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Abstract—Rough-fuzzy granular approach in natural 

computing framework is considered. The concept of rough 

set theoretic knowledge encoding and the role f-granulation 

for its improvement are addressed. Some examples of their 

judicious integration for tasks like case generation, 

classification/ clustering, feature selection and information 

measures are described explaining the nature, roles and 

characteristics of granules used therein. While the method 

of case generation with variable reduced dimension has 

merits for mining data sets with large dimension and size, 

class dependent granulation coupled with neighborhood 

rough sets for feature selection is efficient in modeling 

overlapping classes. Image ambiguity measures take into 

account the fuzziness in grey region, as well as the rough 

resemblance among nearby grey levels and nearby pixels, 

and are useful in image analysis. Superiority of rough-fuzzy 

clustering is illustrated for determining bio-bases in 

encoding protein sequence for analysis. F-information 

measures based on fuzzy equivalence partition matrix are 

effective in selecting relevant genes from micro-array data. 

Future directions of research, challenges and significance 

to natural computing are stated. The article includes some 

of the results published elsewhere. 

 

Index Terms — soft computing, granulation, generalized 

rough sets, rough-fuzzy computing, data mining,  

bioinformatics,  image analysis, case based reasoning. 

I. INTRODUCTION 

ATURAL computing, inspired by biological course of 

action, is an interdisciplinary field that formalizes 

processes observed in living organisms to design 

computational methods for solving complex problems, or 

designing artificial systems with more natural behavior. Based 

on the tasks abstracted from natural phenomena, such as brain 

modeling, self-organization, self-repetition, self-evaluation, 

Darwinian survival, granulation and perception, nature serves 

as a source of inspiration for the development of computational 

tools or systems that are used for solving complex problems. 

Nature inspired main computing paradigms used for such 

development include artificial neural networks, fuzzy logic, 

rough sets, evolutionary algorithms, fractal geometry, DNA 

computing, artificial life and granular or perception-based 

computing. Information granulation in granular computing is 

an inherent characteristic of human thinking and reasoning 
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process performed in everyday life. One may refer to [1] for 

different facets of natural computing. 

  

Rough set theory is a popular mathematical framework for 

granular computing. The focus of rough set theory is on the 

ambiguity caused by limited discernibility of objects in the 

domain of discourse. Granules are formed as objects and are 

drawn together by the limited discernibility among them. 

Rough set represents a set in terms of lower and upper 

approximations. The lower approximation contains granules 

that completely belong in the set and the upper approximation 

contains granules that partially or completely belong in the set. 

Two major characteristics of rough set theory are uncertainty 

handling (using lower and upper approximations) and granular 

computing (using information granules). Rough set based 

techniques have been used in pattern recognition, image 

processing, data mining and knowledge discovery process from 

large data sets, among others. Rough sets were found to have 

extensive application in dimensionality reduction and 

knowledge encoding particularly when the uncertainty is due to 

granularity in the domain of discourse. It is also found to be an 

effective machine learning tool for designing ensemble 

classifier. One may note that fuzzy set theory deals with 

ill-defined and unsharp boundaries while rough set 

characterizes a crisp set with a coarsely defined class boundary. 

Rough sets are nothing but crisp sets with rough descriptions. 

Rough-fuzzy or fuzzy-rough techniques are efficient hybrid 

methods based on judicious integration of the principles of 

rough sets and fuzzy sets. While the membership functions of 

fuzzy sets enable efficient handling of overlapping classes, the 

concept of lower and upper approximations of rough sets deals 

with uncertainty, vagueness, and incompleteness in class 

definition. Their judicious integration therefore promises to 

results in efficient paradigms for uncertainty handling which is 

much stronger than those of the individual ones.  

It may be mentioned that the concept of rough-fuzzy 

computing has a significant role in modeling the 

fuzzy-granulation (f-granulation) characteristics of 

Computational theory of perceptions (CTP) [2], [3] which is 

inspired by the remarkable human capability to perform a wide 

variety of physical and mental tasks, including recognition 

tasks, without any measurements and computations. 

Perceptions are intrinsically imprecise. Their boundaries are 

fuzzy and the attribute they can take are granules. In other 

words, perceptions are f-granular.   

The organization of the paper is as follows: Section 2 

presents rough-fuzzy approach to granular computation, in 

general. Section 3 describes generalized rough sets for better 
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uncertainty handling by incorporating fuzziness in both set and 

granules definition. Section 4 explains the application of 

rough-fuzzy granulation in case based reasoning where the 

problem of case generation is considered. Certain challenging 

issues concerning granules for implementing rough-fuzzy 

computing are mentioned. Section 5 describes the merits of 

class dependent granulation for modeling overlapping classes 

in pattern recognition. The features are explained on remotely 

sensed imagery where labeled samples are scarce. Sections 6 

and 7 demonstrate the characteristics of rough-fuzzy clustering, 

and application of fuzzy c-medoids to protein sequence 

analysis for determining bio-bases respectively. It is shown that 

rough-fuzzy clustering is superior to fuzzy clustering, hard 

clustering and rough clustering. Section 8 describes 

rough-fuzzy entropy based on generalized rough sets in 

measuring image ambiguities and an example application to 

image segmentation. It is demonstrated that incorporation of 

the concept of granularity in reflecting the rough resemblance 

in nearby gray levels and pixels improves the performance over 

fuzzy set theoretic segmentation. Section 9 deals with the 

problem of gene selection from microarray data where the 

significance of fuzzy equivalence partition matrix is 

demonstrated though various information measures. 

