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Cellular Flow in Mobility Networks

Alfredo Milani, Eleonora Gentili and Valentina Poggioni

Abstract—Nearly all the members of adult population in major On the other hand a number of projects [3], [5] try to
developed countries transport a GSM/UMTS mobile terminal yse the cellular network traffic to estimate different road
which, besides its communication purpose, can be seen as &raffic and transportation related quantities [6], [7],,[8lich

mobility sensor, i.e. an electronic individual tag. The terporal . i
and spatial movements of these mobile tags being recordedans &5 SPeed and travel times between destinations [9], [10],

their flows to be analyzed without placing costly ad hoc senss [11], origin/destination (O/D) matrices [12], [2], roachffic

and represents a great potential for road traffic analysis, érecast- congestions [11], road traffic volume or density [13], [14],
ing, real time monitoring and, ultimately, for the analysis and the  etc.

detection of events and processes besides the traffic domaas Many projects are also active in the relatively recent area

well. In this paper a model which integrates mobility constaints f bile device | lizati hich f h it
with cellular networks data flow is proposed in order to infer O MODIIE device localization which ToCuSes on the posiwon

the flow of users in the underlying mobility infrastructure. An  the single mobile terminal for the purpose of providing sdat

adaptive flow estimation technique is used to refine the flow contextual services.

analysis when the complexity of the mobility network increses.  The main limitation of the existing approaches to traffic es-

The inference process uses anonymized temporal series oflice yimation is the lack of a model taking explicitly into accawrf

handovers which meet privacy and scalability requirements . S .

The integrated model has been successfully experimented the the mobility and transportation '.nfr_aStrUCtures'_ Thereates

domain of car accident detection. are often based on purely statistical correlation appresch

which usually assume users movement directions following a

uniform probability distribution. On the other hand, phoai

and normative constraints to user mobility inside a celdj.(e.

as roads topology, mandatory directions etc.) are usuaity n
INTRODUCTION AND RELATED WORK taken into account in those models, with few exceptions,[15]

HE basic laws governing human mobility are becon{-4]’ while rel_ationships with traf_'fic domain external event

such as social events and social processes (e.g. work/home

ing an essential part in scientific works ranging frorTéommuting, shopping periods etc.) are completely ignored.

urban planning, road traffic forecasting to spread of bielog Moreover some issues such pevacy and scalability are

ical viruses [1], contextual marketing and advertisingwNe . . ; :
o . o .-also problematic. For instance, techniques for inferiihgD
opportunities arise for the study of human mobility with” ™" . . . :
. o . matrices [2] uses information about thecation Areas (LA)
the advent of the massive diffusion of mobile networks or the time. where aA is a set of cells where the
for personal devices such as GSM, UMTS, IEEE 802.1% '

WiMAX. IEEE 802.11 WLAN. Nearlv all the members Ofmobile terminal is assumed to be located. In other words
' S . X y . the algorithm needs to identify time, origin and destinatio
adult population in major developed countries transport

GSM/UMTS mobile terminal, i.e. an electronic individuatjta EAS of th_e whole trip made_ by egch single teIephpne, thus
representing a remarkable privacy infringement. Mobileicke

m;h 52?:]2?\/5;"\/:\//'5'{;.?;62;& grrl?seratroe p;ﬁ\égg tkllg SZEVIEchaIization detect the spatial position of the single pbsr
y 1099 sing techniques based on distance from the cell antenna (fo

mobile phone companies. The analysis of temporal and $patia . . .
: . .. example in [2]), or assuming the placement of special detec-

movements of these mobile tags allows accurate estimafion 0 . o
tor antennas for enhancing the accuracy of the localization

urban/extraurban traffic flow without placing costly ad ho ithouah the remarkable precision is obtained. in both sase
sensors. Mobile network data represent a powerful mean él 9 P : -
ere are relevant problems of privacy and scalability.dct,f

road traffic analysis, forecasting and real time monitoand, L2
. . . due to the huge amount of data generated by monitoring, each
ultimately, for the analysis and the detection of events an . o .
. ' . L . single terminal position in a cell would requires an enorsou
processes besides the traffic domain(e.g. traffic jam, itgloc . :
bandwidth, storage and computational cost.

congestions, road work, accidents etc.), which can afteet t . o .
; . : In this work we propose a model which integrates spatial
motion behavior of the masses (e.g. sport and leisure gvents

