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Abstract—We design a new algorithm for identifying against- 

expectation patterns. An against-expectation pattern is either an 

itemset whose support is out of a range of the expected support 

value, referred to as an against-expectation itemset, or it is an 

association rule generated by an against-expectation itemset, 

referred to as an against-expectation rule. Therefore, against- 

expectation patterns are interactions within those items whose 

supports have large relative-contrasts in a given database. We 

evaluate our algorithms experimentally, and demonstrate that our 

approach is efficient and promising 

 
Index Terms—Exception, against-expectation pattern, nearest- 

neighbor graph, correlation analysis. 

 

I. INTRODUCTION 

RADITIONALLY, association analysis has focused on 

techniques aimed at discovering interactions within data. It 

has mainly involved association rules [1,4,21] and negative 

association rules [18,23]. These rules can be identified from 

data by using statistical methods and grouping. In real world 

applications, data marketers seek to identify interactions and 

predict profit potential in the relative-contrast of sales.  

Meanwhile, they recognise that principle items, having large 

relative-contrasts with respect to their supports expected for a 

given database, may provide larger profit potential than those 

with low relative-contrasts. In this paper, we refer to 

interactions within items that have large relative-contrast as 

against-expectation patterns. Up until now, the techniques for 

mining against-expectation patterns have been undeveloped. To 

rectify this, our paper studies the issue of mining 

against-expectation patterns in databases. 

An against-expectation pattern is either an itemset whose 

support is out of a range of the expected support value 

(expectation), referred to here as an against-expectation itemset, 

or an association rule generated from against-expectation 

itemsets, referred to as an against-expectation rule.  
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If we use extant frequent-pattern-discovery algorithms to 

mine a market basket dataset, the item ‘apple’ can be identified 

as a frequent pattern (itemset), even though its support (= 200) is 

much less than expected sales (= 300).  This is because ‘apple’ 

is a popular fruit, and is frequently purchased. Compared to 

‘apple’, ‘cashew’ is an expensive fruit, and is rarely purchased. 

In the market basket dataset, ‘cashew’ cannot be discovered as a 

frequent pattern of interest, even though its support (= 20) is 

much greater than its expected sales (= 5). In an applied context, 

while the frequent pattern ‘apple’ is commonsense, the 

purchasing increase of ‘cashew’ is desired in marketing 

decision-making, and constitutes the against-expectation pattern 

which is to be mined in this paper. Similarly, the purchasing 

decrease of ‘apple’ is also an against-expectation pattern desired. 

These against-expectation patterns assist in evaluating the 

amount of products purchased in the next time-lag.  

Against-expectation patterns are distinct from frequent 

patterns (or association rules) because: (1) they may be pruned 

when identifying frequent patterns (or association rules), (2) 

they can deviate from frequent patterns (or association rules), 

and (3) against-expectation patterns are hidden in data, whereas 

traditional frequent patterns (or association rules) are relatively 

obvious.  

Related research includes the following: unexpected 

patterns [14,15], exceptional patterns [6,8,10,19], and negative 

association rules [18,23]. The first and second are known as 

‘exceptions of rules’, and also as ‘surprising patterns’, whereas 

‘negative association rules’ represents a negative relation 

between two itemsets. 

An exception of a rule is defined as a deviational pattern to a 

well-known fact, and exhibits unexpectedness. For example, 

while ‘bird(x) → flies(x)’ is a well-known fact, mining 

exceptional rules aims to find patterns such as ‘bird(x), 

penguin(x) → ~flies(x)’. The negative relation actually implies 

a negative rule between the two itemsets, including association 

rules of forms A → ~B, ~A → B and ~A → ~B, which indicate 

negative associations between itemsets A and B [18,23].   

Hence, against-expectation patterns differ from unexpected 

patterns, exceptional patterns and negative association rules. 

Therefore, against-expectation patterns should be regarded as a 

new kind of pattern. 

In addition to those mentioned above, there are also some 

differences between mining against-expectation patterns and 

mining the other two patterns change patterns [12], and 

interesting patterns using user expectation [13]. In these 

methods, a decision tree is used for mining changes, which is 
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very distinct from the algorithms employed in this paper. 

Finding interesting patterns according to user expectation is a 

kind of subjective measure, while our algorithms aim at 

objectivity. 

