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Abstract — In many applications we need to synthesize global 

patterns in multiple large databases, where the applications are 
independent of the characteristics of local patterns. Pipelined 
feedback technique (PFT) seems to be the most effective technique 
under the approach of local pattern analysis (LPA). The goal of 
this paper is to analyse the effect of database grouping on 
multi-database mining. For this purpose we design a database 
grouping algorithm. We introduce an approach of non-local 
pattern analysis (NLPA) by combining database grouping 
algorithm and pipelined feedback technique for multi-database 
mining. We propose to judge the effectiveness of non-local pattern 
analysis for multi-database mining. We conduct experiments on 
both real and synthetic databases. Experimental results show that 
the approach to non-local pattern analysis does not always 
improve the accuracy of mining global patterns in multiple 
databases. 
 

Index Terms — Local pattern analysis, Multi-database mining, 
Non-local pattern analysis, Pipelined feedback technique, 
Synthesis of patterns 
 

I. INTRODUCTION 

ULTI-database mining is strategically an essential area 
of data mining. This is because of the fact that in many 

applications we need to process data from various sources [12], 
[13], [4], [8]. As a result, research in multi-database mining is 
gaining momentum [18], [20], [6].  
   In many situations data are collected from different regions 
across the globe. It might be possible to move data from one 
place to another place for some applications that are 
independent of the local properties of databases. The goal of 
this paper is to judge whether one could improve mining global 
patterns by sacrificing local properties of patterns in 
multi-databases. In an earlier work [7], we have shown that 
PFT improves the quality of global patterns significantly as 
compared to an existing technique [15], [17], [19], [5] that 
scans each database only once. In an effort to make further 
improvements, we introduce non-local pattern analysis for 
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multi-database mining and propose to study its effectiveness in 
synthesizing global patterns. There are two primary reasons for 
non-local pattern analysis (i) the local properties of patterns 
need not always to be preserved; (ii) the number of estimations 
of a pattern might get decreased. 

Local pattern analysis [19], [5] is an important approach of 
mining multiple large databases. One could obtain reasonably 
good solutions for a large class of problems. In local pattern 
analysis, each local database is mined locally. Then every 
branch forwards the local pattern base to the central location. 
All the pattern bases are then processed for synthesizing global 
patterns in multiple databases. It is important to observe that the 
same pattern might not get reported from every local database. 
As a result, the local pattern analysis is an approximate method 
of mining multiple large databases. If we are able to 
amalgamate all the databases together then there is no 
difference between mono-database mining and multi-database 
mining. There might be different reasons in different contexts 
that prohibit us to amalgamate all the databases together [6]. 
The next question comes to our mind is that whether one could 
reduce the frequency of database mining.  In this regard, there 
are two extreme cases of multi-database mining viz., 
mono-database mining and local pattern analysis. 
Mono-database mining is used when there is a possibility of 
clubbing all the local databases. But the latter is used when each 
local database requires mining locally. In the first case, the 
frequency of mining database is one. But the frequency of 
mining is equal to the number of local databases in case of local 
pattern analysis. In view of reducing the frequency of mining, 
one may need to group the databases and then each group of 
databases is mined separately. Moreover, when we group some 
databases, the databases in a group are mined together. Thus, 
the number of estimations of a pattern will be reduced. For the 
purpose of constructing groups we consider that the groups of 
databases are mutually exclusive and exhaustive. The mutually 
exclusiveness property ensures that a database belongs to only 
one of the different groups. On the other hand exhaustiveness 
property ensures that each database belongs to a group. We 
club all the databases in a group for the purpose of 
multi-database mining. In this arrangement one needs to 
estimate a pattern less number of times, but local properties of a 
pattern may not get restored. This may have a bearing on the 
quality of the global patterns.  In this paper, we investigate 
whether such an arrangement of local databases enhances 
accuracy of the global patterns. 