Concluding remarks are given in Section 9. 

II. GRANULAR COMPUTATION AND ROUGH-FUZZY APPROACH 

Rough set theory [4] provides an effective means for analysis 

of data by synthesizing or constructing approximations (upper 

and lower) of set concepts from the acquired data. The key 

notions here are those of “information granule” and “reducts”. 

Information granule formalizes the concept of finite precision 

representation of objects in real life situation, and reducts 

represent the core of an information system (both in terms of 

objects and features) in a granular universe. Granular 

computing (GrC) refers to that where computation and 

operations are performed on information granules (clump of 

similar objects or points). Therefore, it leads to have both data 

compression and gain in computation time, and finds wide 

applications. An important use of rough set theory and granular 

computing in data mining has been in generating logical rules 

for classification and association. These logical rules 

correspond to different important regions of the feature space, 

which represent data clusters.  

In many situations, when a problem involves incomplete, 

uncertain and vague information, it may be difficult to 

differentiate distinct elements and one is forced to consider 

granules. On the other hand, in some situations though detailed 

information is available, it may be sufficient to use granules in 

order to have an efficient and practical solution. Granulation is 

an important step in the human cognition process. From a more 

practical point of view, the simplicity derived from granular 

computing is useful for designing scalable data mining 

algorithms. There are two aspects of granular computing, one 

deals with formation, representation and interpretation of 

granules (algorithmic aspect) while the other deals with 

utilization of granules for problem solving (semantic aspect). 

Several approaches for granular computing are suggested using 

fuzzy set theory, rough set theory, power algebras and interval 

analysis. The rough set theoretic approach is based on the 

principles of set approximation and provides an attractive 

framework for data mining and knowledge discovery.  

For the past several years, rough set theory and granular 

computation has proven to be another soft computing tool 

which, in various synergistic combinations with fuzzy logic, 

artificial neural networks and genetic algorithms, provides a 

stronger framework to achieve tractability, robustness, low cost 

solution and close resembles with human like decision making. 

For example, rough-fuzzy integration [5] can be considered as a 

way of emulating the basis of f-granulation in CTP, where 

perceptions have fuzzy boundaries and granular attribute values. 

Similarly, rough-neural [6], [7] and fuzzy-rough-neural [8], [9] 

synergistic integration help in extracting crude domain 

knowledge in the form of rules for describing different 

concepts/classes, and then encoding them as network 

parameters; thereby constituting the initial knowledge base 

network for efficient learning. Since in granular computing 

computations/operations are performed on granules (clump of 

similar objects or points), rather than on the individual data 

points, the computation time is greatly reduced. The results on 

these investigations are available in different journals, 

conference proceedings, special issues and edited volumes [5], 

[10], [11]. 

Before we describe some applications of rough fuzzy 

computing in clustering, classification, mining and image 

analysis with different applications, we present briefly the 

concepts of generalized rough sets and case generation in 

rough-fuzzy framework as they form the basic principles of 

f-granulation in several applications. 

III. GENERALIZED ROUGH SETS: LOWER & UPPER 

APPROXIMATIONS 

In Pawlak’s rough set theory, both the set X and granules or 

equivalence relation R are considered to be crisp. However, in 

real life problems, they could be fuzzy too. Generalized rough 

sets are defined based on this premise where the expressions for 

the lower and upper approximations of a set X  depend on the 

type of relation R  and whether X  is a crisp or a fuzzy set. Let 

us describe here briefly the expressions for the upper and lower 

approximations of X  for different cases, i.e., when R  

denotes an equivalence or a fuzzy equivalence relation and X  

is a crisp or a fuzzy set. 

Case 1: When R  denotes an equivalence relation and X  is a 

crisp set, the expressions for the lower and upper 

approximations of the set X  is given as  

                                                 

{ [ ] }RRX u u U u X     ,                                             

{ [ ] }RRX u u U u X      ,                                 (1)                                                           

 where [ ]Ru  denotes the granule to which the element u

belongs. In this case, the pair of sets RX RX    is referred 

to as the rough set of X  and U R    is a crisp equivalence 

approximation space. 

