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HRL Laboratories. Thinking Outside the Box

APPLIED RESEARCH IN ANAGE OFBOTTOM LINES
I. INTRODUCTION ubiquitous geo-spatial tracking for appli-
cations in augmented and virtual reality,
and multimodal interaction using dialog
and gestures. Applications include com-
mand and control, soldier-centric war-
fare, driver-centric transportation, and
remote presence.

In communications and networks, we

HRL makes advances in electronics
information & systems sciences, mate
rials, sensors, and photonics: from ba
sic research to product delivery. We ar¢
producing pioneering work in high per-
formance integrated circuits, high powe produced a state-of-the-art wireless plat-
lasers, antennas, networking, and sma form to analyze and evaluate connectiv-
materials. HRL technologies fly in satel- tpis article focuses on the Information'h: 'At€ncy, interference, security, quality
lites and fighter jets, ride on diesel 10-5,,4 System Sciences Laboratory (ISSL)?f services, and cong_esn_on issues for
comotives, and support the systems ofne of the four technical laboratories af* Wide variety of application and data
the future. Each year, HRL's intellectualr) “we will briefly describe the types networks. Applications include satellite
property base grows with patents and¢ rasearch going on there, and thelJ?etworks, ayrborne communication net-
trade secrets in key technology areas. present two representative projects. Works,. vehicular networks, large-scale

HRL has a rich history of discover- battlefield ne'tworks, and embedded net-
ies and innovations dating back more || ool el oo worked ser:jsmgl systems. I
than 60 years to the days when Howard RESEARCHAGENDA o We are developing a single compre-
Hughes first created Hughes Research ensive architecture to seamlessly in-

Laboratories to address the most chal- The ISSL is developing technologytegrate perception, memory, planning,
lenging technical problems of the dayto enable smart networks and systemglecision-making, action, self-learning

Under that name, and now as HRL, thisThese are systems that can reason abgitd affect to address the full range
organization has a long-standing repuand adapt to changes in the environmen@f human_cognltlon. The work f(_)cuses
tation of serving the national interestgoals, or their own capabilities, can learrPn goal-driven scene understanding, lan-
through contract and internal R&D. Wefrom experience to improve their per-guage communication, apd learning se-
continue to work with government agen.formance, and can intuitively interactguentially planned b_ehawo_rs, _as well 5_15
cies and laboratories, and also collabowith and respond to their users. Thin the comprehensive brain-like cogni-
rate with universities and academic infequires broad-based, multi-disciplinarytive architecture.

stitutions. activities in adaptive filtering and learn-

- - ing, human-computer interaction, large-
, \ scale networking systems, and computa-
tional sciences.

We are combining strengths in math-
\ , ematics, theoretical physics, computa-
~ - tional science and physics-based mod-
. . __eling tools to accurately simulate a va-
Fig. 1. Amplitude and phase of the wavefunction .

of two electrons in an anisotropic quantum dot adiety of |mp0rt<_':1nt phys'“?' phenomena
computed by a few-body code designed by HRL relevant to various experimental groups

Over 95% of our our energetic 300-within HRL (see Figure 1). These mod-Fig. 2. A team of pherobots built for Darpa
member technical staff have advanceels permit realistic analysis of the prop-Seftware for Distributed Robotics program.
degrees - more than 70% have Ph.Derties of electronic materials and devices We are interested in the dynamics
degrees. We focus on high performancand the phenomena of electromagnetiof organization, communication, and
game-changing technologies where wscattering and propagation. control in living organisms, biological
bring unique perspectives and capabil- We apply cognitive science theoriessystems, and social networks. This is
ities. Our multi-disciplinary workforce to real-world problems, including rea-helping us produce high-value systems
lends itself to development of creativesoning by analogy, learning via mentalthat exhibit the next-generation capabili-
and innovative solutions that crossmodels, and perceiving occluded objectdies of self-optimization, self-awareness,
conventional technology boundarieHRL is actively involved in research onself-diagnosis, self-regulation, self-
to produce breakthrough solutions3D visual and auditory environments,healing, self-generation, and reflection.

\
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We are applying evolutionary andfeature-based object classification wittproaches, or using gradient information,
neuromorphic techniques to systemefficient search mechanisms based on trespecially if the scale of the object is
where both the software and hardwar®article Swarm Optimization (PSO) dy-not known beforehand. Our experimen-
learn and adapt to their environment. Imamics developed by Kennedy and Ebettal results show large speedups over ex-
Fig. 2 we show a swarm of simplehart (1995). Inspired by the flocking be-haustive search; for example, over 70x
robots that coordinate by means ohaviors of animals and insects, the PS@peedup to locate and classify one pedes-
a communications analogue to insectlgorithm is effective for optimization trian of known height (80 pixels) in a
pheromones, to perform mapping of af a wide range of functions. The algo-480x700 pixel image.
building and to detect hidden targets. rithm explores a multi-dimensional so-
lution space using a cooperating swarn |Wavelet/Fuzzy Symmetry Pedestrian Detaction