Grouping of databases seems to an important issue for 
discovering knowledge in multiple databases. Wu and Zhang. 
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[16] have proposed a similarity measure sim1 to identify similar 
databases based on item similarity. The authors have designed a 
clustering algorithm based on measure sim1 to cluster databases 
for the purpose of selecting relevant databases. Such clustering 
is useful when the similarity is based on items in different 
databases. Item similarity measure sim1 might not be useful in 
many multi-database mining applications where clustering of 
databases is based on some other criteria. For example, if we 
are interested in the databases based on transaction similarity 
then the above measures might not be appropriate. We have 
designed an algorithm for database clustering based on 
transaction similarity [4]. For this purpose, we have proposed a 
similarity measure simi1 to cluster databases. One could group 
some objects based on an external criterion also. For example, 
the available main memory could pose a constraint in 
multi-database mining. It might be difficult to mine all the 
databases together when the databases are large. We will 
discuss later how the available main memory induces database 
grouping for the purpose of multi-database mining. 

In an earlier work [7], we performed many experiments 
using different multi-database mining techniques (MDMTs). 
Experimental results have shown that PFT outperforms each of 
the existing techniques that scans a database only once. We 
introduce an approach of non-local pattern analysis based on 
PFT. For the purpose of completeness we present PFT in 
Section III. 

Data mining applications based on multiple databases could 
be broadly categorized into two groups. The applications in the 
first group are based on patterns in individual databases. On the 
other hand, the second group of applications deals with the 
global patterns in multiple databases that are distributed in 
different geographical regions. Our goal is to study the 
effectiveness of non-local pattern analysis for mining global 
patterns in multiple databases. In many applications one may 
not have any restriction on moving a local database from one 
branch to another branch. Therefore, one could amalgamate a 
few branch databases and then mine a group of databases 
together. Then another group of databases could be formed and 
mined together, and so on. Finally, one could synthesize global 
patterns from the patterns in these groups of databases. We 
propose to study the effect of such grouping on synthesizing 
global patterns. 

Rest of the paper is organized as follows. In Section II, we 
discuss related work. We present pipelined feedback technique 
in Section III. In Section IV, we introduce a non-local pattern 
analysis. We present a heuristic-based grouping algorithm in 
support of non-local pattern analysis. A discussion on finding 
the best grouping can be found in Section V. We present 
experimental results in Section VI. 

 

II. RELATED WORK 
Zhang et al. [17] have proposed algorithm IdentifyExPattern 

for identifying global exceptional patterns in multi-databases. 
Here every local database is mined separately at random order 
using mono-database mining technique for synthesizing global 
exceptional patterns. As a result, the synthesized global 

patterns might deviate significantly from the true global 
patterns.  We have proposed an algorithm 
Association-Rule-Synthesis [5] for synthesizing association 
rules in multiple real databases. This algorithm is useful for real 
databases, where the trend of the customers’ behaviour 
exhibited in one database is usually present in other databases. 
For synthesizing high frequency association rules, Wu and 
Zhang [15] have proposed RuleSynthesizing algorithm for 
synthesizing high frequency association rules in multiple 
databases. Based on the association rules in different databases, 
the authors have estimated weights of different databases. Let 
wi be the weight of the i-th database, i = 1, 2, …, n. Without any 
loss of generality, let the association rule r be extracted from 
the first m databases, for 1� m ≤ n. Actual support of r in Di, 
suppa(r, Di), has been assumed as 0, for i = m + 1, m + 2, …, n. 
Then the support of r in D has been synthesized as follows. 
supps(r, D) = w1 � suppa(r, D1) +…+ wm � suppa(r, Dm)        (1) 
This method is an indirect approach and computationally 
expensive as compared to other techniques. Existing parallel 
mining techniques [2], [9] could also be used to deal with 
multiple large databases. In the context of pattern synthesis, 
Viswanath et al. [14] have proposed a novel pattern 
synthesizing method called partition based pattern synthesis 
which can generate an artificial training set of exponential 
order when compared with that of the given original training 
set. 

 

III. PIPELINED FEEDBACK TECHNIQUE (PFT) 
For the purpose of completeness, we first present an 

overview of PFT [7]. Consider a multi-branch organization that 
collects data from multiple local branches. Let Di be the 
database corresponding to the i-th branch, i = 1, 2, …, n. Also 
let LPBi be the local pattern base for Di, i = 1, 2, …, n. Also, let 
D be the union of all branch databases. 