Case 2: When R  denotes an equivalence relation and X  is a 

fuzzy set, the expressions for the lower and upper 

approximations of the set X  is given as  
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[ ]
{( inf ( )) }

R
X

z u
RX u z u U


    ,                                               

[ ]

{( sup ( )) }
R

X
z u

RX u z u U


    ,                                   (2)                                                                     

where X  is the membership function associated with X . In 

this case, the pair of fuzzy sets RX RX    is referred to as 

the rough-fuzzy set of X  and U R    is a crisp 

equivalence approximation space.  

Case 3: Let us now consider the case when R  refers to a fuzzy 

equivalence relation, that is, when the belongingness of every 

element ( u ) in the universe (U ) to a granule Y U R   is 

specified by a membership function, say Ym , that takes values 

in the interval [0 1]  such that ( ) 1YY
m u  . In such a case, 

when X  is a crisp set, the expressions for the lower and upper 

approximations of the set X  is given as 

          

{( ( ) infmax(1 ( ) )) }Y Y
U

Y U R

RX u m u m C u U





 

       ,  

{( ( ) supmin( ( ) )) }Y Y
UY U R

RX u m u m C u U



 

      , (3)                                

where 

 

   
1

0

X
C

X





 
 

                                              

            

  

(4)                                                                                        

In the above, the symbols   (sum) and   (product) 

respectively represent specific fuzzy union and intersection 

operations. Note that, one may consider any fuzzy union and 

intersection operation instead of the sum and product 

operations by judging their suitability with respect to the 

underlying application. The pair of fuzzy sets RX RX    

is referred to as the fuzzy rough set of X  in this case and 

U R    is a fuzzy equivalence approximation space.  

Case 4: In Case 3 of R  referring to a fuzzy equivalence 

relation, when X  is a fuzzy set, the expressions for the lower 

and upper approximations of the set X  is given as          

 

{( ( ) infmax(1 ( ) ( ))) }Y Y X
U

Y U R

RX u m u m u U


  


 

      

{( ( ) supmin( ( ) ( ))) }Y Y X
UY U R

RX u m u m u U


  
 

      .  (5)                                  

The pair of fuzzy sets RX RX    is referred as the fuzzy 

rough-fuzzy set of X  and U R    is again a fuzzy 

equivalence approximation space. From the above explanation, 

it is obvious that the set of expressions in cases 1 -3 are special 

cases of the set of expressions for the lower and upper 

approximations given in Case 4.  Pictorial diagram of lower and 

upper approximations for Case 4 is shown in Fig 1.     

                              

 

Fig. 1 The pair RX RX   is referred to as the fuzzy 

rough-fuzzy set of X. 

Significance of generalized rough sets in image analysis 

problem is described in Sec. 8, where entropy and image 

ambiguity measures are defined. 

IV. ROUGH-FUZZY GRANULATION AND CASE GENERATION 

A case may be defined as a contextualized piece of 

knowledge representing an evidence that teaches a lesson 

fundamental to achieving goals of the system. Case based 

reasoning (CBR) [12] is a novel Artificial Intelligence (AI) 

problem-solving paradigm, and it involves adaptation of old 

solutions to meet new demands, explanation of new situations 

using old instances (called cases), and performance of 

reasoning from precedence to interpret new problems. It has a 

significant role to play in today’s pattern recognition and data 

mining applications involving CTP, particularly when the 

evidence is sparse. The significance of soft computing to CBR 

problems has been adequately explained by Pal, Dillon and 

Yeung [13] and Pal and Shiu [14]. In this section we provide an 

example [15], [16] of using the concept of f-granulation for 

performing the task of case generation in large scale CBR 

systems. While case selection deals with selecting informative 

prototypes from the data, case generation concerns with 

construction of ‘cases’ that need not necessarily include any of 

the given data points. 

For generating cases, linguistic representation of patterns is 

used to obtain a fuzzy granulation of the feature space. Rough 

set theory is used to generate dependency rules corresponding 

to informative regions in the granulated feature space. The 

fuzzy membership functions corresponding to the informative 

regions are stored as cases. Figure 2 shows an example of such 

case generation for a two dimensional data having two classes. 

The granulated feature space has 3
2 

= 9 granules. These 

granules of different sizes are characterized by three 

membership functions along each axis, and have ill-defined 

(overlapping) boundaries. Two dependency rules: class1 L1 

 H2 and class2 H1 L2 are obtained using rough set theory. 

The fuzzy membership functions, marked bold, corresponding 

to the attributes appearing in the rules for a class are stored as 

its case. 
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Unlike the conventional case selection methods, the cases 

here are cluster granules and not sample points. Also, since all 

the original features may not be required to express the 

dependency rules, each case involves a reduced number of 

relevant features. The methodology is therefore suitable for 

mining data sets, large both in dimension and size, due to its 

low time requirement in case generation as well as retrieval.  

