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Abstract— This paper describes an approach to the improve-
ment of a fitness function and the optimisation of training data in
genetic programming (GP) for object detection particularly ob-
ject localisation problems. The fitness function uses the weighted
F-measure of a genetic program and considers the localisation
fitness values of the detected object locations. To investigate the
training data with this fitness function, we categorise the training
data into four types: exact centre, close to centre, include centre,
and background. The approach is examined and compared with
an existing fitness function on three object detection problems
of increasing difficulty. The results suggest that the new fitness
function outperforms the old one by producing far fewer false
alarms and spending much less training time and that the first
two types of the training examples contain most of the useful
information for object detection. The results also suggest that
the complete background type of data can be removed from the
training set.

Index Terms— Genetic programming, object detection, object
localisation, object recognition, object classification, evolutionary
computing, fitness function, training data.

I. I NTRODUCTION

OBJECT detection tasks arise in a very wide range of
applications, such as detecting faces from video images,

finding tumours in a database of x-ray images, and detecting
cyclones in a database of satellite images [1], [2], [3], [4]. In
many cases, people (possibly highly trained experts) are able
to perform the detection task well, but there is either a shortage
of such experts, or the cost of people is too high. Given the
amount of image data containing objects of interest that need
to be detected, computer based object detection systems are
of immense social and economic value.

An object detection program must automatically and cor-
rectly determine whether an input vector describing a portion
of a large image at a particular location in the large image
contains an object of interest or not and what class the
suspected object belongs to. Writing such programs is usually
difficult and often infeasible: human programmers often cannot
identify all the subtle conditions needed to distinguish between
all objects and background instances of different classes.

Genetic programming (GP) is a relatively recent and fast
developing approach to automatic programming [5], [6], [7].
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In GP, solutions to a problem can be represented in differ-
ent forms but are usually interpreted as computer programs.
Darwinian principles of natural selection and recombination
are used to evolve a population of programs towards an
effective solution to specific problems. The flexibility and
expressiveness of computer program representation, combined
with the powerful capabilities of evolutionary search, make GP
an exciting new method to solve a great variety of problems.
GP has been applied to a range of object detection and
recognition tasks with some success [5], [8], [9], [10], [11],
[12], [13].

Finding a good fitness function for a particular object
detection problem is an important but difficult task in de-
veloping a GP system. Various fitness functions have been
devised for object detection, with varying success [5], [9],
[11], [14], [15]. These tend to combine many parameters
using scaling factors which specify the relative importance
of each parameter, with no obvious indication of what scaling
factors are good for a given problem. Many of these fitness
functions require clustering to be performed to group multiple
localisations of single objects into a single point before the
fitness is determined [16], [15], [14]. Other measures are then
incorporated in order to include information about the pre-
clustered results (such as how many points have been found
for each object). While some of these systems achieved good
detection rates, many of them resulted in a large number of
false alarms. In addition, the clustering process during the
evolutionary process made the training time very long.

Organising training data is critical to any learning ap-
proaches. The previous approaches in object detection tend
to use all possible positions of the large image in training
an object detector. However, this usually requires a very long
training time due to the use of a large number of positions on
the background.

This paper aims to investigate a new fitness function and
a new way to optimise the training data in GP for object
detection, in particular object localisation, with the goal of
improving the detection performance and refining training
examples. The approach will be examined and compared with
an existing GP approach on a sequence of object detection
problems of increasing difficulty.

The remainder of this paper is organised as follows. Sec-
tion II gives some essential background on GP and object
detection/recognition. Section III describes the GP approach
to object detection, including the major components of the
approach. Section IV focuses on the new fitness function and
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compares it with an existing clustering based fitness function.
Section V investigates the training data. Finally, we draw
conclusions in section VI. Some GP basics are given in the
appendix.