Let D1, D2, …, Dn be an arrangement of mining databases. 
First D1 is mined using a mono-database mining technique [3], 
[11], and local pattern base LPB1 is extracted. While mining D2, 
all the patterns in LPB1 are extracted irrespective of their values 
of interestingness measures such as minimum support and 
minimum confidence. Apart from these patterns, some new 
patterns that satisfy user-defined thresholds of interestingness 
are also extracted. In general, while mining Di all the patterns in 
Di-1 are extracted irrespective of their values of interestingness, 
and some new patterns that satisfy user-defined thresholds of 
interestingness are also extracted. Due to this nature of mining 
each database, the technique is called a feedback model. Thus, 
|LPBi-1| � |LPBi|, i = 2, 3, …, n. There are n! arrangements of 
pipelining for n databases. All the arrangements of databases 
might not produce the same mining result. If the number of 
local patterns increases, we get more accurate global patterns 
and a better analysis of local patterns. An arrangement of local 
databases would produce near optimal result if |LPBn| is 
maximal. Let size(Di) be the size of Di (in bytes), i = 1, 2, …, n. 
We shall follow the following rule of thumb regarding the 
arrangements of databases for the purpose of mining: The 
number of patterns in Di-1 is greater than or equal to the number 
of patterns in Di, if size(Di-1) � size(Di), i = 2, 3, …, n. For the 
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purpose of increasing number of local patterns, Di-1 precedes Di 
in the pipelined arrangement of mining databases if size(Di-1) � 
size(Di), i = 2, 3, …, n. Finally, we analyze the patterns in LPB1, 
LPB2, …, LPBn for synthesizing global patterns, or analyzing 
local patterns. 

Most of the databases are sparse. A pattern might not get 
reported from all the databases. However, once a pattern gets 
mined from a database, it also gets reported from the remaining 
databases in the pipeline. Thus, PFT improves the accuracy of 
multi-database mining. In the Section IV, we shall introduce an 
approach of non-local pattern analysis and we analyse its 
effectiveness in Section VI. 

For synthesizing global patterns in D we discuss here a 
simple pattern synthesizing (SPS) algorithm with the help of 
itemset pattern in a database. Without any loss of generality, let 
the itemset X be extracted from the first m (≤ n) databases. Then 
synthesized support of X in D could be obtained as follows: 

� �     || ) ,( 
||

1    ) ,(
m

1  i
iian

1  i
i

s �
� 	

	

��	 DDXsupp
D

DXsupp              (2) 

The accuracy of global pattern X increase as m approaches to n. 
The concepts of accuracy and error of a pattern are opposite to 
each other. When the error of a pattern increases, we say that its 
accuracy decreases, and vice-versa. We explain the concept of 
error in the following section.  

A. Error 
Let D1, D2, …, Dn be n branch databases. Also, let size(D1) ≥ 

size(D2) ≥  … ≥ size(Dn). In PFT, the databases are mined 
according to the following order: D1, D2, …, Dn. An itemset X 
gets reported from some of the given databases. In PFT, once X 
is reported from one of the given databases, then it also gets 
mined from the remaining databases. Suppose X is reported 
first time from Dk at minimum support level 
, for 1 � k ≤ n. 
Then the error of mining X in D could be expressed as follows: 
Error (X, D) = |suppa(X, D) – suppe(X, D)|            (3) 
where, suppa(X, D) and suppe(X, D) denote the actual (apriori) 
support [3] and the estimated support of X in D, respectively. 
The supports suppa(X, n

1k  i �	� Di) and suppe(X, n
1k  i �	� Di) are 

the same, since X gets reported from the databases Dk+1, 
Dk+2, …, and Dn at minimum support level 
. Thus, the error of 
mining X in D could be expressed as follows: 
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As the value of k increases, the amount of error increases 
provided the method of estimating support remains the same. 
Therefore, if the itemset X gets mined early in the pipelined 
arrangement, then amount of error decreases. In other words, as 
the number of estimations reduces, the error of mining itemset 
X reduces. This is an important observation and has been 
applied to the proposed non-local pattern analysis. Let S be the 
set of all itemsets synthesized from D. Then the average error 
(AE) of the experiment could be defined as follows: 
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Also, one could define maximum error (ME) of the experiment 
as follows: 
ME = maximum {Error (X, D)| X� S}              (6) 

 