: : S " “networks with mobile phone networks, in order to monitor
concerts, attractive shopping areas, working/living angaic . o A '
processes etc.) pping g 9 analyze and predict the user traffic on the mobility infras-

. : . tructure and to make detection and inference about social
Techniques and models for mobile device flow analysis

[2] have mostly focused on predictive models aiming aetvents and processes in place, on the basis of anonymous

optimizing some mobile network system parameters such %%gregated data. The aim is that by integrating mobility

. o L constraints (e.g. available roads), it is possible to imapro
E;4e]IId|menS|on|ng,antennad|str|butlon,and load balag 2], the accuracy of predictions the cellular network based on

the mobility/transportation network and vice versa. Mweso
Alfredo Milani, Eleonora Gentili, Valentina Poggioni aretiwthe Depart- social event/processes which take place can also be detecte
ment of Mathematics and Computer Science, University ofiiar Italy. and conversely the knowledge of those events/processes can

Index Terms—Mobile networks, spatial data mining, traffic
flow analysis.
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improve the predictive model in the mobility domain. Projected spatial networkThe projectionS = (M, Sy)

In particular consider temporal data series describing tbé S, = (No, Ao, D, locy) according to a cellular network
"handover” of anonymous users, i.e. the number of useig = (C, D, g, m), is the spatial networls = (N, A, D, loc)
which traverses any of the six boundaries of an hexagomddtained byS, such that
cell in a mobile phone network. The choice of handover dalg vn € Ny = n € N andlocy(n) = loc(n),
is due to different reasons: (Brivacy issuesAnonymized 2) V(n/,n”) € Ay s. t. 3¢ € C with m(loc(n’),c) =
handovers can easily be made available and can be securelyoc(n”’),c¢) = T thenn’,n” € A, i.e. all the arcs inSy
and effectively transmitted while tracking the positiorfseo which originates and ends in the same cell, also belong, to
single terminal would represent sensitive data about the in3) for each ar¢n’, n”) whose ends do not lie in the same cell,
vidual user behavior. (2Performanceand scalability issues let m(loc(n’), ) = m(loc(n”),¢”) = T such that’ # ¢’ are
The size of the information to process remains constantes tivo neighbor cells, then a new nod#’ and two new arcs,
number of users increase. respectively(n’,n”") and(n'”’,n’") will be added to the set of

The rest of the paper is organized as follows: Definitions amétwork nodesV and arcsA; the position of the new node
relationships between spatial networks and mobility nek&o oc(n""), will be assigned such that the node lies on the border
are introduced in Section |, while a model for inferring splat between the two neighbors cells (note thét belongs to both
mobility flow from one word data is presented in Sectiogells, i.e.m(loc(n’),c") andm(loc(n’),c"”) are both true ),

II. An adaptive estimate model, used as a basis for eveftfinally, if an arc ofS, traverses more than two cells, then
detection, is presented in Section Ill. Experiments for caéhne arc is cut in a series of subarcs according to the previous
accident detection are presented in Section IV, and dignussprocedure.

on possible directions for future works in Section V conélsd An example of a spatial network and its projection on a

the article. cellular network is shown in Fig.1.
Cell spatial network The projection operationr(M, Sp)
|. SPATIAL NETWORK AND CELLULAR NETWORK partitionsS into subnetworks. In particular for each celE C

In this section we introduce a model for integrating théhere is an associatezell spatial subnetworS |. defined by
knowledge of a spatial network which constraints users movige restriction ofS to all nodes and arcs lying insidgi.e. in
ment and the knowledge of the cellular network covering ttiee domain ared |.= {d € D | m(c) is trug}. It is possible
same physical area. to identify in S |. two family of sets of noded.., C N (

A spatial network or mobility network is a set of physical respectivelyO. ., € N) for i = 1...6, which represent the
means and normative constraints, such as roads, railwasei, of nodes on the edge between the neighbods the cell
underground transportation, pedestrian area, one-wagslan and connect inbound (outbound) arcs cofvith outbound
and highways, which narrow the mobile user mobility. Ifinbound) arcs ofc;. The set of noded. = U?:1 I, and
general more than one cellular network with different size3. = Ule O.,, represent respectively theourceand sink
and topologies can insist on the same area. Here we assunades for the spatial subnetwork limited by cellSince after
that a singlecellular networkis operating in the given area andhe projection, by construction, it does not exists any dr§ o
it is organized in the usual hexagonal grid of cells with eagtrossing cell boundarieg, and O, are the only sources and
antenna centered in a cell. According to the usual notatigginks for the flow in celle.
given a reference cell, say cell 0, we refer to its neighbour The projection operation is defined by successive incre-
cells, by numbers from 1 to 6 clockwise as shown in Fig.1.mental splits upon properties of connectivity of the spatia