I1l. PROJECTFOCUS ON of search entities or “particles” where [ N
SWARMVISION: ADVANCED the degree of success of each particle i ED_I_ ——————— r— R
CLASSIFIERS FOROBJECT maximizing the objective attracts other r%u_e POl
RECOGNITION AND COGNITIVE members of the swarm. PSO is similal -EU'? _/'/'
SWARMS FORFAST SEARCH in its generality to genetic algorithms | § 7 P
Objects in a visual scene must bén that it can be used for discontinuous o ‘/
nd noisy solution spaces since it only || Sos

located and classified before they can b?—)1 ir n evaluation of the obiective | & Y R
combined into events. Typically, CIaSSi_fLejrc]]gtigr?a?eaecha u;lrtigle oositiE(B) n(? nlsc raE Prob. False Alarm (per window)
fication of objects in an image is per- P P -nog

. ient information or assumptions such as
formed using features extracted from arﬁj . P Lo indow-level probability of detecti
L . onvexity are needed. However, unlikeig- 4. Window-level probability of detection vs.
analysis window that is scanned acros&

. . . false alarm rate for human pedestrian classifier that
the image. This sequential determinis—genes _m genetic ?"99”thm3 that. _Com'achievesadetection rate of 95% at a very low false
tic search can be very computat_ionalI)foertza’:’)';hsiﬁjct?o:g‘"‘ innIrI; ;‘OC?P:ZDESE&L Sg:g:m :Z;g 81; gégﬁi and 98% detection for a false
:gtigsel\f’ S?nscpeecéalcl:{agsﬁi Csar‘gglr: vr\:rl]gf Vggoopgrate to explor_e the sqlution space Th_e number of false alarms per im-
performed at each window position, apd find ggod solutions. Th|s.results inage is grgatly reduced becau;e the; focus
Conventional approaches have utilizeg!ghly efficient sgarch propertles.. In ad-of attention of thg swarm is qU|cI_<Iy
motion-based segmentation using backqmon, f[he evolution of good solutloqs |spllrected_ towards likely ob_Jects, wr_uch
ground estimation methods to reducétable in PS_O (e.q., s_mall changes in the; very |mp0(tant for practical applica-
the search space by generating are presen.tatlon re_sult in sma_ll qhanges |pons (sge Fig. 4). The_ results s.hown
of interest around moving objects.This e solution), which results in improvedin the figure were obtained on v@eo-
approach fails if the object is motionlessconvergence com_pgred to GA. . taped humans m_urba_n anq rural environ-
or if significant background motion is . The bas!c cqgnltlve swarm cgncgpt |sr_nents under varlpus_nlumlnatlon_ _con_d|-
illustrated in Fig. 3. The objective is totions. The analysis window classification

resent, as is the case for motion im-. oo . . . e
P find multiple instances of an object clasgime for our pedestrian classifier is 0.3

agery. in an input image. The “cognitive” PSO msec on a 3 GHz PC. This combination
particles move in a solution space wheref accuracy and speed is superior to
i Classifier two of the dimensions represent the »any published results known to us. The
g :g& m:' -0 and y coordinates in the video frameframework also provides a natural way
if 4 ‘ . The key concept in our approach is thato incorporate expectations based on pre-
g g o each particle in the swarm evaluates amious recognition results, moving object
o ‘:};_{x@ﬂ l?f!:;_. objective function value consisting of thecues, or externally-supplied rules. For
. classification confidence that the partiexample, if a vehicle has been detected,
' cle’s receptive field matches a targetee@ human-detection cognitive swarm can
object in the frame. All cognitive parti- be made to focus its attention near the
| Wavelt Edgo Symmety cles i_q the swarm imple_ment the sam@'ehicle to "catch” people exiting or en-
eGertal o] classifier, only the classifier parametersering.

P E— vary as the particle visits different posi- Fig. 3 illustrated some of the ob-
3 ; Mitgation' *-{Dwarsty|%,  iONS in the solution space. This recastiect classifiers HRL has developed. This
mss s ::fl s ngfiﬁﬁr iuﬁm 5| the object detection problem as an oprovel approach for object classification
Mon- Nen- Nor- Nn- = timization problem. The solution spaceutilizes a combination of Haar wavelet
Ohjact Ohjact Objact  Ohjaet [Z012 . . . .
dimensions represent location and sizand fuzzy edge symmetry features and
_ N ~ of the analysis window and may alsoa cascade of neural network subclas-
Fig. 3.  Cognitive swarms and advanced objecinclyde other parameters like rotation. sifiers. The features can be calculated
classifiers for fast search and object detection in .. . . . . .
video streams. Cognitive swarms offer a much morequickly using high speed integer arith-
efficient method for finding objects in metic. A subwindow must be classified
HRL's unique cognitive swarm ap-an image compared to searching basems an object by a subclassifier in the
proach to searching for objects combinesn scanning the image, pyramidal apeascade in order to proceed to the next
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(higher complexity) subclassifier. Non-maintenance and usage data bases a
object subwindows are usually rejectedrom mission specification. The evidence. / e
early in the cascade, resulting in highabout present health of components i----l:”]”-.,--L u["
speed without sacrificing accuracy. obtained by applying signal process: i \ f’//."
ing and feature extraction algorithms orL HI] [\ P L L ﬂ”
, sensor measurements. Health history ¢ ,f\‘f | YL
el copect: . - components is used to project health int . %

the future i.e. to the end of the mission.