IV. NON-LOCAL PATTERN ANALYSIS (NLPA) 
Consider a multi-branch organization that has n (≥ 2) 

branches. Suppose that each branch maintains a database of all 
local transactions. The goal of this paper is to investigate 
whether one could improve multi-database mining by 
sacrificing local properties of the patterns. In view of this one 
could group databases induced by available main memory. Let 
k be the number of groups of databases. Different groups of 
databases are given as follows: {D11, D12, …, D1n 1 }, {D21, 

D22, …, D2n 2 }, …, {Dk1, Dk2, …, Dkn k }, where Dij � {D1, 

D2, …, Dn}, for j = 1, 2, …, ni; i = 1, 2, …, k; nn   i
k

1  i 	� 	 ; ni ≥ 
1. Afterwards each group of databases are amalgamated and 
mined. The crux of non-local pattern analysis is how to group 
the databases so that one could mine each group of databases 
effectively within the limited memory. We formulate the 
problem of grouping databases as follows. 

A. Grouping Databases 
Multi-database mining could be performed by amalgamating 

some local databases and mining them together. But the 
performance of data mining process seems to be constrained by 
size of the main memory. If the available main memory is less, 
it might take a longer time to accomplish the mining task.  
During the grouping process, we shall continue to club 
databases as long as main memory is available. Let 
 be the 
optimum size of available main memory. Let size(D) be the size 
of database D. Then the problem of grouping databases can be 
stated as follows: 
 
We are given a set of numbers S = {size(D1), size (D2), …, size 
(Dn)}. Our objective is to find r subgroups S1, S2, … Sr, for some 
r ≥ 1, so that � �� �ij

n
1  j

1-r
1  i   - i Dsize		 �� 
  is a minimal, where 

the following conditions are true. 
 
(i) 
  )( ij

n
1  j

i �� 	 Dsize , for i = 1, 2, …, r, and Dij�{D1, D2, …, 
Dn}  
(ii) Si = {size(Di1), size(Di2), …, size(

iinD )}, and Si � S, i = 1, 
2, …, r 
(iii) Si � Sj = � , � i � j, and r

1  i 	� Si = S 
 

� �ij
n

1  j   - i Dsize	�
  is the amount of unutilized space for the 

i-th group, i = 1, 2, …, r. The goal of the grouping process is to 
reduce the total amount of unutilized spaces. In the next section, 
we propose a heuristic algorithm that utilizes main memory 
effectively. 

B. An Heuristic Algorithm for Grouping Databases 
As the number of groups decreases, one needs to estimate a 

global pattern fewer number of times. If the number of groups 
is one then all the patterns are exact and become true 
representative of the multiple databases. Given a limited 
amount of memory, it is important to group the databases so 
that it can fit best in the main memory. During the grouping 
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process, if the larger databases are not considered at the early 
stage of grouping, then it could pose problems. As a result, the 
number of groups might increase. Smaller databases can be 
accommodated in a group easily, since their sizes are small. We 
apply this heuristic to design a grouping algorithm. Let us take 
an example to illustrate the grouping process. 
 
Example 1. Let N be the set of sizes of the given databases. Let 
N be {139, 29, 43, 152, 165, 74, 5, 120}. Also let 
 be 200. First 
we sort the numbers in N in non-decreasing order. The ordered 
numbers are given as follows: 5, 29, 43, 74, 120, 139, 152, 165. 
The maximum size among the given databases is 165 bytes. 
First, we form a group with the database of size 165 bytes. 
Otherwise, it might cause producing a larger amount of 
unutilized space. Then along with the database of size 165 
bytes, we club the database of size 29 bytes so that their sum 
194 still remains less than or equal to 200. The database of size 
29 bytes is obtained by searching the list from the right hand 
side. Any database of size in between 29 bytes and 165 bytes 
can not be clubbed with the database of size 165 bytes, since 
their sum would exceed 200 bytes. No more databases can be 
clubbed with them. Otherwise, their sum could exceed the 
available memory. In this case, the available memory is 200 
bytes. As a result, the first group G1 = {165, 29} is formed with 
an unutilized space of 6 bytes. Now we consider the database of 
size 152 bytes, since it is the second maximum among the given 
database sizes. Proceeding in the same way, one could form the 
second group as G2 = {152, 43, 5} with an unutilized space of 0 
byte. Then the next group G3 = {139} is formed with unutilized 
space of size 61 bytes. The final group is G4 = {120, 74} with 
unutilized space of 6 bytes. The total amount of unutilized 
spaces is equal to (6 + 0 + 61 + 6) bytes i.e., 73 bytes. Such 
grouping of databases might not be unique. For example, there 
exists another grouping of databases viz., {{152, 43, 5}, {165}, 
{139, 29}, {120, 74}}, that results in the same amount of 
unutilized spaces. � 
 