II. BACKGROUND

A. Genetic Programming and Main Characteristics

GP is an approach to automatic programming, in which
a computer can construct and refine its own programs to
solve specific tasks. First introduced by Koza [6] in the early
1990s, GP has become another main genetic paradigm in
evolutionary computation (EC) in addition to the well known
genetic algorithms(GAs).

Compared with GAs, GP has a number of characteristics.
While the standard GAs use bit strings to represent solutions,
the forms evolved by GP are generally trees or tree-like
structures. The standard GA bit strings use a fixed length
representation while the GP trees can vary in length. While
the GAs use a binary alphabet to form the bit strings, the GP
uses alphabets of various sizes and content depending on the
problem domain. These trees are made up of internal nodes
and leaf nodes, which have been drawn from a set of primitive
elements that are relevant to the problem domain. Compared
with a bit string to represent a given problem, the trees can
be much more flexible.

The basic concepts, genetic operators, and the GP algorithm
are described in the appendix.

B. Object Detection

The termobject detectionhere refers to the detection of
small objects in large images. This includes bothobject clas-
sificationandobject localisation. Object classificationrefers to
the task of discriminating between images of different kinds of
objects, where each image contains only one of the objects of
interest.Object localisationrefers to the task of identifying the
positions of all objects of interest in a large image. The object
detection problem is similar to the commonly used terms
automatic target recognitionandautomatic object recognition.

Object detection performance is usually measured byde-
tection rate and false alarm rate. The detection rate (DR)
refers to the number of small objects correctly reported by
a detection system as a percentage of the total number of
actual objects in the image(s). The false alarm rate (FAR),
also called false alarms per object [17], refers to the number
of non-objects incorrectly reported as objects by a detection
system as a percentage of the total number of actual objects
in the image(s). Note that the detection rate is between 0 and
100%, while the false alarm rate may be greater than 100%
for difficult object detection problems.

C. GP Related Work for Object Detection and Recognition

Since the early 1990s, there has been only a small amount
of work on applying GP techniques to object classification,
object detection and other image recognition problems. This
in part reflects the fact that GP is a relatively young discipline
compared with, say, neural networks and genetic algorithms.

In terms of the number of classes in object detection, there
are two categories. The first isone-class object detection
problem, where there are multiple objects in each image,
however they belong to or are considered the same (single)
class of interest. In nature, these problems contain a two-
class (binary) classification problem:objectversusnon-object,
also calledobjectversusbackground. Examples are detecting
small targets in thermal infrared images [17] and detecting
a particular face in photograph images [18]. The problem is
actually the same asobject localisation, where the main goal
is to find where the objects of interest are in the large images.
The second ismulti-class object detection problem, where
there are multiple object classes of interest each of which
has multiple objects in each image. Detection of handwritten
digits in postal code images [19] is an example of this kind.
While GP has been widely applied to the one-class object
detection and binary classification problems [15], [8], [9], [20],
it has also been applied to multi-class object detection and
classification problems [21], [22], [23], [10], [24], [11].

In terms of the representation of genetic programs, different
forms of genetic programs have been developed in GP systems
for object classification and image recognition. The main pro-
gram representation forms include tree or tree-like or numeric
expression programs [5], [7], [21], [11], graph based programs
[5], linear GP [25], linear-graph GP [26], and grammar based
GP [27].

The use of GP in object detection and image recognition
has also been investigated in a variety of application domains.
These domains include military applications [9], [20], English
letter recognition [28], face/eye detection and recognition [29],
[22], [30], vehicle detection [15], [31] and other vision and
image processing problems [32], [33], [6], [34], [35], [36].

III. T HE GP APPROACH TOOBJECTDETECTION

The process for object detection is shown in Figure 1. A raw
image is taken and a trained localiser applied to it, producing
a set of points found to be the positions of these objects.
Single objects could have multiple positions (“localisations”),
however ideally there would be exactly one localisation per
object. Regions of the image are then “cut out” at each of the
positions specified. Each of these cutouts are then classified
using the trained classifier.