As such, while the above achievements provide a good 

insight into exceptional pattern discovery, this paper will focus 

on identifying against-expectation patterns. In Section II, we 

formally define some basic concepts and examine the approach 

issue of mining against-expectation patterns. In Section III we 

describe our approach and compare it with existing algorithms. 

In Section IV, we conduct a set of experiments to evaluate our 

algorithms. We summarize our contribution in Section V 

II. A FRAMEWORK FOR IDENTIFYING AGAINST-EXPECTATION 

PATTERNS 

In this section we present some basic concepts and describe 

the issue of mining against-expectation patterns in databases. In 

particular, we design a new framework for mining 

against-expectation patterns that consists of interactions within 

items, with large relative-contrasts referenced to their 

expectations in a given database.  This is based on heterogeneity 

metrics.  

Let I = {i1, i2, …, in} be a set of n distinct literals, called 

items. For a given dataset D over I, we can represent D as 

follows. 

TABLE I 

A DATASET D OVER I 

 

TID i1 i2 … in 

T1 a11 a12 … a1n 

T2 a21 a22 … a2n 

… … … … … 

Tm am1 am2 … amn 

Support f1 f2 … fn 

 

In Table I, Tj is the identifier of transactions in D, ajk is the 

quantity of item ik in transaction Tj, fk is the quantity (support) 

of ik in D, or the sum of a+k in kth column. 

In marketing, data marketers must know the sales 

expectation of each product. This is used to determine how 

many items should be bought each month (or during a specified 

time-lag). 

TABLE II 

THE EXPECTATION OF ITEMS 

 

 i1 i2 … in 

Expectation e1 e2 … en 

 

In Table II, ek is the expected quantity of ik in D. For 

example, in Section I, expectation(apple) = 300,  support(apple) 

= 200,  expectation(cashew) = 5, and support(cashew) = 20. 

Therefore, the support of ‘cashew’ is far larger than its 

expectation because 

increased(cashew)=support(cashew)– expectation(cashew)  

= 20 – 5 = 15. 

This means that the relative contrast, which is the ratio of 

increment to expectation used for denoting the gap between 

support and expectation rec(cashew), is three times its 

expectation. That is, 

rec(cashew) = increased(cashew) / expectation(cashew)  

= 15/5 = 3. 

Hence, ‘cashew’ is an against-expectation pattern. However, 

the support of ‘apple’ is far less than its expectation because 

increased(apple) = support(apple) - expectation(apple) 

= 200- 300 = -100. 

This means that the relative contrast rec(apple) is  

rec(apple) = increased(apple) / expectation(apple) = -100/300 = 

-1/3. 

We also refer to ‘apple’ as an interesting against-expectation 

pattern if rec(apple) is out of a given range (neighbour) of 

expectation(apple). 

Against-expectation patterns are defined as either those 

itemsets whose supports are out of a δ-neighbour of their 

expected values, referred to as against-expectation itemsets, or 

those rules that are interactions within against-expectation 

itemsets, referred to as against-expectation rules. An 

against-expectation itemset X has its support out of the 

δX-neighbour of its expectation (with a large relative contrast), 

i.e.  

recar(X) = |increased(X)| / expectation(X)  

= |support(X) – expectation(X)| / expectation(X) 

> δX 

where δX is a user-specified minimum relative-contrast for X. 

Certainly, recar(X) is a heterogeneity metrics, because δX can be 

different with different X. 

An against-expectation rule is of the form  

X → Y 

which is the interaction between the against-expectation 

itemsets X and Y; or one of X and Y is a frequent itemset and 

the other an against-expectation itemset. For example, ‘apple → 

cashew’ can be an against-expectation rule between the above 

two against-expectation itemsets. 

An against-expectation rule X → Y is interesting if its 

confidence is greater than, or equal to, a user-specified 

minimum confidence (minconf). 
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We classify against-expectation patterns as follows: 

increment patterns, decrement patterns and negative 

associations. 

 An increment pattern is either an itemset X whose 

actual support is greater than its expected value, e.g., 

support(X) – expectation(X) > e (where e is a 

user-specified positive value) – this is referred to as an 

increment itemset; or it is a rule that is an interaction 

within increment itemsets, and is referred to as an 

increment rule. 

 A decrement pattern is either an itemset X whose 

actual support is less than its expected value, e.g., 

support(X) – expectation(X) < -e (where e is a user- 

specified positive value) – referred to as a decrement 

itemset; or it is a rule that is an interaction within 

decrement itemsets, and is referred to as a decrement 

rule. 

