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Abstract--Similarity measure is one of important, effective and 
widely-used methods in data processing and analysis. As vague set 
theory has become a promising representation of fuzzy concepts, in 
this paper we present a similarity measure approach for better 
understanding the relationship between two vague sets in applica-
tions. Compared to existing similarity measures, our approach is far 
more reasonable, practical yet useful in measuring the similarity 
between vague sets. 
 

Index Terms-- Fuzzy sets,  Vague sets,  Similarity measure 

I. INTRODUCTION 
In the classical set theory introduced by Cantor, a German 

mathematician, values of elements in a set are only one of 0 and 
1. That is, for any element, there are only two possibilities: in or 
not in the set. Therefore, the theory cannot handle the data with 
ambiguity and uncertainty.  

Zadeh proposed fuzzy theory in 1965 [1]. The most important 
feature of a fuzzy set is that fuzzy set A is a class of objects that 
satisfy a certain (or several) property. Each object x has a mem-
bership degree of A, denoted as µA(x). This membership function 
has the following characteristics: The single degree contains the 
evidences for both supporting and opposing x. It cannot only 
represent one of the two evidences, but it cannot represent both 
at the same time too.  

In order to deal with this problem, Gau and Buehrer proposed 
the concept of vague set in 1993 [2], by replacing the value of an 
element in a set with a sub-interval of [0, 1]. Namely, a true-
membership function tv(x) and a false-membership function fv(x) 
are used to describe the boundaries of membership degree. These 
two boundaries form a sub-interval [tv(x), 1 – fv(x)] of [0, 1]. The 
vague set theory improves description of the objective real world, 
becoming a promising tool to deal with inexact, uncertain or 
vague knowledge. Many researchers have applies this theory to 
many situations, such as fuzzy control, decision-making, knowl-
edge discovery and fault diagnosis. And the tool has presented 
more challenging than that with fuzzy sets theory in applications.  

In intelligent activities, it is often needed to compare and cou-
ple between two fuzzy concepts. That is, we need to check 
whether two knowledge patterns are identical or approximately 
same, to find out functional dependence relations between con-
cepts in a data mining system. Many measure methods have been 
proposed to measure the similarity between two vague sets (val-
ues). Each of them is given from different side, having its own 
counterexamples. Such as Shyi-Ming Chen proposed a similarity 
measure MC in [3], whereas from the MC model we can gain the 
similarity of vague values [0.5, 0.5] and [0, 1] is 1, obviously 
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their similarity should not be 1. In reference [5] Dug Hun Hong 
put forward another similarity measure MH, according to the 
formulae of MH, we can obtain the similarity of vague values [0.3, 
0.7] and [0.4, 0.6] is 9.0])6.0,4.0[],7.0,3.0([ =HM , in the same 
model, we can get 9.0])7.0,4.0[],6.0,3.0([ =HM . In a voting 
model, the vague value [0.3, 0.7] can be interpreted as: “the vote 
for a resolution is 3 in favor, 3 against and 4 abstentions”; [0.4, 
0.6] can be interpreted as: “the vote for a resolution is 4 in favor, 
4 against and 2 abstention”. [0.3, 0.6] and [0.4, 0.7] can have 
similar interpretation. Intuitively, [0.3, 0.7] and [0.4, 0.6] may be 
more similar than [0.3, 0.6] and [0.4, 0.7]. Therefore sometimes 
the results of MH model are not accordant with our intuition. 
After analyzing most existing vague sets and vague values simi-
larity measures, we find out that almost each measure has its 
defect. In section 2.2, we will illustrate them with more examples. 

Then we have to make a choice according to the applications. 
A more reasonable approach is proposed to measure similarity in 
this paper, after analyzing existing methods. 

The remaining of this paper is organized as follows. In Section 
2, several methods of similarity measure for vague set are dis-
cussed. An improved similarity measure method and its proper-
ties are given in Section 3. Section 4 concludes this paper. 