The aforesaid characteristics are demonstrated in Figure 3 

[15], [16] for a forest cover type GIS data on seven kinds of 

wood with number of features 10 (cartographic and remote 

sensing measurements) and number of samples 586012. Their 

superiority over Instance-based learning (IB3), Instance-based 

learning with reduced number of features (IB4) and random 

case selection algorithms, in terms of classification accuracy 

(with one nearest neighbor rule), case generation (tgen) and 

retrieval (tret) times, and average storage requirement (average 

feature) per case, is evident. The numbers of cases considered 

for comparison is 545. As can be seen, all the ten features are 

not required for providing highest classification rate, only four, 

on an average, is sufficient in the proposed method. Based on 

the similar concept, Li et al reported a CBR based classification 

system combining efficient feature reduction and case selection 

[17]. Note that here the granules considered are class 

independent. In the next section we describe a classification 

method where the granules are class dependent. 

                                                                

 Fig. 2 Rough-fuzzy case generation for a 2-D data [15]. 

Before we describe some applications of rough-fuzzy 

granular computing, we mention certain issues for their 

implementation, namely, 

 Selection of granules and their sizes/ shapes  

 Class dependent or independent granules 

 Fuzzy granules  

  Fuzzy set over crisp granules  

  Crisp set over fuzzy granules 

  Fuzzy set over fuzzy granules 

 Granular fuzzy computing 

 Fuzzy granular computing 

Class dependent granulation, as expected, has merits over 

class independent granulation in modeling overlapping classes, 

but with additional computation cost. Granular fuzzy 

computing means granules are crisp whereas computing done 

with them is fuzzy. On the other hand, crisp computing with 

fuzzy granules refers to Fuzzy granular computing. These 

issues are described in the following applications. 

                   

 Fig. 3 Performance of different case generation schemes for 

the forest cover-type GIS data set with 7 classes, 10 features 

and 586012 samples. 

V. ROUGH-FUZZY CLASSIFICATION 

For a given input pattern, the rough-fuzzy class dependent 

pattern classification model has the following three steps [18]: 

Step 1 Generate fuzzy granulated feature space 

Step 2 Remove redundant features using rough sets, and 

Step 3 Classify 

                                       

The first step generates the class-dependent (CD) fuzzy 

granulated feature space of input pattern vector. For fuzzy 

granulation of a feature space containing L number of classes, 

we used L number of π-type fuzzy sets to characterize the 

feature values of each pattern vector. Each feature is thus 

represented by L number of [0, 1]-valued membership 

functions (MFs) representing L fuzzy sets or characterizing L 

fuzzy granules along the axis. That is, each feature of a pattern 

F = [F1, F2,..., Fn] characterizes L number of fuzzy granules 

along each axis and thus comprising L
n
 fuzzy granules in an 

n-dimensional feature space. Fig. 4 shows a crisp visualization 

of 16 (= 4
2) such class dependent granules using 0.5-cut when 

the no. of classes is four in two-dimensional feature space. The 

shape and size of the granules are dependent on the nature of 

overlapping of classes and class-wise feature distribution. (One 

may note that using class independent granulation, as in Fig. 5, 

with low, medium and high, the no. of granules generated for a 

two dimensional plane would be 9 (= 3
2
)

. 

The increased dimension brings great difficulty in solving 

many tasks. This motivates for selecting a subset of relevant 

and non-redundant features. Accordingly, the neighborhood 

rough set (NRS) [19] based feature selection method is used in 

Step 2. The advantage in the use of NRS is that it can deal with 

both numerical and categorical data, and does not require any 

discretisation of numerical data. Further, the neighboring 

concept facilitates to gather the possible local information 

through neighbor granules that provide better class 

discrimination information. The integrated model thus takes the 

advantage of both class-dependent fuzzy granulation and NRS 

feature selection methods. After the features are selected, they 

can be used as input to any classifier in Step 3.  
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For implementation of the concept of neighbourhood rough 

sets in feature selection, let us assume an information system 

denoted by I = (U, A) where U (the universal set) is a 

non-empty and finite set of samples {x1, x2, ..., xn}; A = {C ∪ 

D}, where A is the finite set of features {a1, a2, ..., am}, C is the 

set of conditional features and D is the set of decision features. 

Given an arbitrary xi ∈ U and B ⊆  C, the neighbourhood 

ΦB(xi) of xi with given Φ, for the feature set B is defined as [18]  

      jijiiB xxUxxx , , B

, (6)                 

where Δ is a distance function.  

   

                                 

Fig. 4 Crisp visualization of sixteen class dependent granules 

for L = 4 generated from class-wise fuzzy representation of 

features F1 and F2. 

 

ΦB(xi) in Eqn. (6) represents the neighborhood information 

granule centered with sample xi. That is, each sample xi 

generates granules with a neighbourhood relation. For a metric 

space (U, Δ ), the set of neighbourhood granules {Φ(xi)| xi ∈ U} 

forms an elemental granule system, that covers the universal 

space rather than partitions it as done by Pawlak’s rough set 

(PaRS). A neighbourhood granule degrades to an equivalence 

class when ɸ = 0. In this case, samples in the same 

neighbourhood granules are equivalent to each other and 

neighbourhood model degenerates to Pawlak’s rough set. Thus 

NRS) can be viewed as a generalization of PaRS.  

