
14 Feature Article: Against-Expectation Pattern Discovery: Identifying Interactions within Items with Large Relative-Contrasts in Databases

December 2010 Vol.11 No.1 IEEE Intelligent Informatics Bulletin



Abstract—We design a new algorithm for identifying against-

expectation patterns. An against-expectation pattern is either an

itemset whose support is out of a range of the expected support

value, referred to as an against-expectation itemset, or it is an

association rule generated by an against-expectation itemset,

referred to as an against-expectation rule. Therefore, against-

expectation patterns are interactions within those items whose

supports have large relative-contrasts in a given database. We

evaluate our algorithms experimentally, and demonstrate that our

approach is efficient and promising

Index Terms—Exception, against-expectation pattern, nearest-

neighbor graph, correlation analysis.

I. INTRODUCTION

RADITIONALLY, association analysis has focused on

techniques aimed at discovering interactions within data. It

has mainly involved association rules [1,4,21] and negative

association rules [18,23]. These rules can be identified from

data by using statistical methods and grouping. In real world

applications, data marketers seek to identify interactions and

predict profit potential in the relative-contrast of sales.

Meanwhile, they recognise that principle items, having large

relative-contrasts with respect to their supports expected for a

given database, may provide larger profit potential than those

with low relative-contrasts. In this paper, we refer to

interactions within items that have large relative-contrast as

against-expectation patterns. Up until now, the techniques for

mining against-expectation patterns have been undeveloped. To

rectify this, our paper studies the issue of mining

against-expectation patterns in databases.

An against-expectation pattern is either an itemset whose

support is out of a range of the expected support value

(expectation), referred to here as an against-expectation itemset,

or an association rule generated from against-expectation

itemsets, referred to as an against-expectation rule.

Dingrong Yuan is with College of Computer Science and Information

Technology Guangxi Normal University, Guilin, 541004, China

(dryuan@mailbox.gxnu.edu.cn).

Xiaofang You is with the College of Computer Science and Information

Technology Guangxi Normal University, Guilin, 541004, China.

Chengqi Zhang is with Faculty of Information Technology, University of

Technology Sydney PO Box 123, Broadway NSW 2007,

Australia(chengqi@it.uts.edu.au).

If we use extant frequent-pattern-discovery algorithms to

mine a market basket dataset, the item ‘apple’ can be identified

as a frequent pattern (itemset), even though its support (= 200) is

much less than expected sales (= 300). This is because ‘apple’

is a popular fruit, and is frequently purchased. Compared to

‘apple’, ‘cashew’ is an expensive fruit, and is rarely purchased.

In the market basket dataset, ‘cashew’ cannot be discovered as a

frequent pattern of interest, even though its support (= 20) is

much greater than its expected sales (= 5). In an applied context,

while the frequent pattern ‘apple’ is commonsense, the

purchasing increase of ‘cashew’ is desired in marketing

decision-making, and constitutes the against-expectation pattern

which is to be mined in this paper. Similarly, the purchasing

decrease of ‘apple’ is also an against-expectation pattern desired.

These against-expectation patterns assist in evaluating the

amount of products purchased in the next time-lag.

Against-expectation patterns are distinct from frequent

patterns (or association rules) because: (1) they may be pruned

when identifying frequent patterns (or association rules), (2)

they can deviate from frequent patterns (or association rules),

and (3) against-expectation patterns are hidden in data, whereas

traditional frequent patterns (or association rules) are relatively

obvious.

Related research includes the following: unexpected

patterns [14,15], exceptional patterns [6,8,10,19], and negative

association rules [18,23]. The first and second are known as

‘exceptions of rules’, and also as ‘surprising patterns’, whereas

‘negative association rules’ represents a negative relation

between two itemsets.

An exception of a rule is defined as a deviational pattern to a

well-known fact, and exhibits unexpectedness. For example,

while ‘bird(x) → flies(x)’ is a well-known fact, mining

exceptional rules aims to find patterns such as ‘bird(x),

penguin(x) → ~flies(x)’. The negative relation actually implies

a negative rule between the two itemsets, including association

rules of forms A → ~B, ~A → B and ~A → ~B, which indicate

negative associations between itemsets A and B [18,23].

Hence, against-expectation patterns differ from unexpected

patterns, exceptional patterns and negative association rules.

Therefore, against-expectation patterns should be regarded as a

new kind of pattern.

In addition to those mentioned above, there are also some

differences between mining against-expectation patterns and

mining the other two patterns change patterns [12], and

interesting patterns using user expectation [13]. In these

methods, a decision tree is used for mining changes, which is

Against-Expectation Pattern Discovery:

Identifying Interactions within Items with Large

Relative-Contrasts in Databases

Dingrong Yuan, Xiaofang You, Chengqi Zhang

T

Feature Article: Dingrong Yuan,Xiaofang You,Chengqi Zhang 15

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1

very distinct from the algorithms employed in this paper.

Finding interesting patterns according to user expectation is a

kind of subjective measure, while our algorithms aim at

objectivity.

