(),( ** yxFyxF < and ),(),( ** yxfyxf < for all Syx ∈),( . 

However, in general, such a complete optimal solution that 
simultaneously minimizes both the leader’ and follower’s 
objective functions does not always exist. Instead of a complete 
optimal solution, a new solution concept, called Pareto optimality, 
is introduced in linear BLP. 

Definition 2.7 [1] ),( ** yx  is said to be a Pareto optimal 
solution, if and only if there does not exist Syx ∈),(  such that 

),(),( ** yxFyxF < , ),(),( ** yxfyxf <  and ),(),( ** yxFyxF ≠  or 

),(),( ** yxfyxf ≠ . 
Definition 2.8 A topological space is compact if every open 

cover of the entire space has a finite subcover. For example, ],[ ba  

is compact in R (the Heine-Borel theorem) [26]. 
To ensure that (2.5) has a Pareto optimal solution, Bard gave the 

following assumption. 
Assumption 2.1 

(a) S  is nonempty and compact. 
(b) For decisions taken by the leader, the follower has some 

rooms to respond; i.e, φ≠)(xP . 
(c) )(xP  is a point-to-point map. 

To ensure that (2.5) is well posed we assume that S  is 
nonempty and compact, and that )(xP  is a point-to-point map. 
The rational reaction set )(xP  defines the response while the 
inducible region IR  represents the set over which the leader may 
optimize his objective. Thus in terms of the above notations, the 
linear BLP problem can be written as 

}),(:),(min{ IRyxyxF ∈  (2.6) 
We also present the following theorem to characterize the 

condition under which there is a Pareto optimal solution for a 
linear BLP problem. 

Theorem 2.3 [1] If S is nonempty and compact, there exists a 
Pareto optimal solution for a linear BLP problem 

Theorem 2.4 [2] [Extended Kuhn-Tucher Theorem] A 
necessary and sufficient condition that ),( ** yx  solves the linear 

BLP problem (2.5) is that there exist (row) vectors *u , *v and 
*w  such that ),,,,( ***** wvuyx  solves: 

ydxcyxF 11),(min +=  (2.7a) 
subject to 111 byBxA ≤+  (2.7b) 

222 byBxA ≤+  (2.7c) 

221 dwvBuB −=−+  (2.7d) 
0)()( 222111 =+−−+−− wyyBxAbvyBxAbu  (2.7e) 

0,0,0,0,0 ≥≥≥≥≥ wvuyx  (2.7f) 
 

III. FUZZY PARAMETER LINEAR BILEVEL PROGRAMMING 
PROBLEM 

Consider the following fuzzy parameter linear bilevel 
programming (FPBLP) problem: 

For nRXx ⊂∈ , mRYy ⊂∈ , )(: * RFYXF →× , and 
)(: * RFYXf →× , 

ydxcyxF
Xx 11

~~),(min +=
∈

 (3.1a) 

subject to 
111

~~~ byBxA p+  (3.1b) 

ydxcyxf
Yy 22

~~),(min +=
∈

 (3.1c) 

subject to 
222

~~~ byBxA p+  (3.5d) 

where )(~,~ *
21

nRFcc ∈ , )(~,~ *
21

mRFdd ∈ , )(~ *
1

pRFb ∈ , 
)(~ *

2
qRFb ∈ , ( ) ,~~

1 npijaA
×

= ),(~ * RFaij ∈ ( ) ),(~,~~ *
1 RFbbB ijmpij ∈=

×
 

( ) ),(~,~~ *
2 RFeeA ijnqij ∈=

×
( ) )(~,~~ *

2 RFssB ijmqij ∈=
×

. 

Associated with the FPBLP problem, we now consider the 
following linear multi-objective multi-follower bilevel 
programming (LMMBLP) problem: 

For nRXx ⊂∈ , mRYy ⊂∈ , )(: * RFYXF →× , and 
)(: * RFYXf →× , 

( )
( ) ]1,0[,),(min

]1,0[,),(min

11

11

∈+=

∈+=

∈

∈

λ

λ

λλλ

λλλ

ydxcyxF

ydxcyxF
RRR

Xx

LLL

Xx  (3.2a) 

subject to ]1,0[,, 111111 ∈<+<+ λλλλλλλ
RRRLLL byBxAbyBxA  (3.2b) 

( )