This method treats all objects of multiple classes as a
single “object of interest” class for the purpose of localisation,
and the classification stage handles attaching correct class
labels. Compared with the single-stage approach [10], [11],
this approach has the advantage that the training is easier for
both stages as a specific goal is focused on the training of each
of the two stages. The first is tailored to achieving results
as close to the object centres as possible (to achieve high
“positional accuracy”), while the second is tailored to making
all classifications correct (high “classification accuracy”).

The object localisation stage is performed by means of a
window which sweeps over the whole image, and for each
position extracts the features and passes them to the trained
localiser. The localiser then determines whether each position
is an object or not (i.e. background).
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Fig. 1. An overview of the object detection process.
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Fig. 2. GP approach to object detection.

Our work will focus on object localisation using genetic
programming. Figure 2 shows an overview of this approach,
which has a learning process and a testing procedure. In the
learning/evolutionary process, the evolved genetic programs
use a square input field which is large enough to contain
each of the objects of interest. The programs are applied at
many sampled positions within the images in thetraining
set to detect the objects of interest. If the program localiser
returns a value greater than or equal to zero, then this position
is considered the centre of an object of interest; otherwise
it is considered background. In the test procedure, the best
evolved genetic program obtained in the learning process is
then applied, in a moving window fashion, to the whole images
in the test setto measure object detection performance.

This approach has five major components: (1) Determina-
tion of a terminal set; (2) Determination of a function set; (3)
Construction of a new fitness function; (4) Determination of
the major parameter values and the termination criteria; and
(5) investigation of the training data. In addition, to examine
the performance of this approach, we also need to choose the
object detection example tasks.

Construction of a new fitness function and investigation of

the training data are the main focuses of this paper, which will
be described in the next sections. In the rest of this section,
we will describes all of the other components.

A. Terminal Set

For object detection problems, terminals generally corre-
spond to image features. In this approach, the features are
extracted by calculating the mean and standard deviation of
pixel values within several circular regions. This set of features
has the advantages of being rotationally invariance. In addition,
we also used a constant terminal. Note that finding a good set
of features is beyond the goal of this paper, and we will use this
set of features to check the performance of both the existing
and the new approaches for comparison purpose only.

B. Function Set

The function set contains the four standard arithmetic and
a conditional operation:FuncSet = {+,−, ∗, /, if}. The
+, −, and ∗ operators are usual addition, subtraction and
multiplication, while / represents “protected” division.The if
function returns its second argument if the first argument is
positive or returns its third argument otherwise.
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(a) (b) (c)

Fig. 3. Sample images in the three data sets. (a) Easy; (b) Medium difficulty; (c) Hard.

C. GP Structure, Parameters and Termination Criteria

In this system, we used tree structures to represent genetic
programs [6]. The ramped half-and-half method [5] was used
for generating programs in the initial population and for the
mutation operator. The proportional selection mechanism and
the reproduction, crossover and mutation operators were used
in evolution.

We used a population of 500 genetic programs for evolution
in each experiment run. The reproduction rate, crossover rate
and mutation rate were 5%, 70% and 25%, respectively. The
program size was initialised to 4 and it could increase to 8
during evolution.

The system run 50 generations unless it successfully found
an ideal solution or the performance on the validation set fell
down, in which cases the evolution was terminated early.

D. Data Sets

To investigate the performance of this approach, we chose
three image data sets of New Zealand 5 and 10 cent coins
in the experiments. Examples are shown in Figure 3. The
data sets are intended to provide object localisation/detection
problems of increasing difficulty. The first data set (easy)
contains images of tails and heads of 5 and 10 cent coins
against an almost uniform background. The second (medium
difficulty) is of 10 cent coins against a noisy background,
making the task harder. The third data set (hard) contains
tails and heads of both 5 and 10 cent coins against a noisy
background.

We used 24 images for each data set in our experiments and
equally split them into three sets: a training set for learning
good genetic programs, a validation set for monitoring the
training process to avoid overfitting, and a test set to measure
object detection performance.