Generation of neighborhood depends on both distance 

function ∆ and parameter Φ. The first one determines the shape 

and second controls the size of neighborhood granule. For 

example, with Euclidean distance the parameter Φ acts as the 

radius of the circle region developed by ∆ function. Both these 

factors play important roles in neighbourhood rough sets (NRS) 

and can be considered as to control the granularity of data 

analysis. The significance of features varies with the 

granularity levels. Accordingly, the NRS based algorithm 

selects different feature subsets with the change of ∆ function 

and Φ value. 

Performance of rough-fuzzy feature selection (granular 

feature space and rough feature selection) is demonstrated here 

with 1-NN classifier, as an example, on remotely sensed images 

where the different regions are highly overlapping and the 

number of available training samples is small. Table 1 shows 

the comparative performance of various models in terms of β 

value [20] and Davies-Bouldin (DB) value on IRS-1A image 

and SPOT image with partially labelled samples. (Partially 

labelled means, the classifiers are initially trained with labelled 

data of six land cover types and then the said trained classifiers 

are applied on the unlabeled image data to partition into six 

regions.) 

Five different models considered are: 

 Model 1: 1-NN classifier, 

 Model 2: CI fuzzy granulation + Pawlak’s rough set 

(PaRS) based feature selection + 1-NN classifier, 

 Model 3: CI fuzzy granulation + neighborhood rough 

set (NRS) based feature selection + 1-NN classifier, 

 Model 4: CD fuzzy granulation + PaRS based feature 

selection + 1-NN classifier, 

 Model 5: CD fuzzy granulation + NRS based feature 

selection + 1-NN classifier. 
                                                                                                                          

TABLE I 

COMPARATIVE PERFORMANCE OF MODELS USING 1-NN CLASSIFIER WITH 

PARTIALLY LABELLED DATA SETS (FOR Φ = 0.45 AND Δ = EUCLIDEAN 

DISTANCE) 

 

Model 

 value DB value 

IRS-1A SPOT IRS-1A SPOT 

Training 

sample 9.4212 9.3343 0.5571 1.4893 

1 6.8602 6.8745 0.9546 3.5146 

2 7.1343 7.2301 0.9126 3.3413 

3 7.3559 7.3407 0.8731 3.2078 

4 8.1372 8.2166 0.779 2.8897 

5 8.4162 8.4715 0.7345 2.7338 
 

As expected, the β value is the highest and DB value is the 

lowest for the training set (Table 1). It is also seen that model 5 

yields superior results in terms of both the indexes. As a whole, 

the gradation of performance of five models can be established 

with the following β relation:  

βtrain > βmodel5 > βmodel4 > βmodel3 > βmodel2 > βmodel1     (7)                                                               

                                                                           

Similar gradation of performance is also observed with DB 

values, which further supports the superiority of model 5. 

In order to demonstrate the significance of granular 

computing visually, let us consider Figs. 5a and 5b depicting 

the output corresponding to models 1 (without granulation) and 

5 (with granulation), say, for IRS-1A. It is clear from the 

figures that model 5 performed well in segregating different 

areas by properly classifying the land covers. For example, the 

Howrah bridge over the south part of the river is more 

prominent in Fig. 5b, whereas it is not so in Fig. 5a.  

Tables II and III show the confusion matrix and dispersion 

score of each of the six land cover classes for models 1 and 5 

respectively. Dispersion score signifies the variance in 

misclassified samples. Lower dispersion score, which is 

desirable, means misclassified samples are confused among 

least number classes; thereby providing more opportunity for  
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Fig. 5a Classified IRS-1A images with model 1.  

 
Fig. 5b Classified IRS-1A images with model 5. 

 
TABLE II  

CONFUSION MATRIX AND DISPERSION SCORES FOR SIX CLASSES OF IRS-1A 

IMAGE FOR MODEL 1 

 

 

them to get corrected at the next level with higher level 

information. Model 5 has lowest dispersion score (see Table III) 

while model 1 has highest (see Table II).  Again, the score is 

minimum for C1 (pure water) and C6 (open space) as they have 

least overlapping with others, whereas the value is larger for 

classes like C3 (concrete area) and C5 (vegetation) having 

significant overlapping with neighbouring classes. However, 

computation time wise, it increases in the order as we move 

from model 1 to model 5. 
         
TABLE III 

CONFUSION MATRIX AND DISPERSION SCORES FOR SIX CLASSES OF IRS-1A 

IMAGE FOR MODEL 5  

 

VI. ROUGH-FUZZY CLUSTERING 

The classification method in Sec 5 is an example of fuzzy 

granular computing. The rough-fuzzy clustering method, 

termed as rough-fuzzy c-means (RFCM), that will be described 

here, on the other hand, refers to granular fuzzy computing. The 

RFCM adds the concept of fuzzy membership 

of fuzzy sets, and lower and upper approximations of rough sets 

into c-means algorithm. While the membership of fuzzy sets 

enables efficient handling of overlapping partitions, the rough 

sets deal with uncertainty, vagueness, and incompleteness in 

class definition [21]. 