As such, while the above achievements provide a good

insight into exceptional pattern discovery, this paper will focus

on identifying against-expectation patterns. In Section II, we

formally define some basic concepts and examine the approach

issue of mining against-expectation patterns. In Section III we

describe our approach and compare it with existing algorithms.

In Section IV, we conduct a set of experiments to evaluate our

algorithms. We summarize our contribution in Section V

II. A FRAMEWORK FOR IDENTIFYING AGAINST-EXPECTATION

PATTERNS

In this section we present some basic concepts and describe

the issue of mining against-expectation patterns in databases. In

particular, we design a new framework for mining

against-expectation patterns that consists of interactions within

items, with large relative-contrasts referenced to their

expectations in a given database. This is based on heterogeneity

metrics.

Let I = {i1, i2, …, in} be a set of n distinct literals, called

items. For a given dataset D over I, we can represent D as

follows.

TABLE I

A DATASET D OVER I

TID i1 i2 … in

T1 a11 a12 … a1n

T2 a21 a22 … a2n

… … … … …

Tm am1 am2 … amn

Support f1 f2 … fn

In Table I, Tj is the identifier of transactions in D, ajk is the

quantity of item ik in transaction Tj, fk is the quantity (support)

of ik in D, or the sum of a+k in kth column.

In marketing, data marketers must know the sales

expectation of each product. This is used to determine how

many items should be bought each month (or during a specified

time-lag).

TABLE II

THE EXPECTATION OF ITEMS

 i1 i2 … in

Expectation e1 e2 … en

In Table II, ek is the expected quantity of ik in D. For

example, in Section I, expectation(apple) = 300, support(apple)

= 200, expectation(cashew) = 5, and support(cashew) = 20.

Therefore, the support of ‘cashew’ is far larger than its

expectation because

increased(cashew)=support(cashew)– expectation(cashew)

= 20 – 5 = 15.

This means that the relative contrast, which is the ratio of

increment to expectation used for denoting the gap between

support and expectation rec(cashew), is three times its

expectation. That is,

rec(cashew) = increased(cashew) / expectation(cashew)

= 15/5 = 3.

Hence, ‘cashew’ is an against-expectation pattern. However,

the support of ‘apple’ is far less than its expectation because

increased(apple) = support(apple) - expectation(apple)

= 200- 300 = -100.

This means that the relative contrast rec(apple) is

rec(apple) = increased(apple) / expectation(apple) = -100/300 =

-1/3.

We also refer to ‘apple’ as an interesting against-expectation

pattern if rec(apple) is out of a given range (neighbour) of

expectation(apple).

Against-expectation patterns are defined as either those

itemsets whose supports are out of a δ-neighbour of their

expected values, referred to as against-expectation itemsets, or

those rules that are interactions within against-expectation

itemsets, referred to as against-expectation rules. An

against-expectation itemset X has its support out of the

δX-neighbour of its expectation (with a large relative contrast),

i.e.

recar(X) = |increased(X)| / expectation(X)

= |support(X) – expectation(X)| / expectation(X)

> δX

where δX is a user-specified minimum relative-contrast for X.

Certainly, recar(X) is a heterogeneity metrics, because δX can be

different with different X.

An against-expectation rule is of the form

X → Y

which is the interaction between the against-expectation

itemsets X and Y; or one of X and Y is a frequent itemset and

the other an against-expectation itemset. For example, ‘apple →

cashew’ can be an against-expectation rule between the above

two against-expectation itemsets.

An against-expectation rule X → Y is interesting if its

confidence is greater than, or equal to, a user-specified

minimum confidence (minconf).

16 Feature Article: Against-Expectation Pattern Discovery: Identifying Interactions within Items with Large Relative-Contrasts in Databases

December 2010 Vol.11 No.1 IEEE Intelligent Informatics Bulletin

We classify against-expectation patterns as follows:

increment patterns, decrement patterns and negative

associations.

 An increment pattern is either an itemset X whose

actual support is greater than its expected value, e.g.,

support(X) – expectation(X) > e (where e is a

user-specified positive value) – this is referred to as an

increment itemset; or it is a rule that is an interaction

within increment itemsets, and is referred to as an

increment rule.

 A decrement pattern is either an itemset X whose

actual support is less than its expected value, e.g.,

support(X) – expectation(X) < -e (where e is a user-

specified positive value) – referred to as a decrement

itemset; or it is a rule that is an interaction within

decrement itemsets, and is referred to as a decrement

rule.

 A mutually-exclusive correlation is a rule in which its

antecedent and action belong to different

against-expectation itemsets. That is, either (1) its

antecedent is an increment itemset and its action a

decrement itemset; or (2) its antecedent is a decrement

itemset and its action an increment itemset.

 A companionate correlation is a rule in which one of

its antecedents and actions is a frequent itemset and the

other is an against-expectation itemset. That is, either

(1) its antecedent is an increment itemset and its action

is a frequent itemset; (2) its antecedent is a frequent

itemset and its action an increment itemset; (3) its

antecedent is a decrement itemset and its action a

frequent itemset; or (4) its antecedent is a frequent

itemset and its action a decrement itemset;

The problem of mining against-expectation patterns is a

challenging issue because it is very different from those

problems faced when discovering frequent patterns (or

association rules). Because against-expectation patterns can be

hidden in both frequent and infrequent itemsets, traditional

pruning techniques are inefficient for identifying such patterns.