In our experiments, a total number of 100 runs were per-
formed on each data set and the average results are presented
in the next two sections.

IV. F ITNESSFUNCTION

A. Design Considerations

During the evolutionary process for object detection, we
expect that the evolved genetic programs only detect the
objects when the sweeping window is centred over these
objects. However, in the usual case, these evolved genetic
programs will also detect some “objects” not only when the

sweeping window is within a few pixels of the centre of the
target objects, but also when the sweeping window is centred
over a number of cluttered pieces of background. Clearly, these
“objects” are not those we expected but false alarms.

Different evolved genetic programs typically result in dif-
ferent numbers of false alarms and such differences should
be reflected when these programs are evaluated by the fitness
function.

When designing a fitness function for object detection
problems, a number of considerations need to be taken into
account. At least the following requirements should be con-
sidered.

R1. The fitness function should encourage a greater num-
ber of objects to be detected. In the ideal case, all the
objects of interest in large images can be detected.

R2. The fitness function should prefer a fewer number of
false alarms on the background.

R3. The fitness function should encourage genetic pro-
grams to produce detected object positions closer to
the centres of the target objects.

R4. For a single object to be detected, the fitness func-
tion should encourage programs to produce fewer
detected “objects” (positions) within a few pixels
from the target centre.

R5. For two programs which produce the same number
of detected “objects” for a single target object but
the “objects” detected by the first program are closer
to the target object centre than those detected by the
second program, the fitness function should rank the
first program better than the second.

Some typical examples of these requirements are shown in
figure 4. In this figure, the circles are target objects and squares
are large images or regions. A cross (x) represents a detected
object. In each of the five cases, the program associated with
the left figure should be considered better than that with the
right.

B. An Existing Fitness Function

As the goal is to detect the target objects with no or a small
number of false alarms, many GP systems uses a combination
of detection rate and false alarm rate or recall and precision as
the fitness function. For example, a previous GP system uses
the following fitness function [10]:

fitnessCBF = A · (1 − DR) + B · FAR + C · FAA (1)
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Fig. 4. Examples of the design considerations of the fitness function.

whereDR, FAR, andFAA are detection rate (the number
of small objects correctly reported by a detection system as
a percentage of the total number of actual objects in the
images), false alarm rate (also calledfalse alarms per object,
the number of non-objects incorrectly reported as objects
by a detection system as a percentage of the total number
of actual objects in the images), and false alarm area (the
number of false alarm pixels which are not object centres but
are incorrectly reported as object centres before clustering),
respectively, andA,B,C are constant weights which reflect
the relative importance of detection rate versus false alarm rate
versus false alarm area.

Basically, this fitness function has considered requirement
1, and partially considered requirements 2 and 4, but does
not take into accounts of requirements 3 and 5. Although this
fitness function performed reasonably well on some problems,
it still produced many false alarms and the evolutionary
training time was still very long [10]. Since this method
used clustering before calculating the fitness, we refer to it
asclustering based fitness, or CBF for short.

C. A New Fitness Function — RLWF

To avoid a very large false alarm rate (greater than 100%
for difficult problems) in the training process, we use precision
and recall, both of which have the range between [0, 1], to
construct the new fitness functions.Precision refers to the
number of objects correctly localised/detected by a GP system
as a percentage of the total number of object localised/detected
by the system.Recallrefers to the number of objects correctly
localised by a system as a percentage of total number of target
objects in a data set. Note that precision/recall and detection
rate/false alarm rate have internal relationship, where the value
of one pair for a problem can be calculated using the other
for the same problem.

During the object localisation process, a genetic program
might consider many pixel positions in an image as object
centres and we call each object centre localised in an image
by a genetic program alocalisation.