Lemma 1. Let 
 be the optimum size of available main 
memory. Also, let Dij be a database in group Gi, for j = 1, 2, …, 
ni and i = 1, 2, …, r. Then the following grouping results in the 
same amount of unutilized spaces, provided |Gj| + |Dik| ≤ 
: 
G1, G2, …, Gi-1, Gi – {Dik}, Gi+1, …, Gj-1, Gj �  {Dik}, Gj+1, …, 
Gr, for some i ≠ j. � 
 
Based on the procedure illustrated in Example 1, we present 
here a heuristic algorithm, Database-Grouping, as follows. 
 
procedure Database-Grouping (n, A, 
) 
Input: 
n: number of databases 
A: array of database sizes 

: maximum available memory (in bytes) 
Output: 
k: number of groups 
G: two dimensional array representing different groups 
01: sort A in non-decreasing order; 
02: let k = 0;  
03: for i = 1 to n do  
04:  allocation(i) = 0; 

05: end for 
06: let index = n;  
07: while (index ≥ 1) do 
08:  let i = index; let sum = 0; let col = 1; 
09:  increment k by 1; 
10:  while (sum � 
) and (i ≥ 1) do 
11:   if (sum + A(i) � 
) and (allocation(i) = 0) then  
12:    sum = sum + A(i); allocation(i) = 1;  
13:    increment col by 1; G(k, col) = A(i); 
14:   end if 
15:   decrease i by 1; 
16:  end while 
17:  G(k, 1) = col-1; 
18:  let j = n; 
19:  while (allocation(j) ≠ 0) and (j ≥ 1) do 
20:   decrement  j by 1; 
21:  end while 
22:  let index = j; 
23: end while 
24: for i = 1 to k do 
25:  display the members of the i-th group; 
26: end for 
end procedure 
 
We explain here the different variables and parts of the above 
algorithm. The number of groups is returned through the 
variable k. Here G is a two dimensional matrix that stores the 
output groups. The i-th row of G stores the i-th output group, i = 
1, 2, …, k. The first element of each row contains the number of 
elements in that group as noted in line 17. The subsequent 
elements are the database sizes in that group. The databases, 
whose sizes are kept in a group, are required to be clubbed for 
the purpose of mining. Initially, all the databases are 
unallocated (lines 03-05), since there exists no group. The 
database having a maximal size is allocated first in a group. 
Therefore, index variable gets initialized to n (line 06). The 
inner while-loop constructs a group of databases that are 
amalgamated afterwards for the purpose mining (lines 10-16). 
When a database is included in a group, the corresponding 
allocation tag is changed to 1 (line 12). Lines 18-22 help 
finding the next position (index) in the array A from which we 
start allocating the element for the next group. All the elements 
at the right side of current value of index are allocated to 
different groups. 

Algorithm Database-Grouping forms k groups from the 
given databases, for some k ≤ n. Once the groups are formed, 
then we amalgamate the databases in each group for the 
purpose of mining. Accordingly, we have k amalgamated 
databases. We then follow pipelined feedback technique for 
mining these k databases.  

The accuracy of synthesized patterns would depend on the 
sizes of the databases. In PFT, we mine first the database 
having the maximum size. It is expected that the database 
having the largest size would produce the maximum number of 
patterns. Further, PFT extracts all the previously extracted 
patterns irrespective of their interestingness values. Thus, it is 
always better to mine the largest database right at the beginning. 
The procedure Database-Grouping helps maximizing the 
database at every step by clubbing the databases. Moreover, it 
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applies a heuristic approach while forming a group of 
databases. 

In the context of mining time-stamped databases [8], 
Database-Grouping algorithm might play an important role. 
The time granularity of time-stamped databases is an important 
issue. Again, the time granularity would depend on an 
application. If time granularity is smaller, for example a month, 
then each of the monthly databases is expected to smaller. The 
procedure Database-Grouping would produce better grouping 
of databases. As a result, Database-Grouping algorithm is 
expected to produce good grouping when the size of each 
database is small. 
 