A spatial networkS can be described &&= (N, A, D,loc) graphand the cell area domains. It is easy to see that pimject
whereN are nodesAd C N x N are directed arcs, arldc is a process can be extended for more complex characterizations
location functionloc : N — D mapping nodes onto positionsof the spatial network which consider features on arcs or
in the bi-dimensional area of interebt C R2. nodes, such as costs, distances, speed and time betweex) node

A cellular network M = (C,D,g,m), organized in an capacities and probabilities.
hexagonal grid, is defined by a set of cells a function
g:C x {1...6} — C, which describes therid topology (g I[l. AN INTEGRATED MODEL FOR SPATIAL AND
returns the i-th neighbour of a given cell or returns the same COMMUNICATION NETWORK
cell if no i-th neighbour exists,e.qg.it is on the border) and Given a spatial networkS |. delimited by a given cell
boolean functionn : C x D — {T, F} checking whether a ¢ (cell 0 or ¢q in the following) the amount of user flow
given position ofD C R? belongs to a cell. inside/outside the cell is completely described by the data
Note thatg andm should verify the hexagonal grid topology.available from the cell control unit. Assume thid§ denotes

When a cellular networkl/ shares the same domain arethe amount of users in the current cellat the time slot
D with a spatial networkS,, we can consider the spatialt(stationary users)/ Ot (i, j) represents the handovers, i.e. the
network "projection” over the cells, or equivalently we cgge amount of mobile terminals moving from the cell towards
C as "cutting” S, into a family of disjunct spatial subnetworksthe cell¢; at the timet, then HO!,, = Zle HO(i,0) and
{S;}. In order to identify the spatial subnetwork corresponding O! ,, = Zle HO(0,4) represent respectively all the users
to each cell, it is useful to introduce additional nodes inoming in and going out the reference cell at timén order
correspondence of the cutting edges whenever an arc of theelate these data to the traffic flow in the different pdnts t
spatial network crosses the boundary between two cells. mobility network we need to introduce some definitions.
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0, IN(p) NON(k) = {n1} andOUT (p) N ON (k) = {n2}.
In this case we have'(n;) = HO!'(k,0) and ¢'(n2) =
HOY0, k).

Let consider the following equivalence relatienbetween
the elements ofP: Vp;,po € SP thenp; ~ py <
doy € OUT(pl), dos € OUT(pg), dk, € {17...,6}

. 01,09 € ON(kl), or di; € IN(pl), dis € IN(pQ),
dky € {1, .. ,6} 111,12 € ON(kQ)

The relation~ partitions P into equivalence classes having
either sources or sinks on the same side of the cell. Therefor
it can be more useful to provide (2) with respect to the
equivalent classes. Since the connected components having
paths on the same edge of the cell belong to the same
equivalent class, and since

> ¢'(n)=HO'(K,0),

n€IN(p)NON (k)

> ¢'(n) = HO'(0, k),

Fig. 1. Spatial mobility network and cellular network prcgen

Let P the set of connected components $f|., for each ne€OUT (p)NON (k)
pE P both equations (1) and (2) can be rewritten for each equiva-
« IN(p) is the set of thesource node®f the component |ence class induced by the relatien
p, i.e. all the nodes ipN I, .,, Vj = 1..6, In practice, the equivalent classes can be thougbtuesters
« OUT(p) is the set of thesink nodewf the componenp,  of pathsoriginating from or sinking to the same set of cells.
i.e. all the nodes ipN O, c;, Vj = 1..6. Fig.2 represents some possible spatial networks related to

MoreoverON (k) is the set of all the nodes ihN(p) and the reference cell. In Fig.2.a only one connected component