II. PRELIMINARIES 

A. Vague set  
In this section, we review some basic definitions of vague values 
and vague sets from [2], [3], [4].  

Definition 1 Vague Sets [2]: Let X be a space of points (ob-
jects), with a generic element of X denoted by x. A vague set V in 
X is characterized by a truth-membership function vt  and a false-

membership function vf . vt  is a lower bound on the grade of 

membership of x derived from the evidence for x, and vf  is a 
lower bound on the negation of x derived from the evidence 
against x, vt  and vf  both associate a real number in the interval 

[0,1] with each point in X, where 1≤+ vv ft . That is  

]1,0[: →Xtv   ; ]1,0[: →Xfv  

This approach bounds the grade of membership of x to a sub-
interval )](1),([ xfxt vv −  of ]1,0[  

When X is continuous, a vague set V can be written as  

∫ −=
X VV xxfxtV /)](1),([ , Xx∈ . 

When X is discrete, a vague set V can be written as  
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Definition 2: Let x and y be two vague values, where 
]1,[ xx ftx −=  and ]1,[ yy fty −= . If yx tt =  and 

yx ff = , then the vague values x and y are called equal (i.e., 

]1,[]1,[ yyxx ftft −=− ).  

Definition 3: Let A and B be vague sets of the universe of dis-
course U, },,{ 21 nuuuU L= , where 
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If i∀ , )](1),([)](1),([ iBiBiAiA ufutufut −=− , then the vague 
sets A and B are called equal, where ni ≤≤1 . 

B. Research into similarity measure 
Currently, there have been many similarity measurements for 

vague set (value). Suppose that X = [tx, 1 – fx] and Y = [ty, 1 – fy] 
are two vague values over the discourse universe U. Let S(x) = tx 
– fx,, S(y) = ty – fy, the MC, MH, ML and MO models are defined 
respectively in [3], [5], [6] and [7] as follows, 
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Comparisons among the MC, MH, ML, MO models can also be 
found in [7]. 

From the definition of the MC model, we know that 

tx – fx = ty – fy ⇒ MC ≡ 1, 

i.e. the MC  model is too rough when tx – fx = ty – fy.  
The MH model pays equal attention both to the difference of 

two true-membership degrees and to the difference of two false-
membership degrees, between two vague values. Pairs of vague 
values, which have both the same difference of true-membership 
degrees and the same difference of false-membership degrees, 
have the same similarity. But it does not distinguish the positive 
difference and negative difference between true- and false-
membership degrees.  

The ML model inherits the advantages of the MC and MH mod-
els, paying equal attentions to the support of vague value, true-
membership degree, and false-membership degree, respectively. 
But it uses absolute values, and hence increases the possibility of 
similarity coincidence. For example, it cannot distinguish be-
tween pair of ([0.4, 0.8], [0.5, 0.7]) and pair of ([0.4, 0.8], [0.5, 

0.8]). According to our intuition, pair of ([0.4, 0.8], [0.5, 0.8]) is 
more similar than pair of ([0.4, 0.8], [0.5, 0.7]), but in the model 
of ML, the two pairs of vague values have the same similarity.  

The MO model also reflects the equal concerns between the 
difference of true-membership degrees and the difference of 
false-membership degrees. But similar to the MH model, the MO 
model does not consider whether the differences are positive or 
negative.  

The above methods of similarity measure can be used to solve 
the problem of how to determine the similarity between two 
vague values in a certain extent. But each of them focuses on 
different aspects. There are three factors which affect the similar-
ity of vague values: true-membership function tx, false-
membership function fx, and 1 – tx – fx. The reason there are 
many counterexamples under the measures of the MH, ML and MO 
models is that the weights of |tx – ty|, | fx – fy| and |(ty + fy) – (tx + 
fx)| in the above methods are constants. Its explicit characteristic 
is that it is not considered whether the difference is positive or 
negative. Based on this idea, a new weighted and variable simi-
larity measure is proposed. It can considerably reduce the possi-
bility of similarity coincidence. 