This indicates that we must exploit alternative strategies to

(a) confront an exponential search space consisting of

all possible itemsets, frequent and infrequent, in a

database;

(b) detect which itemsets can generate

against-expectation patterns;

(c) determine which against-expectation patterns are

really useful to applications; and

(d) determine the heterogeneity metrics of

against-expectation patterns.

One must remember that this process can be expensive and

dynamic. The leaders of a new company must make an effort to

estimate expectation by analyzing the environment and

possible customers. For an old company, data relating to items

recorded in a previous time-lag can be used as expectations.

Thus, we can check the support of items and identify the

against-expectation patterns in that time-lag. We can also

predict the support of items and the against-expectation

patterns in the next time-lag. In the following, for simplification,

we define a time-lag as a month. From this point, our

against-expectation patterns are similar to change patterns

[12,13], though discovering against-contrast patterns is based

on the expected support of items.

The technique to be developed in this paper consists of a

two-step approach as follows:

(1) Generating a set of interesting items (i.e., items with

a large relative-contrast), and

(2) Identifying interactions within these interesting

items based on the Nearest-Neighbor Graph and

Correlation Analysis techniques.

III. ALGORITHM DESCRIPTION

Traditional mining algorithms assume that an association

rule is interesting as long as it satisfies minimum support and

minimum confidence. But a number of researchers have proved

that this can generate many uninteresting rules. Meanwhile,

some interesting rules can be missed without taking into

account the item’s own change trend.

Example 1. Let min_supp = 33.3%. Consider two

transaction databases D1 and D2, as shown in Tables III and IV.

TABLE III

D1: TRANSACTIONS IN JANUARY

toothbrush, toothpaste

bread, jam

cashew

apple, banana

toothbrush, toothpaste, bread

apple, cola, shampoo

apple, banana, shampoo

bread, jam, apple

apple

apple, banana, cola

Feature Article: Dingrong Yuan,Xiaofang You,Chengqi Zhang 17

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1

TABLE IV

D2: TRANSACTIONS IN FEBRUARY

toothbrush, toothpaste, bread, jam,

shampoo

bread, cashew, apple, shampoo, jam

cashew, shampoo, bread, jam

apple, banana, cola, shampoo

toothbrush, toothpaste, shampoo

bread, jam, shampoo

toothbrush, toothpaste, cola, shampoo

apple, shampoo, bread, jam

apple, banana, shampoo

cashew, apple, banana, cola, shampoo

toothbrush, toothpaste, apple, shampoo

bread, jam, apple, shampoo

Using existing association rule mining algorithms, we can

identify certain association rules in D1, or D2, or D1D2. For

example, association rules ‘toothbrush → toothpaste’,

‘toothbrush → shampoo’ and ‘bread → jam’ are of interest in

D2 because

() 33.3%

() 100%

() 33.3%

() 100%

supp toothbrush toothpaste

conf toothbrush toothpaste

supp toothbrush shampoo

conf toothbrush shampoo

 

 

 

 

() 50%

() 100%

supp bread jam

conf bread jam

 

 

Let us consider the support and increment (relative contrast)

of the items ‘apple’ and ‘cashew’ as shown in Table V.

TABLE V

COMPARING APPLE WITH CASHEW

Obviously, whenever it is January or February, ‘apple’ is

always frequent and ‘cashew’ is always infrequent. But the

increment (relative contrast) of ‘cashew’ is far higher than that

of ‘apple’. Therefore, ‘cashew’ is of much more interest when

considering the relative contrast (i.e., change trend). These

interesting itemsets cannot be found by using existing

association rule mining algorithms. Certainly, we can identify

‘cashew’ as a frequent itemset, using Apriori-like algorithms,

by decreasing the min_supp to 25%. However, decreasing the

min_supp can lead to the generation of a great many

uninteresting itemsets. It is not an intelligent way to proceed. In

particular, Apriori-like approaches do not provide information

concerning the change trend of itemsets. We are, therefore,

encouraged to develop new techniques for discovering

against-expectation patterns.

Our proposed approach for identifying against-expectation

patterns uses the stock of merchandise in the previous month as

an expectation, in order to identify against-expectation patterns

in the present month.

A. Finding interesting itemsets using square deviation

This subsection presents techniques for finding a candidate

set consisting of particularly interesting items (1-itemset) based

on the square deviation, and is aimed at mining

against-expectation patterns. Generally, if a piece of

merchandise (an item) has a small relative contrast referenced

to its expectation, the sales trend of this merchandise is in

control. And it is uninteresting when mining

against-expectation patterns. For efficiency, the item should be

deleted from the candidate set.

Stocked items can reflect a decision makers’ anticipation of

the sale trend for each item in the future. Therefore, in

Definition 1, stock is considered to be equal to the expectation

mentioned above. The stage below is necessary for determining

changing trends, and its span can be decided according to

practical situations, such as week, month or year.