Unlike the previous fitness function CBF, the new fit-
ness function is based on a “Relative Localisation Weighted
F-measure” (RLWF), which attempts to acknowledge the
worth/goodness of individual localisations made by the ge-
netic program. Instead of using either correct or incorrectto

represent a localisation, each localisation is allocated aweight
(referred to as thelocalisation fitness, LF) which represents
its individual worth and counts towards the overall fitness.

Each weight is calculated based on its relative location, or
the distance of the localisation from the centre of the closest
object, as shown in Equation 2.

LF(x, y) =

{

1 −
√

x2+y2

r
, if

√

x2 + y2 ≤ r
0 , otherwise

(2)

where
√

x2 + y2 is the distance of the localisation position
(x, y) from target object centre, andr is called the “localisation
fitness radius”, defined by the user. In this system,r is set to
a half of the square size of the input window, which is also
the radius of the largest object.

In order to deal with all the situations in the five design
requirements, we used the localisation fitness to construct
our new fitness function, as shown in Equations 3 to 5. The
precision and recall are calculated by taking the localisation
fitness for all the localisations of each object and dividingthis
by the total number of localisations or total number of target
objects respectively.

WP =

∑N

i=1

∑Li

j=1 LF(xij , yij)
∑N

i=1 Li

(3)

WR =

∑N

i=1

∑

Li

j=1
LF(xij ,yij)

Li

N
(4)

fitnessRLWF =
2 × WP× WR

WP+ WR
(5)

whereN is the total number of target objects,(xij , yij) is the
position of thej-th localisation of objecti, Li is number of
localisations made to objecti, WP and WR are the weighted
precision and recall, andfitnessRLWF is the localisation fitness
weighted F-measure, which is used as the new fitness function.

The new fitness function has a number of properties. Firstly,
the main parameter in this fitness function is thelocalisation
fitness, which can by easily determined in the way presented
here. This has an advantage over the existing methods which
have many parameters whose values usually need to be man-
ually determined. Secondly, in the previous approaches, the
multiple localisations of each object must be clustered into
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TABLE I

RESULTS OF THEGP SYSTEMS WITH THE TWO FITNESS FUNCTIONS.

Dataset Fitness Test Accuracy Training Efficiency
function LR (%) LP (%) ExtraLocs Generations time(sec)
CBF 99.99 98.26 324.09 13.69 178.99

Easy RLWF 99.99 99.36 98.35 36.44 111.33
CBF 99.60 83.19 804.88 36.90 431.94

Medium RLWF 99.90 94.42 95.69 34.35 105.56
CBF 98.22 75.54 1484.51 31.02 493.65

Hard RLWF 99.53 87.65 114.86 33.27 107.18

one group and its centre found. While this is not a too difficult
task, it is very time consuming to do during training. This new
fitness function does not require clustering before the fitness
is calculated. We expect that the new fitness function can do a
better job in terms of reducing false alarms and evolutionary
training time.

D. Results

To give a fair comparison for the two fitness functions, the
“localisation recall (LR) and precision (LP)” were used to
measure the final object detection accuracy on the test set. LR
is the number of objects with one or more correct localisations
within the localisation fitness radius at the target object centres
as a percentage of the total number of target objects, and LP
is the number of correct localisations which fall within the
localisation radius at the target object centres as a percentage
of the total number of localisations made. In addition, we also
check the “Extra Localisations” (ExtraLocs) for each system
to measure how many extra localisations were made for each
object. The training efficiency of the systems is measured with
the number of training generations and the CPU (user) time
in second.

Table I shows the results of the GP systems with the
two fitness functions. The results on the easy data set show
that both the fitness functions achieved almost perfect test
accuracy. Almost all the objects of interest in this data set
were successfully localised with very few false alarms (both
LR and LP are very close to 100%), reflecting the fact that
the detection task in this data set is relatively easy. However,
the extra locations and the training time resulted from the
two approaches are quite different. The new fitness function
(RLWF) produced a far fewer number of extra localisations per
object than clustering based fitness function (CBF) and the gap
between them is significant. Although the CBF approach used
only 13.69 generations on average, which are considerably
fewer than that of the new RLWF, it actually spent about 50%
longer training time. This confirms our early hypothesis that
the clustering process in the CBF approach is time consuming
and the approach with the new fitness function is more efficient
than that with CBF.