( ) ]1,0[,),(min

]1,0[,),(min

22

22

∈+=

∈+=

∈

∈

λ

λ

λλλ

λλλ

ydxcyxf

ydxcyxf
RRR

Yy

LLL

Yy  (3.2c) 

subject to ]1,0[,, 222222 ∈<+<+ λλλλλλλ
RRRLLL byBxAbyBxA  (3.5d) 

where RL cc λλ 11 , , nRL Rcc ∈λλ 22 , , RL dd λλ 11 , , mRL Rdd ∈λλ 22 , , 
pRL Rbb ∈λλ 11 , , qRL Rbb ∈λλ 22 , , ( ) ( ) ,, 11

npR
ij

RL
ij

L RaAaA ×∈==
λλλλ

 

( ) ( ) ,, 11
mpR

ij
RL

ij
L RbBbB ×∈==

λλλλ
nqR × , ( ) ( ) ., 22

mqR
ij

RL
ij

L RsBsB ×∈==
λλλλ

 

Theorem 3.1 Let ),( ** yx  be the solution of the LMMBLP 
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problem (3.2). Then it is also a solution of the FPBLP problem 
defined by (3.1). 

Proof. The proof is obvious from Definition 2.4. 
Lemma 3.1 If there is ),( ** yx  such that ,** dycxdycx +>+  

*
0

*
000 ydxcydxc LLLL +>+  and ,*

0
*

000 ydxcydxc RRRR +>+  for any 

),( yx  and isosceles triangle fuzzy numbers c~  and ,~d  then 
,** ydxcydxc LLLL

λλλλ +>+  

,** ydxcydxc RRRR
λλλλ +>+  

for any )1,0(∈λ , where c and d are the centre of c~  and d~  
respectively. 

Proof. As λ-section of isosceles triangle fuzzy numbers c~  and 
d~  are 

λλλ ccc LL +−= )1(0
 and λλλ ccc RR +−= )1(0

 

λλλ ddd LL +−= )1(0
 and λλλ ddd RR +−= )1(0

. 
Therefore, we have 

,

)()1)((
)()1)((

)1()1(

**

***
0

*
0

00

00

ydxc

dycxydxc
dycxydxc

ydydxcxcydxc

LL

LL

LL

LLLL

λλ

λλ

λλ
λλ

λλλλ

+=

++−+>

++−+=

+−++−=+
 

from ** dycxdycx +>+  and .*
0

*
000 ydxcydxc LLLL +>+ , we can 

prove ** ydxcydxc RRRR
λλλλ +>+  from similar reason. 

Theorem 3.2 For nRXx ⊂∈ , mRYy ⊂∈ , If all the fuzzy 
coefficients 

iijijijij cseba ~,~,~,~,~  and 
id~ have triangle membership 

functions of the FPBLP problem (3.1). 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<

<<
−

+−

<<
−
−

<

= ,

0

0

)(

0

0
0

0

0
0

0

0

~

tz

ztz
zz

zt

ztz
zz
zt

zt

t

R

R
R

R

L
L

L

L

zµ
 (3.3) 

where z~  denotes 
iijijijij cseba ~,~,~,~,~  and 

id~ and z are the centre of  

z~ respectively. Then, it is the solution of the problem (3.1) that 
),( ** yx ∈ mn RR ×  satisfying 
( ) ,),(min 11 ydxcyxF cXx

+=
∈

 

( )
( ) ,),(min

,),(min

01010

01010

ydxcyxF

ydxcyxF
RRR

Xx

LLL

Xx

+=

+=

∈

∈  (3.4a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.4b) 

,010101
RRR byBxA <+  

( ) ,),(min 22 ydxcyxf cYy
+=

∈
 

( )

( ) ,),(min

,),(min

0202

02020

ydxcyxf

ydxcyxf
RRR

Yy

LLL

Yy

+=

+=

∈

∈

λ

 (3.4c) 

subject to ,222 byBxA <+  

,020202
LLL byBxA <+  (3.4d) 

.020202
RRR byBxA <+  

Proof. From Lemma 3.1, if ),( ** yx  satisfies (3.4a) and (3.4c), 

then it satisfies (3.2a) and (3.2c). Then we need only prove, 
if ),( ** yx  satisfies (3.4b) and (3.4d), then it satisfies (3.2b) and 
(3.2d). In fact, for any ),1,0(∈λ  