Definition 1. Let be the stock of i-th merchandise at j-th

stage, where 0  j  m, 0  I  n; and denote the increment

ratio between the j-th stage and the (j+1)-th stage of the i-th

merchandise. Then we have

(1)i j ij

ij

ij

x x
p

x

 


.

Therefore, its incremental ratio math expectation is
1

1
()

1

m

ij

j

i

p

E p
m










and its square deviation is

2

1

() (())
m

ij i

j

D i p E p


 
.

Let denote the threshold given. Then merchandise i is

of interest if .

The algorithm to identify all interesting items (merchandise)

is constructed in Fig. 1.

Input Stock: set of the number of goods, Prop: minimum math

expectation;

Output MID: set of candidate 1-itemsets

(1) for each j in Stock

(2) begin

(3) calculate E(pi)，D(i);

(4) if (D(i) ≥ Prop)

(5) MID ← MID  {i};

(6) end;

(7) Output all items of interest in MID;

(8) Return;

Fig.1. FIM: Generating the candidate set (of 1-itemsets)

 Jan’s supp Feb’s sup increment

Apple 50% 58.3% 16.7%

cashew 10% 25% 300%

18 Feature Article: Against-Expectation Pattern Discovery: Identifying Interactions within Items with Large Relative-Contrasts in Databases

December 2010 Vol.11 No.1 IEEE Intelligent Informatics Bulletin

In algorithm FIM, all items with large relative contrasts

referenced to their expectations are identified using square

deviation. In the following Sections III.B and III.C, k-nearest

neighbor and correlation analysis will be used to calculate the

correlation between two items and generate the candidate set of

k-itemsets, which consist of all interesting itemsets potentially

useful for generating against-expectation patterns.

B. Nearest neighbor graph based method

Definition 2. Let { },
 { } be the stocks of goods A and B.

The increments between two adjacent phases for A and B are

denoted as

1

1 0 2 1 i i-1 n n-1A ={a -a ,a -a ,...a -a ,...a -a }

1

1 0 2 1 i i-1 n n-1B ={b -b ,b -b ,...b -b ,...b -b }
.

Let and

 { } be known as the relative

bargaining quantity of A and B.

The nearest neighbor graph is constructed as follows. For

all items in a given database, we first draft a figure with the

items as its points. Any two points are connected by an edge,

and the edge is associated with the square deviation distance

between the two points. For instance, in Definition 2, A and B

stand for the points a and b in a figure respectively. Then the

distance between A and B (a and b) is defined as follows.

      
21

1 1

,

0

n

A B i

i

d P X P A B X E X




   
.

After finishing the figure accordingly, we then get rid of

some of the edges when their distances are larger than the

threshold. The rest of the figure is simply the nearest neighbor

graph for the database [10]. In this nearest neighbor graph, we

refer to certain items as the nearest neighbors of the point a, if

they are linked through edges to a. We can reconstruct the

nearest neighbor graph by ranking the nearest neighbors for a

certain point in decreasing order.

 We now describe the algorithm for generating the

candidate set of j-itemsets using the above k-nearest neighbor

graph.

Input SaleTable: dataset; k: number of nearest neighbors;

Output MID: set of j-itemsets;

(1) StageTable ← SaleTable;

(2) for A in MID (firstly generated in Algorithm FIM)

(3) begin for B in MID (firstly generated in Algorithm FIM)

(4) begin calculate X(A, B)；

(5) calculate d(A, B)；

(6) if (d(A, B) ≥ k)

(7) A.neighbors ← B;

(8) generate a candidate itemset i by A and B;

(9) MID ← MID  {i};

(10) end

(11) end

(12) Output all itemsets in MID;

(13) Return;

Fig.2. KNNG: Generating the candidate set of j-itemsets using the k-nearest

neighbor graph

From the above description, the algorithm KNNG generates

the candidate set of 2-itemsets, using all 1-itemsets in MID,

generated first in the Algorithm FIM; the algorithm KNNG

generates the candidate set of 3-itemsets, using all 2-itemsets in

MID, generated in the Algorithm KNNG; and the algorithm

KNNG generates the candidate set of j-itemsets, when using all

(j-1)-itemsets in MID, generated in the Algorithm KNNG.

From the definition of against-expectation patterns, all

candidate j-itemsets identified by the Algorithms FIM and

KNNG are against-expectation itemsets. By way of these

against-expectation itemsets, we can generate some

against-expectation rules of interest. Here we omit the

algorithm for generating against-expectation rules because it is

similar to the Apriori algorithm.

C. Correlation-analysis based approach

In this section we design a correlation-analysis based

algorithm for generating a candidate set of k-itemsets. The

correlation-analysis based algorithm detects whether the

correlation between two goods is positive or negative. That is,

whether the correlation has a acceleration action or is restricted.

In particular, this algorithm can provide pattern quality superior

to that of the nearest-neighbor-graph based algorithm.