 

                    

Fig. 6. Rough-fuzzy c-means: each cluster is represented by crisp 

lower approximations and fuzzy boundary [21], [22]. 

In RFCM, each cluster is represented by 

• a cluster prototype (centroid), 

• a crisp lower approximation, and 

• a fuzzy boundary. 

The lower approximation influences the fuzziness of final 

partition. According to the definitions of lower approximations 

and boundary of rough sets, if an object belongs to lower 

approximations of a cluster, then the object does not belong to 

any other clusters. That is, the object is contained in that cluster 

      Predicted Class Dispersi- 

on Score  Class C1 C2 C3 C4 C5 C6 

 

 

 

Actual 

Class 

C1 128             14 2 2 1 0 0.4090 

C2 11 170 44 25 3 2 0.7126 

C3 10 80 201 131 17 3 0.8535 

C4 8 98 230 842 30 12 0.6828 

C5 25 25 25 147 688 365 0.8011 

C6 6 3 2 4 15 105 0.5912 

 

  

 

 

                  Predicted Class  Dispers 

 -ion 

 Score Class C1 C2 C3 C4 C5 C6 

 

 

  

Actual 

Class 

C1 142 3 1 0 0 1  0.2097             

C2 5 216 20 10 2 2  0.4968 

C3 6 45 301 80 8 2  0.6933 

C4 1 40 151 1010 13 5  0.5182 

C5 8 10 11 47 987 212  0.5844 

C6 3 1 1 2 5 123  0.4009 
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definitely. Thus, the weights of the objects in lower 

approximation of a cluster (Fig. 6) should be independent of 

other centroids and clusters, and should not be coupled with 

their similarity with respect to other centroids. Also, the objects 

in lower approximation of a cluster should have similar 

influence on the corresponding centroids and cluster. Whereas, 

if the object belongs to the boundary of a cluster, then the object 

possibly belongs to that cluster and potentially belongs to 

another cluster. Hence, the objects in boundary regions should 

have different influence on the centroids and clusters. So, in 

RFCM, the membership values of objects in lower 

approximation are 1, while those in boundary region are the 

same as fuzzy c-means. In other word, RFCM first partitions 

the data into two classes-lower approximation and boundary. 

Only the objects in boundary are fuzzified. The new centroid is 

calculated based on the weighting average of the crisp lower 

approximation and fuzzy boundary. Computation of the 

centroid is modified to include the effects of both fuzzy 

memberships and lower and upper bounds. In essence, 

rough-fuzzy clustering (RFCM) 

• provides a balanced compromise between restrictive 

(hard clustering) and descriptive (fuzzy clustering) 

partitions 

• is faster than fuzzy clustering  

• provides better uncertainty handling capability/ 

performance. 

Therefore, wherever fuzzy c-means (FCM) [24] algorithm has 

been found to be successful since its inception, RFCM would 

have an edge there in terms of both performance and 

computation time. This feature of RFCM has been 

demonstrated extensively for different kinds of patterns 

including brain MRI Images [22]. RFCM is seen to perform 

better than hard c-means (HCM), rough c-means (RCM) [23] 

and fuzzy c-means (FCM).  

VII. CLUSTERING ROUGH FUZZY C-MEDOIDS AND AMINO 

ACID SEQUENCE ANALYSIS 

In most pattern recognition algorithms, amino acids cannot 

be used directly as inputs since they are non-numerical 

variables. They, therefore, need encoding prior to input. In this 

regard, bio-basis function maps a non-numerical sequence 

space to a numerical feature space. It uses a kernel function to 

transform biological sequences to feature vectors directly. 

Bio-bases consist of sections of biological sequences that code 

for a feature of interest in the study and are responsible for the 

transformation of biological data to high-dimensional feature 

space. Transformation of input data to high-dimensional 

feature space is performed based on the similarity of an input 

sequence to a bio-basis with reference to a biological similarity 

matrix. Thus, the biological content in the sequences can be 

maximally utilized for accurate modeling. The use of similarity 

matrices to map features allows the bio-basis function to 

analyze biological sequences without the need for encoding. 

One of the important issues for the bio-basis function is how to 

select the minimum set of bio-bases with maximum information. 

Here, we present an application of rough-fuzzy c-medoids 

(RFCMdd) algorithm [25] to select the most informative 

bio-bases. The objective of the RFCMdd algorithm for 

selection of bio-bases is to assign all amino acid subsequences 

to different clusters. Each of the clusters is represented by a 

bio-basis, which is the medoid for that cluster. The process 

begins by randomly choosing desired number of subsequences 

as the bio-bases. The subsequences are assigned to one of the 

clusters based on the maximum value of the similarity between 

the subsequence and the bio-basis. After the assignment of all 

the subsequences to various clusters, the new bio-bases are 

modified accordingly [25]. Here similarity between two 

sequences is measured in terms of mutation probability of an 

amino acid using Dayoff mutation matrix. 