),1(

and)1(

),1(

0111

0

0

λλ

λλ

λλ

λ

λ

λ

−+=

−+=

−+=

LL

L
ijij

L
ij

L
ijij

L
ij

bbb

bbb

aaa
 

we have 
***

1
*

1 )()( ybxayBxA L
ij

L
ij

LL

λλλλ +=+  

( ) ( ) *

0

*

0
)1()1( ybbxaa L

ijij
L

ijij λλλλ −++−+=  

( ) ( ) ( ) ( ) )1()1( *

0

**

0

* λλλλ −++−+= ybybxaxa L
ijij

L
ijij

 

( ) ( )( ) ( ) ( )( ) )1(*

0

*

0

** λλ −+++= ybxaybxa L
ij

L
ijijij

 

( ) ( )( )λλ −+++= 1*
01

*
01

*
1

*
1 yBxAyBxA LL  

,)1( 1011
LL bbb λλλ =−+<  

from (3.4b). Similarly, we can prove 
,1

*
1

*
1

RRR byBxA λλλ <+  

,2
*

2
*

2
LLL byBxA λλλ <+  

,2
*

2
*

2
RRR byBxA λλλ <+  

for any )1,0(∈λ  from (3.4b) and (3.4d). The proof is complete. 
Theorem 3.3 [Extended Kuhn-Tucher Theorem] A necessary 

and sufficient condition that ),( ** yx  solves the FPBLP problem 
(3.1) with triangle fuzzy numbers is that there exist (row) 
vectors *u , *v and *w  such that ),,,,( ***** wvuyx  solves: 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.5a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.5b) 

,010101
RRR byBxA <+  

,222 byBxA <+  

,020202
LLL byBxA <+  (3.5c) 

,020202
LLL byBxA <+  

( )RL

RLRL

ddd

wBvBvBvBuBuBu

02022

0230222101301211

++−=

−+++++  (3.5d) 

( ) ( )
( )
( ) ( ) 0

)(

02020230202022

22210101013

01010121111

=+−−+−−

+−−−+−−

+−−+−−

wyyBxAbvyBxAbv

yBxAbvyBxAbu

yBxAbuyBxAbu

RRRLLL

RRR

LLL

(3.5e) 

0,0,0,0,0 ≥≥≥≥≥ wvuyx  (3.5f) 
Proof: (1) From Theorem 3.2, we know that we need only to 

solve the problem (3.4). In fact, to solve the problem (3.4), we can 
use the method of weighting [27] to this problem, such that it is the 
following problem: 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.6a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  (3.6b) 

,010101
RRR byBxA <+  

( ) ydxcydxcydxcyxf RRLL

Yy 0202020222),(min +++++=
∈

 (3.6c) 
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subject to  ,222 byBxA <+  

,020202
LLL byBxA <+  (3.6d) 

.020202
RRR byBxA <+  

Therefore, the linear BLP problem can be written as 
}),(:),(min{ IRyxyxF ∈  (3.7) 

Let us get an explicit expression of (3.7) and rewrite (3.7) as 
follows: 

),(min yxF  
subject to IRyx ∈),( . 

We have 
),(min yxF  

subject to Syx ∈),(  
)(xPy ∈  

by Definition 2.5(e). Then, we have 
),(min yxF  

subject to Syx ∈),(  
)](ˆ:)ˆ,(min[arg xSyyxfy ∈∈  

by Definition 2.5(d). We rewrite it as: 
),(min yxF  

subject to Syx ∈),(  
),(min yxf  

subject to )(xSy ∈ . 
We  have 

),(min yxF  
subject to Syx ∈),(  

),(min yxf
Yy∈

 

 subject to Syx ∈),( , 
by Definition 2.5(c). Consequently, we can have 

( ) ( ) ( ) ( )ydxcydxcydxcyxF RRLL

Xx 0101010111),(min +++++=
∈

 (3.8a) 

subject to ,111 byBxA <+  

,010101
LLL byBxA <+  

,010101
RRR byBxA <+  (3.8b) 

,222 byBxA <+  

,020202
LLL byBxA <+  

.020202
RRR byBxA <+  

( )

ydxcyd

xcydxcyxf

RRL

L

Yy

020202

0222),(min

++

+++=
∈  (3.8c) 

subject to  ,111 byBxA <+   

,010101
LLL byBxA <+  

,010101
RRR byBxA <+  (3.8d) 

,222 byBxA <+  

,020202
LLL byBxA <+   

.020202
RRR byBxA <+  

by Definition 2.5(a). 
This simple transformation has shown that solving the fuzzy 

linear BLP (3.1) is equivalent to solving (3.8). 
 
(2) Necessity is obvious from (3.8). 
 