III. MEASURING THE SIMILARITY BETWEEN VAGUE SETS 
This section constructs a new approach for measuring the 

similarity between vague sets, analyzes the properties and illus-
trates the use by examples. 

A.       A New Similarity Measure 
We first give an example. Assume that there are four candi-

dates A, B, C, D, and ten voters. One voter supports A, one op-
poses A; two support B, one opposes B; seven support C, one 
opposes C; eight support D, and one opposes D. The voting re-
sults of A, B, C, and D can be viewed as four vague values, A[0.1, 
0.9], B[0.2, 0.9], C[0.7, 0.9], and D[0.8, 0.9]. Now we compare 
the similarities between A and B, and between C and D. By for-
mulae (1), (2), (3) and (4), we obtain the similarities as shown in 
Table 1. 

 
TABLE  1.  

AN EXAMPLE OF SIMILARITY CALCULATION 
 x y Mc MH ML MO M’ 

A,B [0.1,0.9] [0.2, 0.9] 0.95 0.95 0.95 0.929 0.968 
C,D [0.7, 0.9] [0.8, 0.9] 0.95 0.95 0.95 0.929 0.953 
 
From Table 1, we can see that the similarities between A and B 

(and between C and D) are all the same by using the Mc, MH, ML 
and MO models. If only a candidate can be selected and renuncia-
tion is considered, D is most possible to be selected. The possi-
bility of selecting C is smaller than that of selecting D. Selecting 
A or B has rather low possibility. Intuitively, it should be easier 
to say that A and B are similar than C and D, because A and B are 
all impossible options, D might be selected, and C might not be 
selected. Among A, B, C, and D, we would be most concerned 
with the similarity between C and D. We need to enlarge the 
difference of similarities where we are concerned.  

For another example, assume that there are other four candi-
dates E, F, G, H, and ten voters. One voter supports E, nine op-
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pose E; one supports F, eight oppose F; one supports G, two 
oppose G; one supports H, and one opposes H. The voting results 
of E, F, G, and H can also be viewed as four vague values, E[0.1, 
0.1], F[0.1, 0.2], G[0.1, 0.8], and H[0.1, 0.9]. Now we compare 
the similarities between E and F, and between G and H. By for-
mulae (1), (2), (3) and (4), we obtain the similarities as shown in 
Table 2. 

 
TABLE  2.  

AN EXAMPLE OF SIMILARITY CALCULATION 
 x y Mc MH ML MO M’ 

E,F [0.1,0.1] [0.1, 0.2] 0.95 0.95 0.95 0.929 0.948 
G,H [0.1, 0.8] [0.1, 0.9] 0.95 0.95 0.95 0.929 0.931 
 
We definitely know only the minority of voters support the 

candidates E, F, G or H, and the majority of voters oppose E or F, 
whereas we have little information about G or H because there 
are so many abstainers. Intuitively compared with E and F, G 
and H should have less similarity. But from the Table 2, we can 
see the similarities between E and F (and between G and H) are 
all the same by using the Mc, MH, ML and MO models.  

Then we need a new similarity measure which can magnify 
what we are concerned. That is, if tx – ty is equal to fx – fy, the 
similarities can still be different. For example, the larger the 
support (tx + ty) is, the smaller the similarity should be. Analogi-
cally, the smaller the opposition (fx + fy) is, the smaller the simi-
larity should be.  

Based on the above discussion, we propose a weight-varied 
similarity measure M', i.e. 
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Coefficient (tx + ty) of |tx – ty| implies that when |tx – ty| is the 
same, similarity should be smaller if (tx + ty) is larger. Coefficient 
(2 – fx – fy) of |fx – fy| means that when |fx – fy| is the same, similar-
ity should be smaller if (fx + fy) is smaller.  