The results on the other two data sets show a similar pattern
in terms of the number of extra localisations and training
time. The systems with RLWF always produced a significantly
fewer number of extra localisations and a much short training
time than CBF. In addition, although almost all the objects
of interest in the large images were successfully detected
(LRs are almost 100%), the localisation precisions achieved

by RLWF were significantly better than CBF, suggesting that
the new fitness function outperforms the existing one in terms
of reducing false alarms.

As expected, performance on the three data sets deteriorated
as the degree of difficulty of the object detection problem was
increased.

E. Detection Map Analysis

To give an intuitive view of detection performance of the
two fitness functions, we checked the “detection maps” of
some objects in the test set. Figures 5 (a) and (b) show
the detection maps for the same 15 objects in the medium
difficulty data set produced by the two approaches. The black
pixels in these maps indicate the localisations of the 15 objects
produced using the two fitness functions. The “background”
means that no objects were found in those positions.

(a) (b)

Fig. 5. Sample object detection maps. (a) CBF; (b) RLWF.

As shown in the figure, the clustering based fitness function
CBF resulted in a huge number of extra localisations for all
the 15 objects detected. The new fitness function, however,
only resulted in a small number of extra localisations. These
maps confirm that the new fitness function was more effective
than the clustering based fitness function on these problems.

V. OPTIMISING TRAINING DATA

We could train the detection system with a full set of cutouts
taken from a window at all possible positions over the training
images. However, for a set of large images, this can create a
huge number of training examples making the training time
unsuitably long. While we can reduce the total number of
training examples using a combination of hand-chosen and
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randomly chosen examples [16], in this approach, we focus
on investigating whether some examples are better than others
and how we pick up better examples.

A. Four Training Data Types

The traditional approaches usually usepositiveandnegative
examples. The former refers to the exact object examples and
the latter refers to those for the background [9], [10], [15].
However, this did not consider those with a portion of objects
and a portion of background. In this approach, we identified
four basic types of training examples, as shown in figure 6.
The exact centretype (figure 6a) refers to the positive object
examples which sit exactly the centre of the sweeping window.
This type of examples has only a very small number. For
example, in each of our training images, we have only 16 such
examples out of approximately half a million pixel positions.
The backgroundtype (figure 6d) refers to the positions (x)
which do not contain any piece of objects. This type typically
has a huge number of examples. Theclose to centretype refers
to the examples that have the centre of the sweeping window
falling down within the bounds of an object (figure 6b). The
include objectstype refers to the examples that contain some
pixels of an object but are not considered as theclose to centre
type.

(a)

object

sweeping window

(b) (c) (d)

Fig. 6. Examples of training data types caused by different input window
positions.

B. Optimisation of Training Data

For a problem domain, we assume that there is some
proportion of these four types which is optimal (or close
to optimal) for object detection. From previous research, we
found that the exact centre type is always important for
object detection. As the number of examples of this type
is very small, we will always use this type of examples in
the experiments and assume that the best results can only be
achieved by including them. In the remainder of investigation,
we will vary the proportions among the rest three types to find
the optimal combinations.

Based on this idea, if we useC, I and B to refer to
percentage of the examples for the three typesclose to centre,
include objectsandbackground, then we have:

C + I + B = 100%

This has the nice feature that it represents only a plane
effectively reducing the parameter search space from 3D to 2D,
as shown in figure 7 (a). We experimented with 28 separate
proportions sampled from the plane in figure 7 (a), as shown
in figure 7 (b), where each entry represents value forI for
a given C and B. For example, the first two entries in the
first row show that, using no background (B = 0), we will
examine 100%C with 0% I, and 83%C with 17% I type
objects, respectively.