(3) Sufficiency. If  ),( ** yx  is the optimal solution of (3.6), we 
need to show that there exist (row) vectors *

3
*
2

*
1 ,, uuu , *

3
*
2

*
1 ,, vvv and 

*w  such that )  ,,,,,,,,( **
3

*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx  to solve (3.5). Going 
one step farther, we only need to prove that there exist (row) 
vectors *

3
*
2

*
1 ,, uuu , *

3
*
2

*
1 ,, vvv and *w such that 

)  ,,,,,,,,( **
3

*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx  satisfy the follows 

)( 02022

0230222101301211

RL

RLRL

ddd

wBvBvBvBuBuBu

++−=

−+++++  (3.9a) 

0)( 1111 =−− yBxAbu  (3.9b) 
0)( 0101012 =−− yBxAbu LLL   (3.9c) 

0)( 0101013 =−− yBxAbu RRR   (3.9d) 

0)( 2221 =−− yBxAbv   (3.9e) 
0)( 0202022 =−− yBxAbv LLL   (3.9f) 

0)( 0202023 =−− yBxAbv RRR   (3.9g) 

0=wy ,  (3.9h) 
where pRuuu ∈321 ,, , qRvvv ∈321 ,,  , mRw ∈  and they are not 
negative variables. 
Because ),( ** yx  is the optimal solution of (3.6), we have 

IRyx ∈),( ** , 
by (3.7). Thus we have 

)( ** xPy ∈ , 
by Definition 2.5(e). *y  is the optimal solution to the following 
problem 

))(:),(min( ** xSyyxf ∈ ,  (3.10) 
by Definition 2.5(d). Rewrite (10) as follows 

),(min yxf  
subject to )(xSy ∈  

*xx = . 
From Definition 3.2(b), we have 

( ) ydxcydxcydxcyxf RRLL

Yy 0202020222),(min +++++=
∈

  (3.11a) 

subject to  ,111 byBxA <+  (3.11b) 

,010101
LLL byBxA <+  (3.11c)  

,010101
RRR byBxA <+   (3.11d) 

,222 byBxA <+  (3.11e)  

,020202
LLL byBxA <+  (3.11f) 

.020202
RRR byBxA <+   (3.11g) 

*xx =  (3.11h) 
0>y  (3.11i) 

To simplify (3.11), we can have 
ydddyg RL )()(min 02022 ++=  (3.12a) 

subject to  ),( *
111 xAbyB −−>−  (3.12b) 

),( *
010101 xAbyB LLL −−>−  (3.11c) 

),( *
010101 xAbyB RRR −−>−  (3.12d) 

),( *
222 xAbyB −−>−   (3.12e) 

),( *
020202 xAbyB LLL −−>−  (3.12f) 

),( *
020202 xAbyB RRR −−>−  (3.12g) 

0>y .  (3.12h) 
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Let we note 

.and,,

02

02

2

01

01

1

02

02

2

01

01

1

02

02

2

01

01

1

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

R

L

R

L

R

L

R

L

R

L

R

L

b
b
b
b
b
b

b

A
A
A
A
A
A

A

B
B
B
B
B
B

B
 (3.13)  

We rewrite (3.12) by using (3.13) and we get 
ydddyg RL )()(min 02022 ++=   (3.14a) 

subject to )( *AxbBy −−>−  (3.14b) 

0>y .  (3.14c) 

Now we see that *y  is the optimal solution of (3.14) which is a 
LP problem. By Proposition 2, there exists vector ** , µλ , such that 

),,( *** µλy  satisfy a system below 
)( 02022

RL dddB ++−=− µλ  (3.15a) 

0)( * >−+− AxbBy  (3.15b) 

0))(( * =−+− AxbByλ  (3.15c) 
0=yµ , (3.15d)  

where qpR 33 +∈λ  and mR∈µ .  
Let pRuuu ∈321 ,, , qRvvv ∈321 ,,  and mRw ∈  and define  

( )321321 ,,,,, vvvuuu=λ  

µ=w . 
Thus we have )  ,,,,,,,,( **

3
*
2

*
1

*
3

*
2

*
1

** wvvvuuuyx that satisfy (3.9). 
Our proof is completed. 

Theorem 3.3 means that the most direct approach to solving 
(3.1) is to solve the equivalent mathematical program given in 
(3.5). One advantage that it offers is that it allows for a more 
robust model to be solved without introducing any new 
computational difficulties 

 