 A mutually-exclusive correlation is a rule in which its 

antecedent and action belong to different 

against-expectation itemsets.  That is, either (1) its 

antecedent is an increment itemset and its action a 

decrement itemset; or (2) its antecedent is a decrement 

itemset and its action an increment itemset. 

 A companionate correlation is a rule in which one of 

its antecedents and actions is a frequent itemset and the 

other is an against-expectation itemset.  That is, either 

(1) its antecedent is an increment itemset and its action 

is a frequent itemset; (2) its antecedent is a frequent 

itemset and its action an increment itemset; (3) its 

antecedent is a decrement itemset and its action a 

frequent itemset; or (4) its antecedent is a frequent 

itemset and its action a decrement itemset; 

The problem of mining against-expectation patterns is a 

challenging issue because it is very different from those 

problems faced when discovering frequent patterns (or 

association rules). Because against-expectation patterns can be 

hidden in both frequent and infrequent itemsets, traditional 

pruning techniques are inefficient for identifying such patterns. 

This indicates that we must exploit alternative strategies to  

(a) confront an exponential search space consisting of 

all possible itemsets, frequent and infrequent, in a 

database;  

 

(b) detect which itemsets can generate 

against-expectation patterns;  

 

(c) determine which against-expectation patterns are 

really useful to applications; and 

  

(d) determine the heterogeneity metrics of 

against-expectation patterns. 

One must remember that this process can be expensive and 

dynamic. The leaders of a new company must make an effort to 

estimate expectation by analyzing the environment and 

possible customers. For an old company, data relating to items 

recorded in a previous time-lag can be used as expectations.  

Thus, we can check the support of items and identify the 

against-expectation patterns in that time-lag.  We can also 

predict the support of items and the against-expectation 

patterns in the next time-lag. In the following, for simplification, 

we define a time-lag as a month. From this point, our 

against-expectation patterns are similar to change patterns 

[12,13], though discovering against-contrast patterns is based 

on the expected support of items. 

The technique to be developed in this paper consists of a 

two-step approach as follows:  

(1) Generating a set of interesting items (i.e., items with 

a large relative-contrast), and 

  

(2) Identifying interactions within these interesting 

items based on the Nearest-Neighbor Graph and 

Correlation Analysis techniques. 

III. ALGORITHM DESCRIPTION 

Traditional mining algorithms assume that an association 

rule is interesting as long as it satisfies minimum support and 

minimum confidence. But a number of researchers have proved 

that this can generate many uninteresting rules. Meanwhile, 

some interesting rules can be missed without taking into 

account the item’s own change trend. 

 

Example 1. Let min_supp = 33.3%. Consider two 

transaction databases D1 and D2, as shown in Tables III and IV.  
 

 

TABLE III 

D1: TRANSACTIONS IN JANUARY 

 

toothbrush, toothpaste 

bread, jam 

cashew 

apple, banana 

toothbrush, toothpaste, bread 

apple, cola, shampoo 

apple, banana, shampoo 

bread, jam, apple 

apple 

apple, banana, cola 
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TABLE IV 

D2: TRANSACTIONS IN FEBRUARY 

 

toothbrush, toothpaste, bread, jam, 

shampoo 

bread, cashew, apple, shampoo, jam 

cashew, shampoo, bread, jam 

apple, banana, cola, shampoo 

toothbrush, toothpaste, shampoo 

bread, jam, shampoo 

toothbrush, toothpaste, cola, shampoo 

apple, shampoo, bread, jam 

apple, banana, shampoo 

cashew, apple, banana, cola, shampoo 

toothbrush, toothpaste, apple, shampoo 

bread, jam, apple, shampoo 

 

Using existing association rule mining algorithms, we can 

identify certain association rules in D1, or D2, or D1D2. For 

example, association rules ‘toothbrush → toothpaste’, 

‘toothbrush → shampoo’ and ‘bread → jam’ are of interest in 

D2 because  

( ) 33.3%

( ) 100%

( ) 33.3%

( ) 100%

supp toothbrush toothpaste

conf toothbrush toothpaste

supp toothbrush shampoo

conf toothbrush shampoo

 

 

 

 
 

( ) 50%

( ) 100%

supp bread jam

conf bread jam

 

 
 

Let us consider the support and increment (relative contrast) 

of the items ‘apple’ and ‘cashew’ as shown in Table V. 
 