Let tx + ty = p, tx – ty = q, fx + fy = m, fx – fy = n. Then, formula (5) 
can be reduced as 
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|||)2(|||1
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Where the M' model pays attention to both the difference of 
true-membership degrees and the difference of false-membership 
degrees between vague values. It also implies the attention to the 
support of vague value. Because of the introduction of |(tx – ty) – 
(fx – fy)|, The M' model can distinguish positive difference and 
negative difference. The strategy of varied-weight leads to the 
reduced possibility of similarity coincidence, and the weights 
meet the requirement that we are concerned with those similari-
ties where supports are high and oppositions are low. For the 
sake of comparison, we enlarge the difference of similarities 

when the support is large and the opposition is small.  
From the above definition, we obtain the following properties. 
Property 1:  M'(x, y) ∈ [0, 1]. 
Proof:  Since tx ∈ [0, 1], ty ∈ [0, 1], fx ∈ [0, 1], fy ∈ [0, 1], we 

have 
|tx – ty| ∈ [0, 1], |fx – fy| ∈ [0, 1], |(tx – ty) – (fx – fy) | ∈ [0, 2] 
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Property 2:  M'(x, y) = M'(y, x). 
It is obtained directly from the definition of the M' model. 
Property 3:  M'(x, y) = 0 ⇔ x = [0, 0] and y = [1, 1]; or x = [1, 

1] and y = [0, 0]. 
Proof:  For x = [0, 0] and y = [1, 1] (or for x = [1, 1] and y = [0, 

0]), by the definition, we obviously have M'(x, y) = 0; and 
If M'(x, y) = 0, we have tx – ty = 1 and fx – fy = – 1;  
            or tx – ty = – 1, fx – fy = 1 
Hence, x = [0, 0] and y = [1, 1];  
           or x = [1, 1], y = [0, 0]       ■ 
Property 4:  M'(x, y) = 0 ⇔ x = y. 
Proof:  If x = y, from the definition, it is clear that  

M'(x, y) = 1. 
If M'(x, y) = 1 ⇒ tx – ty = 0, fx – fy = 0, that is, x = y.     ■ 
Example 1: In table 3, seven groups of vague values (x, y) are 

given. Intuitively, the similarity of the first pair vague values 
should be larger than the second pair, namely M(x1, y1) > M(x2, 
y2). And experientially M(x4, y4) < M(x5, y5); M(x6, y6) < 
M(x7, y7). Consider the 7 groups of data pairs (x,  y) in the sec-
ond and third rows of Table 2. We compare our measure method 
with others. The results are shown in 4th — 8th rows of Table 3. 

TABLE  3. 
 COMPARISONS OF VARIOUS SIMILARITY MEASURES 

 x y MC MH ML MO M’ 
1 [0.3, 

0.7] 
[0.4, 
0.6] 

1 0.9 0.9
5 

0.9 0.95 

2 [0.3, 
0.6] 

[0.4, 
0.7] 

0.9 0.9 0.9 0.9 0.9 

3 [0.3, 
0.8] 

[0.4, 
0.7] 

1 0.9 0.9
5 

0.9 0.94
8 

4 [1, 1] [0, 1] 0.5 0.5 0.5 0.3 0.6 
5 [0.5, 

0.5] 
[0, 1] 1 0.5 0.7

5 
0.5 0.75 

6 [0.4, 
0.8] 

[0.5, 
0.7] 

1 0.9 0.9
5 

0.9 0.94
5 

7 [0.4, 
0.8] 

[0.5, 
0.8] 

0.9
5 

0.9
5 

0.9
5 

0.92
9 

0.95
8 

 
From the Table 3, we can see sometimes the similarities 

gained by formulae of MC, MH, ML and MO are counterintuitive. 
For example, 1])6.0,4.0[],7.0,3.0([),( 11 == CC MyxM , ap-

parently we know the similarity of ]7.0,3.0[  and ]6.0,4.0[  is 
absolutely not 1. 
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Another example, compare the similarity of the first group 
data pair ([0.3, 0.7], [0.4, 0.6]) with the second group data pair 
([0.3, 0.6], [0.4, 0.7]) using the several different similarity meas-
ures. We get 