Definitions and theorems

Definition 3. Let denote the probability of X

occurring in a transaction, and the probability of X not

occurring in a transaction, where =1- ; and let

 denote the probability of X and Y both occurring in a

transaction. If , then X and Y are

dependent on each other; otherwise, independent of each other.

Definition 4. If in a transaction database,

are correlated with each other, then is known

as a correlation rule.

 Definition 5. Let and
{ }， then is referred to as a subset of ,

and is referred to as a superset of .

 Each itemset consists of certain attributes, and a superset

consists of all the attributes in its subsets. Therefore, reducing

time cost is possible by getting rid of those itemsets that contain

at least one uncorrelated subset (a non-correlation rule).

Definition 6. The correlation-analysis quantity of goods A

and B is defined as

Feature Article: Dingrong Yuan,Xiaofang You,Chengqi Zhang 19

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1

()
(,)

() ()

P A B
Corr A B

P A P B




 .

For n goods, each denoted as Gi, where 1<=i<=n, the

correlation-analysis quantity is

1
1 2

1

()

(, ,...,)

()

n

i

i
n n

i

i

P G

Corr G G G

P G









The more closed to 1 the correlation-analysis quantity of A

and B is, the better the independency of A and B. If

 , then A and B are positively correlated, and

if , then A and B are negatively correlated .

Algorithm design

The correlation-analysis based algorithm is a post-process

based upon a transaction database. It is suitable for static data

classification, and is an improvement on Apriori-like

algorithms for mining association rules using a

support-confidence framework.

Reducing the time complexity of our correlation-analysis

based algorithm can be implemented by way of a pruning

algorithm that utilizes the closure property of correlation

itemsets. Using a pruning algorithm, we can obtain all

minimum correlation itemsets of interest. The pruning process

is shown in Fig. 3 where, if , then 0 and 1 are

correlated, as are all its supersets. Pruning its left subtree at (0,1)

is actually a minimum correlation itemset.

The final output looks like this:

A：Positive correlated item: (B), (E,F), i.e., (A,B) and

(A,E,F) are two minimum correlation itemsets concerning

item A.

Negative correlated item: (D), (G).

 So, it is easy to detect those interesting items that correlate

with A

We now construct the correlation-analysis based algorithm as

follows.

Input TD: set of transactions; ProRange: a threshold for

independency;

Output PosCorr: set of all positive correlation itemsets;

 NegCorr: set of all negative correlation itemsets;

(1) PosCorr ← ; NegCorr ← ;

(2) Construct a set-enumeration tree for a 1-itemset in MID

for TD (generated in Algorithm FIM);

(3) Scan each node A in the set-enumeration tree

(4) If (Corr > 1 + ProRange)

PosCorr ← PosCorr  {A};

(5) If (Corr < 1-ProRange)

 NegCorr ← NegCorr  {A};

(6) If (|1-ProRange| ≤ Corr ≤ |1+ProRange|)

 Delete A from the tree;

(7) Output PosCorr and NegCorr;

(8) Return;

Fig. 4. CA: Generating the candidate set of k-itemsets using correlation analysis

From the above description, the algorithm CA generates the

candidate sets PosCorr and NegCorr, using all 1-itemsets in

MID generated in the Algorithm FIM. The candidate sets

consist of j-itemsets of interest.

From the definition of against-expectation patterns, all

candidate j-itemsets identified by the Algorithms FIM and CA

are against-expectation itemsets. Through these

against-expectation itemsets, we can generate some

against-expectation rules of interest. Like in the KNNG

algorithm, we omit the algorithm for generating

against-expectation rules.

In our CA algorithm, a threshold
proRange

is used to

measure independency. For example, items in X are

independent when:

 1 1proRange Corr X proRange   
.

In addition, positive correlation is defined as

() |1 |Corr X proRange 

and negative correlation is defined as

() |1 |Corr X proRange  .

Note that we can use, for example, Chi-square, as our

another metrics for measuring the correlation of itemsets by

statistical means.

IV. EXPERIMENTS

To evaluate our two metrics, we have conducted extensive

experiments on a DELL Workstation PWS650 with 2G main

memory, 2.6G CPU, and WINDOWS 2000. We evaluate our

approaches using the databases generated from

http://www.kdnuggets.com/ (Synthetic Classification Data Sets

from the Internet).

To evaluate our algorithm, we used several databases of

different sizes, where the largest database included 40000

transactions involving over 1000 items. But for narrating

(0)

(0,1) (1)

(0,1,2) (0,2) (1,2) (2)

Fig. 3. Set-enumeration tree

20 Feature Article: Against-Expectation Pattern Discovery: Identifying Interactions within Items with Large Relative-Contrasts in Databases

December 2010 Vol.11 No.1 IEEE Intelligent Informatics Bulletin

convenience, we choose below to analyze the result of the

smallest of our databases.

The database consists of 100 transactions involving over 15

items. Experimental results of the k-nearest neighbor,

correlation analysis, and Apriori are shown in Tables VI to

VIII.