TABLE V 

COMPARING APPLE WITH CASHEW  

Obviously, whenever it is January or February, ‘apple’ is 

always frequent and ‘cashew’ is always infrequent. But the 

increment (relative contrast) of ‘cashew’ is far higher than that 

of ‘apple’. Therefore, ‘cashew’ is of much more interest when 

considering the relative contrast (i.e., change trend). These 

interesting itemsets cannot be found by using existing 

association rule mining algorithms. Certainly, we can identify 

‘cashew’ as a frequent itemset, using Apriori-like algorithms, 

by decreasing the min_supp to 25%. However, decreasing the 

min_supp can lead to the generation of a great many 

uninteresting itemsets. It is not an intelligent way to proceed. In 

particular, Apriori-like approaches do not provide information 

concerning the change trend of itemsets. We are, therefore, 

encouraged to develop new techniques for discovering 

against-expectation patterns. 

Our proposed approach for identifying against-expectation 

patterns uses the stock of merchandise in the previous month as 

an expectation, in order to identify against-expectation patterns 

in the present month. 

A. Finding interesting itemsets using square deviation 

This subsection presents techniques for finding a candidate 

set consisting of particularly interesting items (1-itemset) based 

on the square deviation, and is aimed at mining 

against-expectation patterns. Generally, if a piece of 

merchandise (an item) has a small relative contrast referenced 

to its expectation, the sales trend of this merchandise is in 

control. And it is uninteresting when mining 

against-expectation patterns. For efficiency, the item should be 

deleted from the candidate set. 

Stocked items can reflect a decision makers’ anticipation of 

the sale trend for each item in the future. Therefore, in 

Definition 1, stock is considered to be equal to the expectation 

mentioned above. The stage below is necessary for determining 

changing trends, and its span can be decided according to 

practical situations, such as week, month or year. 

Definition 1. Let     be the stock of i-th merchandise at j-th 

stage, where 0  j  m, 0  I  n; and     denote the increment 

ratio between the j-th stage and the (j+1)-th stage of the i-th 

merchandise. Then we have 

( 1)i j ij

ij

ij

x x
p

x

 


. 

Therefore, its incremental ratio math expectation is 
1

1
( )

1

m

ij

j

i

p

E p
m










 
and its square deviation is 

2

1

( ) ( ( ))
m

ij i

j

D i p E p


 
. 

Let     denote the threshold given. Then merchandise i is 

of interest if          .  

The algorithm to identify all interesting items (merchandise) 

is constructed in Fig. 1. 

  

Input  Stock: set of the number of goods, Prop: minimum math 

expectation;   

Output  MID: set of candidate 1-itemsets 

(1)  for each j in Stock 

(2)  begin    

(3)         calculate  E(pi)，D(i); 

(4)         if (D(i) ≥ Prop) 

(5)             MID ← MID  {i}; 

(6)  end; 

(7)  Output all items of interest in MID; 

(8)  Return;  

   

Fig.1. FIM: Generating the candidate set (of 1-itemsets) 

 

 Jan’s supp Feb’s sup increment 

Apple 50% 58.3% 16.7% 

cashew 10% 25% 300% 
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In algorithm FIM, all items with large relative contrasts 

referenced to their expectations are identified using square 

deviation. In the following Sections III.B and III.C, k-nearest 

neighbor and correlation analysis will be used to calculate the 

correlation between two items and generate the candidate set of 

k-itemsets, which consist of all interesting itemsets potentially 

useful for generating against-expectation patterns. 

B. Nearest neighbor graph based method 

Definition 2. Let   {                    }, 
  {                    } be the stocks of goods A and B. 

The increments between two adjacent phases for A and B are 

denoted as  

1

1 0 2 1 i i-1 n n-1A ={a -a ,a -a ,...a -a ,...a -a } 
 

1

1 0 2 1 i i-1 n n-1B ={b -b ,b -b ,...b -b ,...b -b }
. 

Let                          and          
  

   {                    }   be known as the relative 

bargaining quantity of A and B.  

The nearest neighbor graph is constructed as follows. For 

all items in a given database, we first draft a figure with the 

items as its points. Any two points are connected by an edge, 

and the edge is associated with the square deviation distance 

between the two points. For instance, in Definition 2, A and B 

stand for the points a and b in a figure respectively. Then the 

distance between A and B (a and b) is defined as follows. 