The performance of RFCMdd algorithm for bio-basis 

selection is presented using five whole human 

immunodeficiency virus (HIV) protein sequences and 

Cai-Chou HIV data set, which can be downloaded from the 

National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov). The performances of different 

c-medoids algorithms such as hard c-medoids (HCMdd), fuzzy 

c-medoids (FCMdd), rough c-medoids (RCMdd), and 

rough-fuzzy c-medoids (RFCMdd) [25] are reported with 

respect to  index and  index based on homology alignment 

score [21]. The results establish the superiority of RFCMdd 

with lowest  index and highest  index.  

 

 
Fig. 7a Gamma values of different c-Medoids.  

 
Fig. 7b  values of different c-Medoids 

 

In previous examples we have demonstrated the role of 

granules in modeling overlapping classes, linguistic rules and 

in defining class exactness. The next two sections are based on 

entropy and mutual information measures defined over 

granulated space. In Section 8, we demonstrate how fuzzy 

boundaries of image regions, rough resemblance between 

nearby gray levels and rough resemblance between nearby 
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pixels give rise to ambiguity in images, where the significance 

of granules in determining roughly resemblance in gray levels  

and pixels is evident [26]. In Section 9 we demonstrate how 

mutual information defined on class independent fuzzy 

approximation space of attribute sets can be made useful for 

measuring the relevance of a conditional attribute with respect 

to decision attribute and redundancy among conditional 

attributes, and an application to selection of relevant genes 

from micro-array data. 

VIII. ROUGH-FUZZY ENTROPY AND IMAGE AMBIGUITY 

MEASURES 

Here we provide two classes of entropy measures based on 

roughness measures of a set X and its complement X
c
 in order to 

quantify the incompleteness of knowledge about a universe. 

One of them is based on logarithmic gain function, defined as 

[26]: 

( ) ( )1
( ) [ ( ) log ( ) ( ) log ( )]

2

c
L cR R
R R R

X X
H X X X 

 
 

 
   , (8) 

where   denotes the base of the logarithmic function used and 

X U  stands for the complement of the set X  in the 

universe. The various entropy measures of this class are 

obtained by calculating the roughness values ( )R X  and 

( )c

R X  considering the different ways of obtaining the lower 

and upper approximations of the vaguely definable set X . 

Note that, the ‘gain in incompleteness’ term is taken as 

log ( )R

 
  in (1) and for 1   it takes a value in the 

interval [1 ] . The other class of entropy measures, as 

obtained by considering an exponential function to measure the 

‘gain in incompleteness’, is: 

(1 ( )) (1 ( ))1
( ) [ ( ) ( ) ]

2

c
R RX XE c

R R RH X X X
     

  , (9) 

where   denotes the base of the exponential function used. 

Similar to the class of entropy measures 
L

RH , the various 

entropy measures of this class are obtained by using the 

different ways of obtaining the lower and upper approximations 

of X  in order to calculate ( )R X  and ( )c

R X . The ‘gain 

in incompleteness’ term is taken as 
(1 )R 

 in (2) and for 

1   it takes a value in the finite interval [1 ] . 

The plots of the entropies 
L

RH  and 
E

RH  as functions of A  

and B  are given in Figs. 8 to 10. In Figs. 8 and 9, the values of 
L

RH  and 
E

RH  are shown for all possible values of the 

roughness measures A  and B  considering e  . Fig. 10 

shows the plots of the proposed entropies for different values of

 , when A B . 

A. IMAGE AMBIGUITY MEASURES AND SEGMENTATION 

Using the aforesaid entropy definitions, we compute 

grayness and spatial ambiguity measures of an image. Grayness 

ambiguity refers to indefiniteness associated with deciding 

whether a pixel or a clump of pixels (granule) is white or black. 

That is, it concerns with the indefiniteness due 

 
Fig. 8 Plot of logarithmic rough-fuzzy entropy 

 

 
Fig. 9 Plot of exponential rough-fuzzy entropy 

 

 
 

Fig. 10 Plots of entropy for different values of base   and gain 

functions. A  ( )R X , B ( )c

R X . 

to fuzziness as well as granularity in gray values. Spatial 

Ambiguity, on the other hand, refers to indefiniteness in shape 

and geometry of various regions where indefiniteness is 

concerned with both intensity and spatial location of individual 

pixel or group of pixels.  These ambiguity measures are 

minimized by changing the cross-over point of the membership 

function to find a set of minima corresponding to different 

thresholds of an image. 