0

100%

100%

100%
Background

Close to Centre

Included Object

(a)
I for each C and B (%)

B\C 100 83 67 50 33 17 0
0 0 17 33 50 67 83 100
17 0 17 33 50 67 83
33 0 17 33 50 67
50 0 17 33 50
67 0 17 33
83 0 17
100 0

(b)

Fig. 7. Training data proportions set.

C. Results

For each experiment with a sampled proportion, we did 100
runs. These were made up of 10 different random seeds when
extracting the training data from source images, by 10 different
random seeds for the GP system. Other parameters are the
same as before.

The average results on thetest setare shown in figure 8. In
the figure, thex andy axes are theC andB, and thez is the
relativefitness for the these problems (1.0 or 100% means the
ideal case).

As shown in the figure, for all the three data sets, the value
of C, or the percentage of the objects for theClose to Centre
type played an important role using our new fitness function.
The best detection results were achieved with 100% examples
for theclose to centretype and the worst results were produced
when we do not use any example in this type at all. The more
object examples used in this type, the best results achieved.
However, theBackgroundtype objects were not critical for
these data sets. These examples did not seem to have clear
bad or good influence.

These results suggest that, when using the new RLWF
fitness function for these object detection, good fitness results
can be achieved with only the two types,Exact Centreand
Close to Centre, and most if not all object examples for the
other two typesInclude ObjectandBackgroundcan be taken
out from the training set.

Inspection of this reveals that, this is not only because
the first two types of objects might contain the most useful
information for object detection, but more importantly, because
the new RLWF fitness function is capable of learning well
from these two types of examples and can cope well with the
goal of finding object centres from large images. This is mainly
due to the fact that the RLWF fitness function consider the
relative effect of the detected “objects” in different locations.

A further inspection of the use of the old fitness function
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(a) (b) (c)

Fig. 8. Results of optimisation. (a) Easy; (b) Medium difficulty; (c) Hard.

reveals that the old fitness function must use object examples
from all the four types. This is because the old fitness function
cannot capture the relative effect information from the objects
of the first two types only. This also suggests that the new
fitness function is more effective than the old one for object
detection, particularly when only are training examples from
the first two types available.

VI. CONCLUSIONS

The goal of this paper was to develop a new fitness function
for object detection and investigate its influence on optimising
the training data. Rather than using a clustering process to
determine the number of objects detected by the GP systems,
the new fitness function introduced a weight called localisation
fitness to represent the goodness of the detected objects and
used weighted F-measures. To investigate the training data
with this fitness function, we categorise the training data into
four types. This approach is examined and compared to that
with the old clustering based fitness function on three coin
detection problems of increasing difficulty.

The results suggest that the new fitness function outperforms
the old one by producing far fewer false alarms and spending
much less training time. Further investigation on the four types
of the training object examples suggests that the first two types
of objects can be used to produce good detection results and
that the new fitness function is effective in optimising the
training data for object detection.

In the future, we will apply the new approach to other object
detection problems particularly with non-circular objects.
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APPENDIX

GENETIC PROGRAMMING BASICS

Constructing a GP system involves making design decisions
for a number of elements of the GP system, including the
representation of programs, the construction of an initial
population of programs, the evaluation of programs and the
construction of new population of programs. This appendix
briefly describes the basic aspects of GP, including program
representation, program generation, the primitive set, the fit-
ness function, the selection mechanism, the genetic operators
and the overall GP algorithm. More detailed description on
GP can be seen from [6], [5].

A. Program Representation

Much of the GP work was done using LISP or LISP-
like representations of the programs. A sample computer
program for the algebraic equation(x − 1) − x3 can be
represented in LISP as the S-expression(- (- x 1) (*
x (* x x))). The tree representation is shown in figure 9.

1

x x

-

-

x

*

x *

Fig. 9. A simple tree representation for a sample LISP program.

The programs are constructed froma terminal setand a
function setwhich vary according to the problem domain.
Terminals and functions are also calledprimitives, and the
terminal set and the function set are combined to form a
primitive set.