      
21

1 1

,

0

n

A B i

i

d P X P A B X E X




   
. 

After finishing the figure accordingly, we then get rid of 

some of the edges when their distances are larger than the 

threshold. The rest of the figure is simply the nearest neighbor 

graph for the database [10]. In this nearest neighbor graph, we 

refer to certain items as the nearest neighbors of the point a, if 

they are linked through edges to a. We can reconstruct the 

nearest neighbor graph by ranking the nearest neighbors for a 

certain point in decreasing order. 

  We now describe the algorithm for generating the 

candidate set of j-itemsets using the above k-nearest neighbor 

graph. 

 

Input    SaleTable: dataset; k: number of nearest neighbors; 

Output  MID: set of j-itemsets; 

(1)   StageTable ← SaleTable; 

(2)   for A in MID (firstly generated in Algorithm FIM) 

(3)   begin for B in MID (firstly generated in Algorithm FIM) 

(4)        begin calculate X(A, B)； 

(5)             calculate d(A, B)； 

(6)             if (d(A, B) ≥ k) 

(7)                  A.neighbors ← B; 

(8)                  generate a candidate itemset i by A and B; 

(9)                  MID ← MID  {i};  

(10)        end 

(11)    end 

(12)  Output all itemsets in MID; 

(13)  Return; 

 

Fig.2. KNNG: Generating the candidate set of j-itemsets using the k-nearest 

neighbor graph 

From the above description, the algorithm KNNG generates 

the candidate set of 2-itemsets, using all 1-itemsets in MID, 

generated first in the Algorithm FIM; the algorithm KNNG 

generates the candidate set of 3-itemsets, using all 2-itemsets in 

MID, generated in the Algorithm KNNG; and the algorithm 

KNNG generates the candidate set of j-itemsets, when using all 

(j-1)-itemsets in MID, generated in the Algorithm KNNG.  

From the definition of against-expectation patterns, all 

candidate j-itemsets identified by the Algorithms FIM and 

KNNG are against-expectation itemsets. By way of these 

against-expectation itemsets, we can generate some 

against-expectation rules of interest. Here we omit the 

algorithm for generating against-expectation rules because it is 

similar to the Apriori algorithm. 

C.  Correlation-analysis based approach 

In this section we design a correlation-analysis based 

algorithm for generating a candidate set of k-itemsets. The 

correlation-analysis based algorithm detects whether the 

correlation between two goods is positive or negative.  That is, 

whether the correlation has a acceleration action or is restricted. 

In particular, this algorithm can provide pattern quality superior 

to that of the nearest-neighbor-graph based algorithm. 

Definitions and theorems 

Definition 3. Let      denote the probability of X 

occurring in a transaction, and      the probability of X not 

occurring in a transaction, where     =1-     ; and let 

       denote the probability of X and Y both occurring in a 

transaction. If                 , then X and Y are 

dependent on each other; otherwise, independent of each other.  

Definition 4. If               in a transaction database, 

are correlated with each other, then               is known 

as a correlation rule.  

     Definition 5.  Let                  and   
{               }， then     is referred to as a subset of  , 

and   is referred to as a superset of   . 

       Each itemset consists of certain attributes, and a superset 

consists of all the attributes in its subsets. Therefore, reducing 

time cost is possible by getting rid of those itemsets that contain 

at least one uncorrelated subset (a non-correlation rule). 

Definition 6. The correlation-analysis quantity of goods A 

and B is defined as  
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( )
( , )

( ) ( )

P A B
Corr A B

P A P B




 . 

For n goods, each denoted as Gi, where 1<=i<=n, the 

correlation-analysis quantity is 

1
1 2

1

( )

( , ,..., )

( )

n

i

i
n n

i

i

P G

Corr G G G

P G








 

The more closed to 1 the correlation-analysis quantity of A 

and B is, the better the independency of A and B. If 

           , then A and B are positively correlated, and 

if            , then A and B are negatively correlated . 

Algorithm design 

The correlation-analysis based algorithm is a post-process 

based upon a transaction database. It is suitable for static data 

classification, and is an improvement on Apriori-like 

algorithms for mining association rules using a 

support-confidence framework. 