),(),( 2211 yxMyxM HH = , ),(),( 2211 yxMyxM OO = ,  
whereas intuitively the first data pair should be more similar than 
the second data pair, namely ),(),( 2211 yxMyxM > , but only 

LM  and 'M  can be accordant with our intuition —

),(),( 2211 yxMyxM > . 
Then compare the similarity of the sixth group data pair ([0.4, 

0.8], [0.5, 0.7]) with the seventh group data pair ([0.4, 0.8], [0.5, 
0.8]). Intuitively, the similarity of the sixth group and the seventh 
group should satisfy ),(),( 7766 yxMyxM < , but from the 

above result we can see only HM , OM , and 'M  can satisfy the 
limitation.  

To sum up, none but 'M  can distinguish those groups vague 
values, to some extend, according with our intuition.  

In table 3, we give more comparison of different similarity 
measures. 

In the new similarity measure 'M , the three factors are con-
sidered equally which affect the similarity of vague values: true-
membership function tx, false-membership function fx, and 1 – tx 
– fx. The weights of |tx – ty|, | fx – fy| and |(ty + fy) – (tx + fx)| in new 
similarity measure 'M  are variable, and the variable weights 
reduce the possibility of similarity coincidence. Simultaneously, 
the new similarity measure 'M  enlarges the difference of simi-
larities where we are concerned then it is easier for us to do some 
decision. 

B.  Similarity measure between Vague Sets 
Assume that A and B are two vague sets over the discourse 

universe U = {u1, u2, ..., un}. VA(ui) = [tA(ui), 1 – fA(ui)] is the 
membership value of ui in vague set A, and VB(ui) = [tB(ui), 1 – 
fB(ui)] is the membership value of ui in vague set B. Let 
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   (7) 
where,  

tx(ui) + ty(ui) = p(ui)  

tx(ui) – ty(ui) = q(ui)  

fx(ui) + fy(ui) = m(ui) 

fx(ui) – fy(ui) = n(ui) 

From the above definition, we have the following properties. 
Property 5:  T '(A, B) ∈ [0, 1]. 
Property 6:  T '(A, B) = T '(B, A). 
Property 7: 
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Property 8:  T '(A, B) = 1 ⇔ A = B. 
Example 2: Let A and B be two vague sets over the discourse 

universe U = {u1, u2, u3, u4}, where 
A = [0.3, 0.7] / u1 + [0.5, 0.5] / u2 + [0.4, 0.8] / u3 + [1.0, 1.0] / u4 
B = [0.4, 0.6] / u1 + [0.0, 1.0] / u2 + [0.5, 0.7] / u3 + [0.0, 1.0] / u4 

From formula (7), we have the following similarity between A 
and B. 
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C.  Weighted Similarity Measure between Vague Sets 
Suppose that A and B are two vague sets over the discourse 

universe U = {u1, u2, ..., un}, wi is the weight of ui, wi ∈ [0, 1], 1 
≤ i ≤ n. Then, the weighted similarity between A and B can be 
obtained by calculating the following W(A, B). 
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Example 3: Let A and B be the same as that in Example 2, the 
weights of elements u1, u2, u3, and u4 in discourse universe U are 
0.4, 0.2, 0.8, and 0.6, respectively. From (8), we have the 
weighted similarity between A and B 
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IV. CONCLUSIONS 
After analyzing the limitations in current similarity measures 

for vague sets, we have proposed a new method for measuring 
the similarity between vague sets in this paper. The basic idea is 
to deeply understand the support, the difference of true-
membership and the difference of false-membership, to signifi-
cantly distinguish the directions of difference (positive and nega-
tive), and properly use varied-weights in the differences of true- 
and false-membership, for two vague sets. The examples have 
illustrated that our approach is effective and practical, and pre-
sents much better discernibility than existing ones at measuring 
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the similarity between vague sets. 
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