Here trending algorithms are applied tc):ig. 7. Bayesian Network Model for Flight

Person
irvmizem | produce the evidence. All elements ofactuator - Structure and Distributions. Motors and

Obfect: Car Hanl- — the evidence are fused in the reasoner.Prive Train represent components, Actuator is a
Hekl Camera in subsystem, the node at the top stands for evidence

G G Bayesian networks were first pro-of usage and the four nodes along the bottom
I . -$ posed as a tool for reasoning in the pregepresent present and future health evidence.
ence of uncertainty nearly twenty years
ago. Many diagnostic systems based on In addition to the unique reasoner
_ _ Bayesian networks have been describede have also designed a special layered
Fig. 5. Detection Examples. in literature and some of them have beefPrm of Bayesian network. The structure

We have used our classifier methodimPlemented and deployed in the fieldand parameters of the network are cus-
ology to create classifiers for other obBUt application of Bayesian networkstomized to diagnosis and prognosis. The
jects as well, such as vehicles and® Prognosis requires a reasoner that igyered Bayesian model is much easier
boats. Some example Cognitive Swarnq-ifferent from those used Tor diagno_to Create and requires fewer param_eters.
detections using HRLs advanced Ob'SIS' An examp|e of a Bayes|an networworeover |-t reduces the Computatlonal
ject classifiers and cognitive swarms argraph developed for a flight actuator ighurden during reasoning. We have devel-
shown in Fig. 5. HRL has used cognitiveShoWn in Fig. 7. The graph constitutesped an editor for the layered Bayesian
swarms successfully in applications fol@ Structure of the model. The nodegnodels, which uses simple tabular rep-
our LLC members, and we are currently the graph are annotated with modefesentation of the model information. It
parameterS, which are conditional probls intended for eXpertS familiar with the
ability tables. In Fig. 7 they are shownsystem and does not require knowledge

adapting them for weapons detection.

as histograms. of Bayesian networks. We have also de-
V. PROJECTFOCUS ONSYSTEM veloped a family of software tools for
HEALTH PROGNOSIS diagnostic/prognostic model evaluation

Diagnosis of a system determines“ || ht-'@::" and dehbugging.d - 5
what failed in the system. It uses obser— o a o bl toc\)ll\ée ina;:vglsoepmgﬁ: g:‘ezjiggr?oos?;’ ::d
vations of the failure such as symptoms ..us.go - .@ ] X !
of failure, or failed tests. In contrast, bl i il prognosis solutions for many real-life

prognosis asks what is likely to fail ﬁ% complex systems including diesel loco-

motives, automobiles, and aircraft. Our

in the near future. It requires not only o ST / :
evidence about present system health ¢ ﬂ M solutions became a part of commercial
software provided for some of the sys-

measured by sensors, but also data c.. .
health trends, the extent of past system ' ~ tems. We were also successful in extend-
. ig. 6. Prognosis Framework Based on Bayesmih our methodolo and tools to other
use (e.g., miles, hours, or cycles of opnetwork Models and Probabilistic Reasoner. 9 gy and
problems such as decision support for

eration), and expected future use (possi- :
bly focused on a particular mission for In two phases our novel reasoner sug@W €énforcement and data analysis for
which we make prognosis). These mulports both diagnosis and prognosis. Iiomeland security related purposes.
tiple pieces of evidence are combined t@hase one, a diagnostic phase, the inputs ,
arrive at system health prognosis. are the evidence on the present system ~ Contact Information

We have developed a novel frameworkusage and the present health. Given thjs President: Dr. M.W. (Matt) Ganz
for prognosis, Fig. 6. The heart of theevidence and system model, the reasongr 310-317-5200
framework is a probabilistic reasoningproduces a list of component failures mganz@hrl.com
engine that produces probability of fail-ranked by probability of occurrence. In| VP: Dr. C.G. (Conilee) Kirkpatrick
ure of system components at the enghase two - prognosis phase - the rea- 310-317-5374
of the mission. It employs a Bayesiansoner takes in evidence on usage for the ckirkpatrick@hrl.com
network model of the system and mulfuture mission and evidence on health HRL Laboratories. LLC
tiple sources of evidence for progno-irends at the end of the mission. The 3011 Malibu Canyé)n Rd
sis. The evidence about the previousutput is a ranked list of probabilities Malibu. CA 90265 '
usage and expected usage for the misf component failures at the end of theg ht '//V\;WW hrl.com
sion, i.e. future usage, is derived fronmission. p- T
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