TABLE VI

K-NEAREST NEIGHBOR

TABLE VII

CORRELATION ANALYSIS

 TABLE VIII

COMPARISON BETWEEN SUPPORT AND VARIANCE

Merchandise ID Support Variance

0 0.43 1.374705

1 0.43 0.7838024

2 0.20 1.7

3 0.50 1.310159

4 0.40 1.099296

5 0.24 7.706056

6 0.35 1.471311

7 0.55 3.420516

8 0.60 1.004835

9 0.83 0.7899691

10 0.60 1.109732

11 0.09 1.05

12 0.18 25.85556

13 0.74 1.00284

14 0.12 2.422

A. Algorithm Analysis

Simulation database

(1) Our algorithms are satisfactory from maturity

From Table VIII we can see clearly that there is no relation

between the merchandise’s variance and support. For example,

in this experiment the information for merchandise 7 and 12 is

shown.

(1) supp(7apple)=0.55>>supp(12cashew)=0.18

(2) variance(7apple)=3.2886<<variance(12cashew)=2

3.1667

Here, (1) means the sale of apples is higher than that of

cashews, but in this experiment cashews are obviously more

significant than apples. Meanwhile, the variance calculated by

our algorithm has shown that, (2) means that the item cashew

will be found more easily than apple by our algorithm. Our

algorithm can find this type of against-expectation itemset, so

the algorithm for finding interesting itemsets satisfies our

needs.

Two points can confirm this. First, we use the increment

rate of each of two adjacent phases to calculate the variance.

This way, we can generate some against-expectation itemsets,

which are always omitted easily because they are infrequent.

Second, because the pruning structure is based on calculating

the variance, we can keep all the interesting itemsets we need.

We just require an appropriate threshold.

 In addition, the k-nearest neighbor graph is needed to find

the nearest neighbors of each interesting goods item, so it can

be successful in employing a suitable threshold. Further, the

correlation analysis must not miss interesting itemsets during

its operation of visiting and pruning the tree.

(2) Our algorithm is very accurate

 This experiment demonstrates that the desired result can

be obtained. First, there are no uninteresting association rules.

Although

(8 9) (10 13) 60%

(8 9) (10 13) 100%

supp supp

conf conf

   

   

Meanwhile, with the k-nearest neighbor graph, we get:

8: 3, 4, 6, 13,

9: 12, 13,

10: 13,

13: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

 It can easily be seen that 8 toothbrush is closest to 3

toothpaste, and has nothing to do with 9 bread. 10 and 13 are

beer and milk respectively, and their result is
 . So toothbrush and bread is an

MID Nearest neighbor MID Nearest neighbor

0 5,7,13 8 3,4,6,13

1 5,7,11,13 9 12,13

2 5,13 10 13

3 8,5,6,4,13 11 1,13,14

4 6,5,3,8,13 12 9,13

5 0,1,2,3,4,7,13 13 0,1,2,3,4,5, 6,7,8,9,10,11,12

6 4,3,8,13 14 11

7 0,1,5,13

Positive correlated itemsets Negative correlated itemsets

(0,1),(0,4),(0,8),(0,10),(1,4)

(1,8),(1,10),(1,14),(2,3),(2,5)

(2,10),(2,13),(2,14),(3,5),(3,6)

(3,11),(3,12),(4,8),(4,10),(4,14)

(5,10),(5,14),(6,7),(6,11),(6,12)

(7,12),(8,9),(8,12),(10,13)

(12,13),(0,7,9),(0,7,13),(0,9,13)

(5,9,13),(6,8,13),(6,9,13) (9,10,14)

(0,3),(0,5),(0,11),(1,2),(1,3)

(1,5),(1,6),(1,11),(1,12),(2,4)

(2,8),(2,11),(2,12),(3,4),(3,8)

(4,5),(4,6),(4,11),(5,6),(5,7)

(5,8),(5,12),(6,10),(6,14)(7,14)

(8,11),(9,11),(10,11),(10,12)

(12,14)

Feature Article: Dingrong Yuan,Xiaofang You,Chengqi Zhang 21

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1

uninteresting rule. Although supp(913) = 73%, it is not

useful in decision-making because of the closed correlation

between the two. Meanwhile, the k-nearest neighbor graph

reveals that they are not very closed, and the correlation

analysis reveals that they are not independent.

The most important is that the k-nearest neighbor graph

can avoid being misled by the actual sale of merchandises,

making the increment rate of the analysis objective. In addition,

the output patterns of the two algorithms are very clear.

(3) The advantages of the two algorithms still exist, even if

the database changes

In addition to the above experimental analysis, we have

performed several experiments on databases of different sizes

to illustrate the efficiency of the algorithms. In Tables IX, X

and XI, we have chosen the same transactions, the same items

((T, I) = (100, 10), (T, I) = (100, 15), (T, I) = (150, 10), (T, I) =

(150, 15)), and the different (or ‘various’) average items of

transactions (A). In Table IX, we present the performance of

the Correlation analysis, based on the same transaction (T) and

different items (I), the same item and different transactions, and

the average number of items of transactions (A) = 5. We do the

same in Table X and Table XI, (A) = 8, (A) = 10 respectively.