Lemma 2. Let n be number of databases and k be the number of 
groups returned by the Database-Grouping algorithm. The 
time complexity of the algorithm is O(n × k). 
Proof. For-loop in lines 3-5 takes O(n) time. The algorithm 
returns k groups. Therefore, the outer while-loop in lines 7-23 
repeats k times. The inner while-loop in lines 10-16 could 
repeat O(n) times for each iteration of outer while-loop. Also, 
the while-loop in lines 19-21 could repeat n times for an 
iteration of outer while-loop. In lines 26-28, we display all the 
members in every group. Therefore, it takes O(n) time. Thus, 
the time complexity of the algorithm is maximum {O(n), O(n × 
k), O(n) }, i.e., O(n × k) time. � 

C. Accuracy of mined patterns 
If all the branch databases are amalgamated and mined then 

there is no difference between multi-database mining and 
mono-database mining. In this case a reported pattern is 100% 
accurate. But such situation may not exist always. Many branch 
databases could be very large. As a result the data mining 
process could consume unreasonable amount of time. In some 
cases it might not be possible to complete the data mining task. 
As a result a multi-database mining technique might report 
approximate patterns. An approximate pattern is not true 
representative pattern in multiple databases. 
   In our earlier work [7], we have noted that the accuracy of a 
mined pattern using PFT is generally higher than that of any 
other existing technique. This is true because of the fact that 
once a pattern is reported from a branch database, it also gets 
reported from the databases mined afterwards. If we can 
increase the size of each group (Gi) as much as possible by 
amalgamating branch some databases (Dj), the experimental 
results have shown that the average accuracy of a mined pattern 
might not decrease, for i = 1, 2, …, r; j = 1, 2, …, n. As we 
increase the size of each Gi, we expect more patterns to be 
generated at each stage. Specifically, if a large number of 
patterns are reported at the initial stages of mining then the 
accuracy of those patterns, when synthesized globally, become 
higher. This is because of the fact that if a pattern is reported at 
any stage then it also gets reported subsequently due the 
application of feedback mechanism. Let us consider those 
patterns that are reported at the latter stages. These patterns 
might differ significantly from the actual global patterns. 
Therefore, the error of the experiment, AE and / or ME, might 
be more for non-local pattern analysis that that of PFT. 

 It might be appealing if one attaches depth of data mining 
with a mined pattern. We define depth of a pattern in 
multi-database mining as the fraction of total sizes of group 

databases from which a pattern gets extracted to the total size of 
all databases. Let G1, G2, …, Gr be the group of databases 
mined sequentially. Let pattern p be reported first time from the 
k-th group i.e., Gk. If p is an itemset pattern, then one could 
report its depth along with its support [1]. Thus, 

depth (p) = (|Gk| + |Gk+1| + … +|Gr|) / |D|,  
where (|G1| + |G2| + … +|Gr|) = |D|, 0 < depth (p) ≤ 1. Depth of a 
pattern represents the amount of data from which it has been 
extracted from a multi-database environment. If the depth of p 
is 1, then it is exact. One could discard a pattern if its depth is 
low. 
 

V. AN OPTIMAL GROUPING OF DATABASES 
Let us refer to algorithm Database-Grouping presented in 

Section IV. In most of the cases, it produces good grouping of 
databases. But it may not result in an optimal grouping for the 
purpose of multi-database mining. One could determine all 
possible groupings of databases at a given a set of databases 
and 
. Then one could find the amount of unutilized spaces for 
every grouping. In the worst case one needs O(n2) comparisons 
to form a group, where n is the number of databases. Thus, the 
worst case complexity of such optimal algorithm is O(n2 × k), 
where k is the number of groups. Such an algorithm might not 
be always attractive when a simpler algorithm like 
Database-Grouping produces an optimal result in the most of 
cases.  

 

VI. EXPERIMENTAL RESULTS 
We have carried out several experiments to study the 

proposed approach of mining global patterns in multiple large 
databases. All the experiments have been implemented on a 2.8 
GHz Pentium D dual core processor with 988 MB of memory 
using visual C++ (version 6.0) software. We present 
experimental results using synthetic dataset T10I4D100K [10] 
and two real datasets retail [10] and BMS-Web-Wiew-1 [10]. 
We present some characteristics of these datasets in Table I. Let 
NT, AFI, ALT, and NI be the number of transactions, average 
frequency of an item, average length of a transaction, and 
number of items in a database, respectively. Each of the above 
datasets is divided into 10 databases for purpose of conducting 
our experiments. 