Reducing the time complexity of our correlation-analysis 

based algorithm can be implemented by way of a pruning 

algorithm that utilizes the closure property of correlation 

itemsets. Using a pruning algorithm, we can obtain all 

minimum correlation itemsets of interest. The pruning process 

is shown in Fig. 3 where, if            , then 0 and 1 are 

correlated, as are all its supersets. Pruning its left subtree at (0,1) 

is actually a minimum correlation itemset. 

The final output looks like this: 

A：Positive correlated item: (B), (E,F), i.e., (A,B) and 

(A,E,F) are two minimum correlation itemsets concerning 

item A. 

Negative correlated item: (D), (G). 

   So, it is easy to detect those interesting items that correlate 

with A  

We now construct the correlation-analysis based algorithm as 

follows. 

 

Input    TD: set of transactions; ProRange: a threshold for 

independency;        

Output   PosCorr: set of all positive correlation itemsets;  

 NegCorr: set of all negative correlation itemsets; 

(1)   PosCorr ← ; NegCorr ← ; 

(2)   Construct a set-enumeration tree for a 1-itemset in MID 

for TD (generated in Algorithm FIM); 

(3)   Scan each node A in the set-enumeration tree 

(4)  If (Corr > 1 + ProRange)     

PosCorr ← PosCorr  {A}; 

(5)  If (Corr < 1-ProRange)    

  NegCorr ← NegCorr  {A}; 

(6)  If (|1-ProRange| ≤ Corr ≤ |1+ProRange|)  

  Delete A from the tree; 

(7) Output PosCorr and NegCorr; 

(8) Return; 

 

Fig. 4. CA: Generating the candidate set of k-itemsets using correlation analysis 

From the above description, the algorithm CA generates the 

candidate sets PosCorr and NegCorr, using all 1-itemsets in 

MID generated in the Algorithm FIM. The candidate sets 

consist of j-itemsets of interest.  

From the definition of against-expectation patterns, all 

candidate j-itemsets identified by the Algorithms FIM and CA 

are against-expectation itemsets. Through these 

against-expectation itemsets, we can generate some 

against-expectation rules of interest. Like in the KNNG 

algorithm, we omit the algorithm for generating 

against-expectation rules.  

In our CA algorithm, a threshold
proRange

is used to 

measure independency. For example, items in X are 

independent when: 

 1 1proRange Corr X proRange   
.
 

In addition, positive correlation is defined as 

( ) |1 |Corr X proRange 
 

and negative correlation is defined as 

( ) |1 |Corr X proRange  . 

Note that we can use, for example, Chi-square, as our 

another metrics for measuring the correlation of itemsets by 

statistical means. 

IV. EXPERIMENTS 

To evaluate our two metrics, we have conducted extensive 

experiments on a DELL Workstation PWS650 with 2G main 

memory, 2.6G CPU, and WINDOWS 2000. We evaluate our 

approaches using the databases generated from 

http://www.kdnuggets.com/ (Synthetic Classification Data Sets 

from the Internet).  

To evaluate our algorithm, we used several databases of 

different sizes, where the largest database included 40000 

transactions involving over 1000 items. But for narrating 

(0) 

 

(0,1)        (1) 

 

(0,1,2)   (0,2)   (1,2)    (2) 

 
Fig. 3. Set-enumeration tree 
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convenience, we choose below to analyze the result of the 

smallest of our databases.  

The database consists of 100 transactions involving over 15 

items. Experimental results of the k-nearest neighbor, 

correlation analysis, and Apriori are shown in Tables VI to 

VIII. 
 

TABLE VI 

K-NEAREST NEIGHBOR 

 

 

TABLE VII 

CORRELATION ANALYSIS 

 

 

 TABLE VIII 

COMPARISON BETWEEN SUPPORT AND VARIANCE 

 

Merchandise ID Support Variance 

0 0.43 1.374705 

1 0.43 0.7838024 

2 0.20 1.7 

3 0.50 1.310159 

4 0.40 1.099296 

5 0.24 7.706056 

6 0.35 1.471311 

7 0.55 3.420516 

8 0.60 1.004835 

9 0.83 0.7899691 

10 0.60 1.109732 

11 0.09 1.05 

12 0.18 25.85556 

13 0.74 1.00284 

14 0.12 2.422 

 

A. Algorithm Analysis 

Simulation database 

(1) Our algorithms are satisfactory from maturity 

From Table VIII we can see clearly that there is no relation 

between the merchandise’s variance and support. For example, 

in this experiment the information for merchandise 7 and 12 is 

shown. 