Table X shows the runtime of the k-nearest neighbor graph

based on different simulation databases. We evaluat the number

of positive correlation items (pc), negative correlation items

(nc), and overall correlation items (oc), and also the runtime

(rt).

TABLE IX

CORRELATION ANALYSIS ON (A)=5

TABLE X

CORRELATION ANALYSIS ON (A)=8

(T, I) pc nc oc rt

(100,10) 48 0 48 0.172

(100,15) 125 17 142 100.89

(150,10) 56 0 56 0.218

(150,15) 131 17 148 100.672

TABLE XI

CORRELATION ANALYSIS ON (A)=10

TABLE XII

K-NEAREST NEIGHBOR GRAPH

(T, I, A) rt (T, I, A) rt

(100,10,5) 0 (150,10,5) 0

(100,10,8) 0 (150,10,8) 0

(100,10,10) 0 (150,10,10) 0.016

(200,10,5) 0.015 (100,15,5) 0

(200,10,8) 0 (100,15,8) 0

(200,10,10) 0 (100,15,10) 0

The runtime equals 0 because the system’s capability is

restricted, so we have chosen runtime = 0 when runtime <

0.001.)

Tables IX, X, XI and XII reveal the following results:

1: The number of correlation itemsets is most deeply

influenced by the number of items (I). The greater the

number of items, the more correlation itemsets there

are.

2: The length of the correlation itemsets is affected by the

average length of items (A). Long average length

results in long correlation itemsets.

3: Compared with the other two factors, running time places

most stress on the number of items. Therefore, the

algorithm is more effective on a dense database than on

a sparse one. Meanwhile, from Table XII, we can see

clearly that the k-nearest neighbor graph algorithm can

work satisfactorily.

4: The number of negative correlation items is influenced

by the average length of items (A), as well as the

number of items (I). As the average length of items (A)

is invariant, the more the number of items is, the more

the number of itemsets. As the number of items (I) is

invariant, the less the length of the item, and the more

the number of negative correlation items.

Simulation on larger databases

 We have performed these experiments on databases which

involve 2000, 3000, 5000 and 7500 transactions on 10 or 15

items, where the average length of items is 5 or 8. The results

are shown in Fig. 5.

(T, I) pc nc oc rt

(100,10) 38 9 47 0.156

(100,15) 45 43 88 100.906

(150,10) 32 8 40 0.172

(150,15) 49 49 98 101.141

(T, I) pc nc oc rt

(100,10) 50 0 50 0.234

(100,15) 203 10 213 103.359

(150,10) 40 0 40 0.312

(150,15) 259 10 269 101.141

22 Feature Article: Against-Expectation Pattern Discovery: Identifying Interactions within Items with Large Relative-Contrasts in Databases

December 2010 Vol.11 No.1 IEEE Intelligent Informatics Bulletin

Fig. 5. Runtime of the correlation analysis graph based on different databases

Fig. 6. The runtime of the k-nearest neighbor graph based on different factors

From Fig. 6, we can see clearly that the consuming runtime

increases with the growth of the size of the database, namely,

the number of transactions(T), items(I), and the average length

of items(A).

Meanwhile the rules, which were found in the simulation

small databases, as shown in Tables XI–XII, are still

appropriate.

B. Comparison between two algorithms

The k-nearest neighbor graph and correlation analysis are

evaluated, either one of which can compensate for the

drawbacks of the association rule with the support-confidence

model, and is useful for static classification.

The former enhances correctness by introducing relative

bargain quantity, and considering the increment to be the

t
i
m
e

database

correlation analysis on (I)=15

A=5 A=8

t
i
m
e

database

correlation analysis on (I)=10

A=5 A=8

 K-nearest neighbor (I)=300

0

50

100

150

200

250

10000 20000 30000 40000

database

ti
me

A=10 A=15 A=20 A=25

 K-nearest neighbor graph (I)=600

0

50

100

150

200

250

300

10000 20000 30000 40000

database
ti

me

A=10 A=15 A=20 A=25

 K-nearest neighbor graph (I)=1000

0

50

100

150

200

250

300

350

400

10000 20000 30000 40000

database

ti
me

A=10 A=15 A=20 A=25

 K-nearest neighbor graph (I)=50

0

5

10

15

20

25

30

10000 20000 30000 40000

database

ti
me

A=10 A=15 A=20 A=25

Feature Article: Dingrong Yuan,Xiaofang You,Chengqi Zhang 23

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1

quotient. Further, the manner of its result output can be

understood, because the sequence of all the nearest neighbors

of each of the goods goes from strong to weak.

Correlation analysis can enhance correctness and reduce

time costs through pruning. Introducing the fuzzy theorem

makes the result more reasonable. Finally, it is convenient for

decision makers to distinguish positive correlation from

negative correlation for each interesting item.

V. CONCLUSION

We have designed a new algorithm for identifying

against-expectation patterns. These patterns are interactions

within items, with large relative-contrasts referenced to their

expectations in a given database. This is based on

heterogeneity metrics. The techniques for mining

against-expectation patterns were previously undeveloped. We

have experimentally evaluated our algorithms and

demonstrated that our approach is efficient and promising.