 
 

TABLE I 
DATASET CHARACTERISTICS 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Dataset NT ALT AFT NI 
T10I4D100K 1,00,000 11.10 1276.12 870 

retail 88,162 11.31 99.67 10,000 
BMS-Web-Wiew-1 1,49,639 2.00 155.71 1,922 
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TABLE II 
T10I4D100K DATABASE CHARACTERISTICS 

 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE III 
retail DATABASE CHARACTERISTICS 

 
DB NT size(DB) ALT AFI NI 
R0 1,000 36 9.52 5.11 1,000 
R1 2,000 96 11.91 11.57 830 
R2 3,000 143 11.72 16.22 862 
R3 4,000 181 11.17 20.15 873 
R4 8,000 358 11.10 4015 899 
R5 10,000 473 11.49 49.82 1,097 
R6 12,000 565 11.33 55.91 1,218 
R7 14,000 634 10.76 58.34 1,311 
R8 16,000 744 11.04 65.80 1,389 
R9 18,162 922 11.89 77.87 1,500 

 
 

TABLE IV 
BMS-Web-Wiew-1 DATABASE CHARACTERISTICS 

 
DB NT size(DB) ALT AFI NT 
B0 1,000 10 2.0 5.13 195 
B1 2,000 22 2.0 3.56 157 
B2 3,000 35 2.0 5.01 77 
B3 5,000 63 2.0 3.05 1637 
B4 10,000 131 2.0 6.23 1605 
B5 15,000 205 2.0 1500 10 
B6 20,000 273 2.0 2000 10 
B7 25,000 341 2.0 2500 10 
B8 30,000 410 2.0 3000 10 
B9 38,639 528 2.0 3863.8 10 

 
 
We have generated these databases arbitrarily consisting of a 
good mix of small and large databases. The databases obtained 
from T10I4D100K, retail and BMS-Web-Wiew-1 are named as 
Ti, Ri, and Bi respectively, for i = 0, 1, …, 9 and subsequently 
referred to as input databases. Some characteristics of these 
input databases are presented in Tables II, III, and IV. Let NT be 
{40, 81, 119, 159, 323, 400, 483, 605, 807, 1,027}, the set of 
sizes of databases obtained from T10I4D100K. Let NR be {36, 
96, 143, 181, 358, 473, 565, 634, 744, 922}, the set of sizes of 
databases obtained from retail.  Also, let NB be {10, 22, 35, 63, 
131, 205, 273, 341, 410, 528}, the set of sizes of databases 
obtained from BMS-Web-Wiew-1. In Table V, we present some 
outputs showing that the proposed non-local pattern analysis 
does not always improve accuracy of patterns in multiple large 
databases. 

 
 

TABLE V 
ERROR OF THE EXPERIMENTS AT A GIVEN MINIMUM SUPPORT 

 
Dataset T10I4D100K retail BMS-Web-Wiew-1 

Minimum support 0.045 0.15 0.075 
Error type AE AE AE 

MDMT: PFT + SPS 0.00451 0.00478 0.00206 
MDMT: NLPA 0.00452 0.00499 0.00333 

Error type ME ME ME 
MDMT: PFT + SPS 0.02411 0.01191 0.00702 

MDMT: NLPA 0.02418 0.01270 0.00781 
 
 
We apply Database-Grouping algorithm presented above. The 
choice of 
 for each of the three databases is an important issue. 
The sizes of T10I4D100K, retail and BMS-Web-Wiew-1 are 
3.83 MB, 3.97 MB, 1.97 MB respectively. Therefore, it might 
be possible to fit all the 10 databases in main memory for 
conducting experiments using each of the three datasets. But 
for the purpose of applying Database-Grouping algorithm one 
could consider 
  as little more than the maximum size of the 
generated databases, and accordingly, we taken 
 as 1,100 KB, 
1,000 KB, and 700 KB for conducting experiments using 
datasets T10I4D100K, retail and BMS-Web-Wiew-1, 
respectively. The groups formed for above three datasets are 
given below: 
 