(1) supp(7apple)=0.55>>supp(12cashew)=0.18  

(2) variance(7apple)=3.2886<<variance(12cashew)=2

3.1667 

Here, (1) means the sale of apples is higher than that of 

cashews, but in this experiment cashews are obviously more 

significant than apples. Meanwhile, the variance calculated by 

our algorithm has shown that, (2) means that the item cashew 

will be found more easily than apple by our algorithm. Our 

algorithm can find this type of against-expectation itemset, so 

the algorithm for finding interesting itemsets satisfies our 

needs. 

Two points can confirm this. First, we use the increment 

rate of each of two adjacent phases to calculate the variance. 

This way, we can generate some against-expectation itemsets, 

which are always omitted easily because they are infrequent. 

Second, because the pruning structure is based on calculating 

the variance, we can keep all the interesting itemsets we need.  

We just require an appropriate threshold.                          

 In addition, the k-nearest neighbor graph is needed to find 

the nearest neighbors of each interesting goods item, so it can 

be successful in employing a suitable threshold. Further, the 

correlation analysis must not miss interesting itemsets during 

its operation of visiting and pruning the tree. 

(2) Our algorithm is very accurate 

        This experiment demonstrates that the desired result can 

be obtained. First, there are no uninteresting association rules. 

Although  

(8 9) (10 13) 60%

(8 9) (10 13) 100%

supp supp

conf conf

   

   
 

Meanwhile, with the k-nearest neighbor graph, we get: 

8:  3, 4, 6, 13, 

9:  12, 13, 

10:  13, 

13:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

      It can easily be seen that 8 toothbrush is closest to 3 

toothpaste, and has nothing to do with 9 bread. 10 and 13 are 

beer and milk respectively, and their result is           
                   . So toothbrush and bread is an 

MID Nearest neighbor MID Nearest neighbor 

0 5,7,13 8 3,4,6,13 

1 5,7,11,13 9 12,13 

2 5,13 10 13 

3 8,5,6,4,13 11 1,13,14 

4 6,5,3,8,13 12 9,13 

5 0,1,2,3,4,7,13 13 0,1,2,3,4,5, 6,7,8,9,10,11,12 

6 4,3,8,13 14 11 

7 0,1,5,13   

Positive correlated itemsets Negative correlated itemsets 

(0,1),(0,4),(0,8),(0,10),(1,4) 

(1,8),(1,10),(1,14),(2,3),(2,5) 

(2,10),(2,13),(2,14),(3,5),(3,6) 

(3,11),(3,12),(4,8),(4,10),(4,14) 

(5,10),(5,14),(6,7),(6,11),(6,12) 

(7,12),(8,9),(8,12),(10,13) 

(12,13),(0,7,9),(0,7,13),(0,9,13) 

(5,9,13),(6,8,13),(6,9,13) (9,10,14) 

(0,3),(0,5),(0,11),(1,2),(1,3) 

(1,5),(1,6),(1,11),(1,12),(2,4) 

(2,8),(2,11),(2,12),(3,4),(3,8) 

(4,5),(4,6),(4,11),(5,6),(5,7) 

(5,8),(5,12),(6,10),(6,14)(7,14) 

(8,11),(9,11),(10,11),(10,12) 

(12,14) 
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uninteresting rule. Although supp(913) = 73%, it is not 

useful in decision-making because of the closed correlation 

between the two. Meanwhile, the k-nearest neighbor graph 

reveals that they are not very closed, and the correlation 

analysis reveals that they are not independent.  

The most important is that the k-nearest neighbor graph 

can avoid being misled by the actual sale of merchandises, 

making the increment rate of the analysis objective. In addition, 

the output patterns of the two algorithms are very clear.   

(3)  The advantages of the two algorithms still exist, even if 

the database changes 

In addition to the above experimental analysis, we have 

performed several experiments on databases of different sizes 

to illustrate the efficiency of the algorithms. In Tables IX, X 

and XI, we have chosen the same transactions, the same items 

((T, I) = (100, 10), (T, I) = (100, 15), (T, I) = (150, 10), (T, I) = 

(150, 15)), and the different (or ‘various’) average items of 

transactions (A). In Table IX, we present the performance of 

the Correlation analysis, based on the same transaction (T) and 

different items (I), the same item and different transactions, and 

the average number of items of transactions (A) = 5. We do the 

same in Table X and Table XI, (A) = 8, (A) = 10 respectively. 