ACKNOWLEDGMENT

This work was supported in part by the Australian Research

Council (ARC) under grant DP0988016, the Nature Science

Foundation (NSF) of China under grant 90718020, the China

973 Program under grant 2008CB317108, and the Guangxi

NSF under grant GKZ0640069.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami (1993), Mining association rules

between sets of items in large databases. In: Proceedings of the ACM

SIGMOD Conference on Management of Data, pp. 207-216.

[2] Brock Barber and Howard J. Hamilton (2003): Extracting Share Frequent

Itemsets with Infrequent Subsets. Data Min. Knowl. Discov. 7(2):

153-185.

[3] S. Bay and M. Pazzani (2001), Detecting Group Differences: Mining

Contrast Sets. Data Mining and Knowledge Discovery, 5(3): 213-246.

[4] S. Brin, R. Motwani and C. Silverstein (1997), Beyond Market Baskets:

Generalizing Association Rules to Correlations. In: Proceedings of the

ACM SIGMOD Conference on Management of Data, pp. 265-276.

[5] Y.B. Cho, Y.H. Cho and S. Kim (2005), Mining changes in customer

buying behavior for collaborative recommendations. Expert Systems with

Applications, 28(2): 359-369.

[6] L. Egghe and C. Michel (2003), Construction of weak and strong

similarity measures for ordered sets of documents using fuzzy set

techniques. Information Processing and Management, 39: 771-807.

[7] Ping-Yu Hsu, Yen-Liang Chen and Chun-Ching Ling (2004), Algorithms

for mining association rules in bag databases. Information Sciences,

Volume 166, Issues 1-4: 31-47.

[8] F. Hussain, H. Liu, E. Suzuki, and H. Lu (2000), Exception Rule Mining

with a Relative Interestiness Measure. In: Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pp.

86-97.

[9] S. Hwang, S. Ho, and J. Tang (1999), Mining Exception Instances to

Facilitate Workflow Exception Handling. In: Proceedings of the

International Conference on Database Systems for Advanced

Applications (DASFAA), pp. 45-52.

[10] G. Karypis, E. Han, and V. Kumar (1999), CHAMELEON: A

Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE

Computer, pp. 68-75.

[11] Xuemin Lin, Yijun Li and Chi-Ping Tsang (1999), Applying on-line

bitmap indexing to reduce counting costs in mining association rules.

Information Sciences, Volume 120, Issues 1-4: 197-208.

[12] B. Liu, W. Hsu, H. Han and Y. Xia (2000), Mining changes for real-life

applications. In: Second International Conference on Data Warehousing

and Knowledge Discovery, 337-346.

[13] B. Liu, W. Hsu, L. Mun and H. Lee (1999), Finding interesting patterns

using user expectations. In: IEEE Transactions on Knowledge and Data

Engineering, (11)6, 817-832.

[14] H. Liu, H. Lu, L. Feng, and F. Hussain (1999), Efficient Search of

Reliable Exceptions. In: Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD), pp. 194-204.

[15] B. Padmanabhan and A. Tuzhilin (1998), A Belief-Driven Method for

Discovering Unexpected Patterns. In: Proceedings of the International

Conference on Knowledge Discovery and Data Mining (KDD), pp.

94-100.

[16] B. Padmanabhan and A. Tuzhilin (2000), Small is beautiful: discovering

the minimal set of unexpected patterns. In: Proceedings of the

International Conference on Knowledge Discovery and Data Mining

(KDD), pp. 54-63.

[17] G. Piatetsky-Shapiro (1991), Discovery, analysis, and presentation of

strong rules. In: Knowledge discovery in Databases, G. Piatetsky-Shapiro

and W. Frawley (Eds.), AAAI Press/MIT Press, pp229-248.

[18] Savasere, E. Omiecinski, and S. Navathe (1998), Mining for Strong

Negative Associations in a Large Database of Customer Transactions. In:

Proceedings of the International Conference on Data Engineering

(ICDE), pp. 494-502.

[19] E. Suzuki and M. Shimura (1996), Exceptional Knowledge Discovery in

Databases Based on Information Theory. In: Proceedings of the

International Conference on Knowledge Discovery and Data Mining

(KDD), pp. 275-278.

[20] K. Wang, S. Zhou, A. Fu and X. Yu (2003). Mining Changes of

Classification by Correspondence Tracing. SIAMDM'03, 2003.

[21] G. Webb (2000). Efficient search for association rules. In: Proceedings of

the International Conference on Knowledge Discovery and Data Mining

(KDD), pp. 99-107.

[22] G. Webb, S. Butler and D. Newlands (2003), On detecting differences

between groups. KDD’03, pp. 256-265.

[23] X. Wu, C. Zhang and S. Zhang (2002). Mining both positive and negative

association rules. In: Proceedings of 21st International Conference on

Machine Learning (ICML), pp. 658-665.

[24] Shichao Zhang, Jingli Lu and Chengqi Zhang (2004), A fuzzy logic based

method to acquire user threshold of minimum-support for mining

association rules. Information Sciences, Volume 164, Issues 1-4: 1-16.