Functions in a function set form the internal nodes of the
tree representation of a program. In general, there are two
kinds of functions used in genetic programming. The first
class refers to standard functions, such as the four arithmetic
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operations. The second class comprises specific functions
which vary with the problem domain.

Terminals have no arguments and form the leaves of the
parse tree. Typically, terminals represent the inputs to the
GP program, the constants supplied to the GP program, or
zero-argument functions with side-effects executed by theGP
program [5]. In any case, a terminal returns an actual numeric
value without having to take an input.

B. Program Generation

There are several ways of generating programs to initialisea
GP population, includingfull, grow andramped half-and-half
[6]. In the full method, functions are selected as the (internal)
nodes of the program until a given depth of the program tree
is reached. Then terminals are selected to form the leaf nodes.
This ensures that full, entirely balanced trees are constructed.
When the grow method is used, nodes are selected from either
functions or terminals. If a terminal is selected, the generation
process is terminated for the branch and moves on to the next
non-terminal branch in the tree. In the ramped half-and-half
method, both the full and grow methods are combined. Half
of the programs generated for each depth value are created
by using the grow method and the other half using the full
method.

C. Fitness Function

Fitness is the measure of how well a program has learnt to
predict the output from the input during simulated evolution.
The fitness of a program generated by the evolutionary process
is computed according to the fitness function. The fitness
function should be designed to give graded and continuous
feedback about how well a program in a population performs
on the training set.

D. Selection Mechanism

The selection mechanism determines which evolved pro-
gram will be used for the genetic operators to produce new
individuals for the next generation during the evolutionary
process. Two of the most commonly used selection methods
areproportional selectionand tournament selection.

In the proportional selection method [6], an individual in
a population will be selected according to the proportion
of its own fitness to the total sum of the fitness of all the
individuals in the population. Programs with low fitness scores
would have a low probability of having any genetic operators
applied to them and so would most likely be removed from
the population. Programs which perform particularly well in
an environment will have a very high probability of being
selected.

The tournament selection method [5] is based on com-
petition within only a subset of the population, rather than
the whole population. A number of programs are selected
randomly according to the tournament size and a selective
competition takes place. The better individuals in the tour-
nament are allowed to replace the worse individuals. In the
smallest possible tournament, two individuals can compete.

The winner is allowed to reproduce with mutation and the
result is returned to the population, replacing the loser ofthe
tournament.

E. Genetic Operators

There are three fundamental genetic operators: reproduction,
mutation and crossover.

Reproductionis the basic engine of Darwinian theory [6],
which involves just simply copying the selected program from
the current generation to the new generation. This allows good
programs to survive during evolution.

Mutation operates only on a single selected program and
introduces new genetic code in the new generation. This
operator removes a random subtree of a selected program,
then puts a new subtree in the same place. The goal here is
to keep the diversity of the population in evolution.

+ +

(b)

(a)

Fig. 10. Effect of genetic operators in genetic programming. (a) Mutation
in GP: Replaces a random subtree; (b) Crossover in GP: Swaps two random
subtrees.

Crossovertakes advantage of different selected programs
within a population, attempting to integrate the useful at-
tributes from them. The crossover operator combines the
genetic material of the two selected parents by swapping
a subtree of one parent with a subtree of the other, and
introducing two newly formed programs into the population
in the next generation.

F. The GP Algorithm

The learning/evolutionary process of the GP algorithm is
summarised as follows:

1) Initialise the population.
2) Repeat until a termination criterion is satisfied:

2.1 Evaluate the individual programs in the current
population. Assign a fitness to each program.

2.2 Until the new population is fully created, repeat the
following:

– Select programs in the current generation.
– Perform genetic operators on the selected pro-

grams.
– Insert the result of the genetic operations into the

new generation.

3) Present the best individual in the population as the output
— the learned/evolved genetic program.
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