Table X shows the runtime of the k-nearest neighbor graph 

based on different simulation databases. We evaluat the number 

of positive correlation items (pc), negative correlation items 

(nc), and overall correlation items (oc), and also the runtime 

(rt).  

TABLE IX 

CORRELATION ANALYSIS ON (A)=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE X 

CORRELATION ANALYSIS ON (A)=8 

(T, I) pc nc oc rt 

(100,10) 48 0 48 0.172 

(100,15) 125 17 142 100.89 

(150,10) 56 0 56 0.218 

(150,15) 131 17 148 100.672 

 

 

 

TABLE XI 

CORRELATION ANALYSIS ON (A)=10 

 

 

 

 

 

 

 

 

 

TABLE XII 

K-NEAREST NEIGHBOR GRAPH  

(T, I, A) rt (T, I, A) rt 

(100,10,5) 0 (150,10,5) 0 

(100,10,8) 0 (150,10,8) 0 

(100,10,10) 0 (150,10,10) 0.016 

(200,10,5) 0.015 (100,15,5) 0 

(200,10,8) 0 (100,15,8) 0 

(200,10,10) 0 (100,15,10) 0 

 

The runtime equals 0 because the system’s capability is 

restricted, so we have chosen runtime = 0 when runtime < 

0.001.) 

Tables IX, X, XI and XII reveal the following results: 

 

1:  The number of correlation itemsets is most deeply 

influenced by the number of items (I). The greater the 

number of items, the more correlation itemsets there 

are. 

2:    The length of the correlation itemsets is affected by the 

average length of items (A). Long average length 

results in long correlation itemsets. 

3:   Compared with the other two factors, running time places 

most stress on the number of items. Therefore, the 

algorithm is more effective on a dense database than on 

a sparse one. Meanwhile, from Table XII, we can see 

clearly that the k-nearest neighbor graph algorithm can 

work satisfactorily. 

4:   The number of negative correlation items is influenced 

by the average length of items (A), as well as the 

number of items (I). As the average length of items (A) 

is invariant, the more the number of items is, the more 

the number of itemsets. As the number of items (I) is 

invariant, the less the length of the item, and the more 

the number of negative correlation items.  

Simulation on larger databases 

   We have performed these experiments on databases which 

involve 2000, 3000, 5000 and 7500 transactions on 10 or 15 

items, where the average length of items is 5 or 8. The results 

are shown in Fig. 5.  

(T, I) pc nc oc rt 

(100,10) 38 9 47 0.156 

(100,15) 45 43 88 100.906 

(150,10) 32 8 40 0.172 

(150,15) 49 49 98 101.141 

(T, I) pc nc oc rt 

(100,10) 50 0 50 0.234 

(100,15) 203 10 213 103.359 

(150,10) 40 0 40 0.312 

(150,15) 259 10 269 101.141 
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Fig. 5. Runtime of the correlation analysis graph based on different databases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The runtime of the k-nearest neighbor graph based on different factors 

From Fig. 6, we can see clearly that the consuming runtime 

increases with the growth of the size of the database, namely, 

the number of transactions(T), items(I), and the average length 

of items(A). 

Meanwhile the rules, which were found in the simulation 

small databases, as shown in Tables XI–XII, are still 

appropriate. 

B. Comparison between two algorithms 

The k-nearest neighbor graph and correlation analysis are 

evaluated, either one of which can compensate for the 

drawbacks of the association rule with the support-confidence 

model, and is useful for static classification. 

The former enhances correctness by introducing relative 

bargain quantity, and considering the increment to be the 
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quotient. Further, the manner of its result output can be 

understood, because the sequence of all the nearest neighbors 

of each of the goods goes from strong to weak. 

Correlation analysis can enhance correctness and reduce 

time costs through pruning. Introducing the fuzzy theorem 

makes the result more reasonable. Finally, it is convenient for 

decision makers to distinguish positive correlation from 

negative correlation for each interesting item. 

 

V. CONCLUSION 

We have designed a new algorithm for identifying 

against-expectation patterns. These patterns are interactions 

within items, with large relative-contrasts referenced to their 

expectations in a given database.  This is based on 

heterogeneity metrics. The techniques for mining 

against-expectation patterns were previously undeveloped. We 

have experimentally evaluated our algorithms and 

demonstrated that our approach is efficient and promising. 
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