IV. AN ILLUSTRATIVE EXAMPLE 
Example 1 Consider the following FPBLP problem with 

1Rx ∈ , 1Ry ∈ , and }0{ ≥= xX , }0{ ≥= yY , 

yxyxF
Xx

2~1~),(min −=
∈

 (4.1a) 

subject to 4~3~1~ pyx+−  (4.1b) 

yxyxf
Yy

1~1~),(min 1 +=
∈

 (4.1c) 

subject to 0~1~1~ pyx −  (4.1d) 

0~1~1~ pyx −−  (4.1e) 

where  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<<−
<<

<

= ,

20
212
10

00

)(
1~

t
tt
tt

t

tµ
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<<−
<<−

<

= ,

30
323
211

10

)(
2~

t
tt
tt

t

tµ
  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<<−
<<−

<

= ,

40
434
322

20

)(
3~

t
tt
tt

t

tµ
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<<−
<<−

<

= ,

50
545
433

30

)(
4~

t
tt
tt

t

tµ
  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
<<−
<<−+

−<

= .

10
101
011

10

)(
0~

t
tt
tt

t

tµ
 

Step 1 The problem is transferred to the following LMMBLP 
problem by using Theorem 3.2 

( ) yxyxF cXx
21),(min −=

∈
 

( ) yxyxF L

Xx
30),(min 0 −=

∈
 

( ) yxyxF R

Xx
12),(min 0 −=

∈
 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
 ( ) yxyxf cYy

11),(min +=
∈

 

( ) yxyxf L

Yy
00),(min 0 +=

∈
 

( ) yxyxf R

Yy
22),(min

0
+=

∈
 

subject to 011 ≤− yx  
120 −≤− yx  

102 ≤− yx  
011 ≤−− yx  

000 ≤− yx  
122 −≤−− yx  

Step 2. The problem is transferred to the following linear BLP 
problem by using method of weighting [27].  

yxyxF
Xx

63),(min −=
∈

 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
yxyxf

Yy
33),(min +=

∈
 

subject to 011 ≤− yx  
120 −≤− yx  

102 ≤− yx  
011 ≤−− yx  

122 −≤−− yx . 
100 ≤− yx  

Step 3 Solve this linear BLP problem 
yxyxF

Xx
63),(min −=

∈
 

subject to 431 ≤+− yx  
322 ≤+− yx  

540 ≤+ yx  
011 ≤− yx  

120 −≤− yx  
102 ≤− yx  

011 ≤−− yx  
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122 −≤−− yx . 
100 ≤− yx  

30202423 10987654321 −=−−−−−−−++ uuuuuuuuuu  

0)221()(
)21()21()(

)45()223()314(

10987

654

321

=++++−++
+−++−++−

+−+−++−+

yuuyxuyxu
xuyuyxu

yuyxuyxu
 

0,,0,0,0 101 ≥≥≥≥ uuyx K . 
Step 4   The result is  

( ) 121),(min −=−=
∈

yxyxF cXx
 

( ) 5.130),(min 0 −=−=
∈

yxyxF L

Xx
 

( ) 5.012),(min 0 −=−=
∈

yxyxF R

Xx
 

and 
( ) 5.0),(min =

∈ cYy
yxf  

( ) 0),(min 0 =
∈

L

Yy
yxf  

( ) 1),(min 0 =
∈

R

Yy
yxf  

5.0,0 == yx  
Consequently, we have the solution of the problem (4.1) 

cyxyxF
Xx

~2~1~),(min =−=
∈

 

dyxyxf
Yy

~1~1~),(min 1 =+=
∈

 

and 
5.0,0 == yx , 

where 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤−

−<≤−
−−

−<≤−
+

−<

= ,

5.00

5.01
5.0

5.0

15.1
5.0

5.1
5.10

)(~

t

tt

tt
t

tcµ
  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

<≤
−

<≤

<

= .

10

15.0
5.0

1

5.00
5.0

00

)(~

t

tt

tt
t

tdµ
 

 

V. CONCLUSION 
Many organizational decision problems can be formulated by 

bilevel programming models. Following our previous research [1, 
2], this paper proposes the definition of optimal solution and 
related theorems for fuzzy parameter based linear bilevel 
programming. By using the proposed definition and theorems, this 
study develops a fuzzy number based Kuhn-Tucher approach to 
solve proposed FPBLP problem. A numeral example illustrates 
the power and details of the proposed approach. Further study 
includes the development of the model and related solving 
approaches for fuzzy parameter based multi-follower bilevel 
programming problems. 
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