OUT(p) lying on the edge between celland its neighbor exists. Then, the general flow equation (1) coincides with th
k- one of the connected component. In this case our model is
exact to estimate the number of users in the paths and we
say that we reacltomponent levehccuracy. In Fig.2.b we
can see two connected components belonging to two different
Given the HO series between the current celland all clusters. In this case we reachmponent leveiccuracy. The
its neighborsc; ... cg, and given the network topology | ¢ cases represented in Figs.2.c and 2.d are equivalent iis tefrm
projected on the cell O, it is possible to define an inferenggindover data, but they are different from the topologicétp
model for deriving the flow of mobile users on the mobilityof view. While Fig.2.d has a unique connected component, we
network. have two connected components in Fig.2.c which belong to the
The model is based on the flow equations which relate teame equivalent class. Even if an equation for each cormhecte
user flow in the cellular network with the flow in the spatiatomponent can be written, the handover data are provided for
network that restricts user mobility. Lé&fj be the amount of each edge (and not for single path). So the accuracy level
users in the current celand HO!,,, HO! ,, the handover data decreases toluster level
at the time-slott. The flow on the spatial network delimited
by the cellc is admissibleif B. Inferring user flow

A. Mobility Network Flow Equations

HO!, + Ul = HOLL + ULH (1) Assuming that thg _initia_l number of mobile user in compo-
nent cluster at the initial time slot 0, is known, it is possible
Considering the seP of all connected components, we cano infer the number of stationary users in a given time slot in
assume that for any ¢ P there exists an admissible flow,the cluster by iteratively applying the flow equations geiex
and let¢' : N — N be the function assigning to each nodéy the spatial network on a cel.

n € N the number of userg’(n) in the noden at the timet In fact, from the general equation of admissible flow (1),
andUj ,, the users stationary at the timen the nodes of for each cluster of components (i.e. for each equivalersisjla
inside the cell 0, then we have:
Ut+l _ Hot Ut o HOt+1.
vp e P7 Z ¢t(n) + Ué_’p _ Z ¢t+1 (n) + Ué:;l 0 in + 0 out
neIN(p) neOUT(p) With consecutive substitutions, we obtain
2
) U™ = HOL, + HOL 4 U™ — HOL,, — HOL:

Assuming that only the handover and stationary users data
are available from the cellular network, it is not possilde tBy regroupings terms, we obtain
know how the users are distributed over the paths in the cell. t ¢
So for each connected component P we know the exact Uttt = Z HO'zn + U - Z HO ©)
values of¢’(n) andU§ , only when, for each edge of cell =0 o
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a) z i b} i z
c) ; i ; d) z E

Fig. 2. Connected components and clusters in cell spatiatank

Fig. 3. State diagram: a)complete b)reduced by mobilitystaimts

2d X,

Fig. 4. An example of different spatial networks that areeeognizable
from their handover
The inference procedure assumes that the amount of users
in stf-altlonary state inside every cllu.ster at .t|n.1e O. is known. A Prediction Markov Model
It is easy to note that the ability of distinguish the flow
within a connected component o |. is limited by the The prediction model is based on the Markov model pro-
number of classes induced by. In other words if two Posed in [4] for mobile network management. Mobile user
connected components are in the same class the amounfgvements towards/from the cell are represented by a state
their individual inbound/outbound flow cannot be preciseliagram associated to a transition matrix assigning pritbab
determined considering only the cell handovers. In thelidefes assigned to each movement in the given time slot. A

case if each connected component belongs to a distinct, cl&¥nplete state diagram for 7 direction levels is represginte
its flow is fully described by the handovers data. Fig.3. The parameters of the Markov model, i.e. the specific

The effectiveness and accuracy of the inference technigii@nsition probabilities, can be effectively determineyl @
based solely on handover data, greatly depends on the g@tsnca_l analysis of handover series at the given tinog¢ sl
resolution/granularity, i.e. the relative size of the ceith dranularity. . _ ,
respect to the spatial network, and on the spatial network!t iS worth noticing that spatial network constraints can
connectivity. For instance the presence of high conneygtivi€duce the number of states, the entries of the incidence
subnetworks or hubs, such a square or a park, where _{H@trlx and thus_ the complexny of the Markov model. For
mobile phone holders can move “freely” in any direction, caStance the projected spatial network of Fig.4.a can rethue
narrow down the accuracy. On the other hand, a cell coveriRggdictive model to 4 states as shown in Fig.3.b. Neversisele

an highway section in an area with no other road can provif® Markov model is not adequate by itself for flow analysis
high accuracy. since qualitatively different mobility networks, as theesn

shown in Fig.4 can lead to the same Markov model structure.
The technique shown in Section II-B can be applied in order
to calculate the flow in clusters of connected components.