Group corresponding to T10I4D100K, GT = {{1027, 40}, {807, 
159, 119}, {605, 483}, {400, 323, 81}} with the total amount 
of unutilized space is equal to (33 + 15 + 12 + 296) bytes i.e., 
356 bytes. 
Group corresponding to retail, GR = {{922, 36}, {744, 181}, 
{634, 358}, {565, 143, 96}, {473}} with the total amount of 
unutilized space is equal to (42 + 75 + 8 + 196 + 527) bytes i.e., 
848 bytes. 
Group corresponding to BMS-Web-Wiew-1, GB = {{528, 131, 
35}, {410, 273, 10}, {341, 205, 63, 22}} with the total amount 
of unutilized space is equal to (6 + 7 + 69) bytes i.e., 82 bytes. 
 
Now we club the databases in each group for purpose of mining 
multi-databases. Let the databases generated for the first, 
second and third groups be DTi, i = 1, 2, 3, 4; DRj, j = 1,2, 3, 4, 5; 
and DTk, k = 1, 2, 3, respectively. We present the databases after 
grouping in Tables VI, VII and VIII. 
 
 
 

TABLE VI 
NEW DATABASES GENERATED FROM T10I4D100K 

 
Generated databases Databases to be clubbed 

DT1 T9,  T0 
DT2 T8,  T3,  T2 
DT3 T7,  T6 
DT4 T5,  T4,  T1 

 
 
 
 
 

DB NT size(DB) ALT AFI NI 
T0 1,000 40 11.09 12.70 795 
T1 2,000 81 11.18 24.43 834 
T2 3,000 119 11.01 35.45 847 
T3 4,000 159 11.01 46.84 855 
T4 8,000 323 11.15 93.79 866 
T5 10,000 400 11.05 115.93 867 
T6 12,000 483 11.12 140.28 866 
T7 15,000 605 11.13 175.24 867 
T8 20,000 807 11.14 233.31 869 
T9 25,000 1,027 11.07 290.38 867 
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TABLE VII 
NEW DATABASES GENERATED FROM RETAIL 

 
Generated databases Databases to be clubbed 

DR1 R9,  R0 
DR2 R8,  R3 
DR3 R7,  R4,  
DR4 R6,  R2, R1 
DR5 R5 

 
 

TABLE VIII 
NEW DATABASES GENERATED FROM BMS-WEB-VIEW-I 

 
Generated databases Databases to be clubbed 

DB1 B9,  B4,  B2 
DB2 B8,  B6,  B0 
DB3 B7,  B5,  B3,  B1 

 
We have conducted experiments on the new databases by 
applying PFT and non-local pattern analysis. In Figs. 1, 2, and 3, 
we have presented results of AE with respect to minimum 
supports. Experimental results show that PFT reports more 
accurate global patterns than non-local pattern analysis in the 
most of the cases. Also, we observe that there no fixed trend of 
AE over the increased support values. 
 
 

 
 

Fig. 1. Average error versus minimum support (for T10I4D100K) 
 
 

 
 

Fig. 2. Average error versus minimum support (for retail) 
 

 
 

 
 

Fig. 3. Average error versus minimum support (for BMS-Web-Wiew-1) 
 

VII. CONCLUSION 
In this paper we have introduced non-local pattern analysis 

for multi-database mining in an attempt to study its 
effectiveness in synthesizing global patterns.  A database 
grouping algorithm induced by main memory constraint has 
been introduced to applying non-local pattern analysis.   Main 
memory constraint is an illustration of a criterion used for 
database grouping. Apparently non-local pattern analysis looks 
to be attractive, since the frequency of data mining is less as 
compared to local pattern analysis. As a result one needs to 
estimate a pattern lesser number of times for the purpose of 
synthesizing the global pattern. The drawback of non-local 
pattern analysis is that the patterns reported only from the last 
few groups might contribute significantly to the error of the 
experiment. This is due to the fact that a pattern is assumed 
absent when it does not get reported. Therefore, a mined pattern 
needs to be associated with the amount of data that it represents. 
For this purpose we have defined depth of a pattern in 
multi-database mining. A pattern becomes useless if its depth is 
low. We have conducted several experiments on real and 
synthetic datasets. Experimental results show that non-local 
pattern analysis might not be a better technique than PFT. 
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