IIl. SPATIAL NETWORKSPREDICTION AND ESTIMATION

In this section we present a prediction model based gn Flow estimation

Markov chain and an adaptive flow estimation model which In order to improve the accuracy of flow inference within a
exploits the underlying spatial network in order. These eied class of connected component, it is possible to use an dstima
can improve the performance of predictions and give a bettar flow distributions on sources/sinks, when deterministic
estimate the flow within the single connected component whaference is not possible.

inference based on flow equations cannot determine a uniquéssume that for each set of source noflesc;) (sink nodes
answer, i.e. the equations have not a unique solution duelie, ¢;)) lying on the same borderof cell ¢, the distribution
large clusters of components. The two models represent #ién) Vn € I(c, ¢;) i.e. the expected percentage of handovers
core modules of the event detection system presented in #iéi,0) (HO(0, ¢) )which take place at timebecause of users
Experiments Section. entering (leaving) celt from noden is known. It is apparent
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that the flow equations can be restated in the form of estimate’
for each single connected componé&pte P,

Yo k0 +V, = Y TR0+ V(@)
neIN(p) neOUT (p)
kel...6 kel...6

where the termv!(k,0) = HO'(k,0) * p'(n) represents the mmgm""‘ =
estimated flow through each source/sink node andhe

current estimated stationary users calculated itergtivihe

estimate can also be propagated along the mobility network

and between cells by simple boundary equations, since incom o~
ing flow for a cells is the outgoing flow for its neighbor and :
vice versa. .

It is worth noticing that the flow estimates are also requirt.fdg' >
to be admissible i.e. they should not contradict the general
flow equations. On the other hand, contradictions can emerge
over the time by iterating wrong estimates. For example a Idw{2Ss of traffic impac{from 0=null to 6=complete block). The
estimate of flow distribution along a path can lead to obseyvi €vent features which have been considered start/ending
many more users than expected exiting from that path e place (i.e. mobility network connected component),

a neighbor cell. In this case, for example, the distributiofirection (which GRH lane is concerned for the event), and
parameters can be increased along the contradictory pati¥e of even{car accident or generic anomalous events).
re-establish the consistency. The data of the first 24 months have been used to determine

On this basis it is possible to design a scheme for addpe initial values for the adaptive estimation model and the
tive flow estimation, where the estimation parameters awegights of the Markov predictive model and alert thresholds
dynamically changed in order to maintain consistency betwewhile data of the last six months have been used from the
the estimate and the observed data (i.e. handover and t@eiual experiment of detection. The parameters have been
stationary users): computed for each 15 minutes time slot on a week day base,

Adaptive Flow Estimation Scheme Monday to Saturday, while Sundays and public holidays have

1) Estimate current flow along sources and network patR§en included in a different class, since their traffic bajrav
of cell ¢ using the real data and current distributio§Xhibit common similar patterns.

ED"' nazione Roma

{Roma-Saiario

Castel \
Giubileo Eﬂ;} 0
i

Borgata
Fidene

parameters The general architecture of the detection systems is based
2) Calculate flow constraints in neighbor cells ©fising on different classes of indicators and thresholds whidger
current estimate data and parameters alerts in the algorithm. Indicators based on global handove

3) If current estimate conflicts with the previous constimintraffic in the cell are compared with the predictive model in
for cell ¢ then (3.1) revise distribution parametersprder to detect start/end and type of events, while indisato
ottt = r(ot) to establish consistency and (3.2) backef deviation from the adaptive estimation model are used to

propagate revision te neighbors. detect the place of the event the direction of accident. The
A key point of the adaptive algorithm is the update functioficheme for the event detection loop is depicted below:
r which revises the estimate distribution parametet$k, 0)). if eventt O;n,HOput) then

The current implementation uses an iterative algorithnetas eventStarted— true
on PSO [16]-[18] to find the increment/decrement size distri  if carAccH O;,,HO,y:) then

bution for re-establishing the consistency. if carConn()then
output estimatePlace()
IV. EXPERIMENTS. CAR ACCIDENT DETECTION IN output estimateDirection()
HIGHWAYS end if

The proposed model for the analysis and the estimation of end if
traffic flow in mobility network has been experimented in the €!Se
domain of car accident detection in the Great Ring Highway €ventStarted— false
(GRH) A90 surrounding the city of Rome in Italy. Timed data €nd if
series of handover logs from a major national GSM mobile Any start/end event is firstly detected by a relevant change
phone network has been used. The provided data regardir3gjlobal handover voluméiO;,, + HO,,; with respect to
months for a cluster of 24 GSM cells covering a section dfie expectation according to the Markov based model. The
the GRH with different cells dimensions and road densityalue of the corresponding threshoﬁg is based on the
in the domain area (see Fig.5). In addition, reports from thariance of handovers volume tepresents the event type).
national highway traffic control system have been used asThe beginning of an event of type car accident is related with
source of car accidents events in the GRH; the salient typesudden increase of the number BO;, with respect to
of information include:start/end time of event (i.e. return to HO,,;, see Fig.6). A threshold? . is compared against the

car

normal traffic condition), place and direction of the eventaveraged differencdfO;,, — HO,,; over consecutive time

IEEE Intelligent Informatics Bulletin December 2009 Vol.10 No.1



22 Feature Article: Cellular Flow in Mobility Networks

of reasons. For example, car accidents in a lane sometimes ca
slow down the traffic in the other one for different reasons:
rescuing cars blocking it, traffic police deviating the fiaf
on the other lane or the phenomenon of “accident curiosity”
which draws the attention of drivers on the event slowingidow
the opposite lane traffic. If this happens within the first 15
minutes time slot, the algorithm is not able to detect a bigta
direction since the two cannot be distinguished, while arfine
time granularity in the data is expected to improve the dioac
detection ability. A further analysis has shown that moshef
false positives detected bylg.,; are due to traffic variation
induced by car accidents in nearby cells. This suggestshbat
management of connected events should be further refined.

120

car

a0

Fig. 6. A peak in incoming handovers over threshéld,,..

TABLE |

DETECTIONRESULTS V. FUTURE DEVELOPMENTS ANDCONCLUSIONS

Events Precision Starf  Direction Cellular networks, besides their communication purpose,

- can be seen as mobility sensor networks already in place

Algest 382 97% 85 % 98 % which offer a great potential for the analysis of users flow
Algaer 495 75% 83 % 65 % in an area. A model which integrates mobility constraints

and cellular networks has been proposed in order to analyze,

monitor, forecast and detect events and processes in the
intervals to distinguish car accidents from other evenghsumObi”ty infrastructure. The use of cell level handover msee
as anomalous increment of traffic. On the other hand tH@ta privacy and scalability requirements, while the kreaigle
“end” of the event is recognized by a return to a normﬂf the mObIlIty infrastructure allows ones to obtain rezsole
traffic condition. When a potential car accident is detecte@istimates of the flow at the connected component level. The
the estimated flow allows ones to determine the location Bftegrated model and the proposed technique of adaptive flow
the event, which is decided to be the connected compone@gtimation have been successfully experimented in the sloma
with the greater estimated flow variation. The direction ¢¥f car accident detection.
the event is calculated by comparing the inbound/outboundFuture works includes the investigation of techniques for
estimated flow in the connected component correspondingtii¢ application of the model to high density urban area, eher
the highway lanes. The controhrConn()filters out those flow the high road density does not allow a fine grain analysis of
variations which are due to car accidents already detect8€ flows, although the increasing diffusion of the so called
in the nearby cells and could be erroneously recognized frocells and nanocells is soon expected to provide atdaita
new events. The experimental results of the original algori granularity.
Alges: have been compared with a versiotig,.;, which does ~ More generally suitable models, which integrate "sensors
not take into account of mobility network estimates, butyonialready in place” (e.g. cellular networks, payment systems
uses the deterministic inference rules. Car accidents mith bus/train ticketing systems, video surveillance etc.) aodbil-
effect on the traffic have been excluded from the statistics. ity infrastructures constraints, are of great interestffieranal-

As shown in Table I, the results are quite encouraging: Bo¥§iS Of social events (e.g. entertainment, sport evenstivés,
Alges: and Alga.; algorithms detected all the 371 accidemgommermgl/lelsure area attractors etc.) and social s
events in the traffic control report, whildigs., has a con- (€.9. working day/vacation days cycle, work/school/hope ¢
siderable lower precision with a remarkable number of fal§é€ €tc.) which involve movement of people in the physical
positives Eventsand Precision). It is interesting to note that SPace and conversely, for analyzing the impact of evente®n t
the start of event timeeturned by both algorithmsStart<) is mobility infrastructures and their planning and managemen
better, i.e. anticipated, with respect to the starting tonen
by the national traffic control system. This is because the
mobile users data are acquired in real time, while the anotide
alert reach the national traffic system by different chasnel
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