Fig 11 shows the segmentation results of three images, as an 

example, using grayness ambiguity measures based on 

rough-fuzzy entropy and fuzzy entropy [27]. In the former case, 

membership of a pixel is dependent on the granule (defined 

over one-dim gray scale) to which it belongs, and it is 

independent of its spatial location. Whereas, in the latter case, 

the membership of a pixel is entirely dependent on its own gray 

value, and it is independent of its spatial location. Therefore the 

improvement in segmentation results by rough-fuzzy entropy 

as compared to fuzzy entropy in Fig. 11 is due to inclusion of 
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the concept of granules. The same is quantitatively 

demonstrated in Fig. 12 for 45 other images where β-index for 

segmentation is seen in almost all cases to be higher for outputs 

corresponding to rough-fuzzy entropy. 

 

 
(a) Baboon image     (b) Proposed             (c) Fuzzy entropy 

 

 
(a) Brain MR image   (b) Proposed           (c) Fuzzy entropy 

 

 
(a) Remote sensing image  (b) Proposed       (c) Fuzzy entropy 

Fig. 4 Segmentation results (Effect of granules) 

 

Fig. 52 β-index for segmentation results on 45 images 

(Significance of using the concept of granules is evident). 

IX. FUZZY EQUIVALENCE PARTITION MATRIX AND GENE 

SELECTION 

 An important application of gene expression data in 

functional genomics is to classify samples according to 

their gene expression profiles. In most gene expression 

data, number of training samples is very small compared to 

large number of genes involved in the experiments. 

Among the large amount of genes, only a small fraction is 

effective for performing a certain task. This leads to the 

task of gene selection i.e., identifying a reduced set of most 

relevant genes for a certain task. 

 Several information measures such as entropy, mutual 

information and f-information have been used in selecting 

a set of relevant and non-redundant genes from a 

microarray data set. For real-valued gene expression data, 

the estimation of different information measures is a 

difficult task as it requires knowledge on the underlying 

probability density functions of the data and the integration 

on these functions. Existing approaches include 

Discretization, and Parzen window methods. In this section 

various f-information measures [28] are computed on the 

fuzzy equivalence partition matrix defined along each gene 

axis, and based on them relevance and redundancy of a 

gene are determined. The subset of genes which provides 

maximum relevance to the decision classes and minimum 

redundancy among themselves in terms of the information 

measures is selected. 

A. FUZZY EQUIVALENCE PARTITION MATRIX 

If c and n denote the number of fuzzy information granules 

(equivalence classes) and number of objects in U, then 

c-partitions of U generated by fuzzy attribute A can be arrayed 

as a (c × n) fuzzy equivalence partition matrix. 

,         (10) 

m
A

ij Є [0, 1] is the membership value of object xj in ith fuzzy 

equivalence class Fi. Fuzzy relative frequency corresponding to 

fuzzy equivalence partition Fi is 

                                               (11)   

If fuzzy attribute sets P and Q generate p and q number of fuzzy 

equivalence classes, and Pi and Qj represent corresponding ith 

and jth fuzzy equivalence partitions, then joint frequency of Pi 

and Qj is 

                        (12) 

 

B.  F-INFORMATION MEASURES 

 

Various fuzzy-information measures on attribute sets are 

defined below based on the aforesaid individual frequency and 

joint frequency of different fuzzy equivalence partitions [28]. 

 

Entropy (on fuzzy approximation spaces of attribute set A): 

.         (13) 

 

Mutual information (between two attribute sets P and Q): 
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Other information (between two attribute sets P and Q): 
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    C. METHOD OF SELECTION OF GENES 

 

    Principle: 

 Compute Total Relevance of selected genes, J1 = ∑P I 

(P, R) where P is a gene (condition attribute) and R 

denotes the sample class labels (decision attribute). 

 Compute Total Redundancy among selected genes, J2 

= ∑P, Q I(P, Q) where P and Q are two genes 

(condition attributes). 

 Select the set that Maximizes F = J1 – J2. 

Algorithm: 

 Generate FEPM for all individual genes. 

 Calculate relevance of each gene I(P,R). 

 Generate resultant FEPM between each P of the 

selected genes and each Q of remaining genes.  

 Calculate redundancy I(P, Q) between P and Q . 

 Select gene Q from remaining genes that maximizes 

 "Relevance of Q – average redundancy between Q 

and selected genes". 

Performance of the method is demonstrated in Figs. 13 and 14  

using the mutual information measure, as an example, for five 

binary class cancer data sets, namely, breast cancer, leukemia, 

colon cancer, rheumatoid arthritis versus osteoarthritis (RAOA) 

and RA versus healthy controls (RAHC). In each case FEPM 

based approach in computing the said measure is compared 

with Parzen window based and discretization based techniques. 

Maximum 50 genes are selected. Highest classification 

accuracy obtained and the number of genes required to obtain 

that are plotted. SVM (with leave-one-out method) was used to 

compute the classification accuracy. In most of the cases, 

higher or same accuracy with lower number of genes is seen to 

be obtained with FEPM. 

X. CONCLUSION 

Granulation is a process like self-reproduction, 

self-organization, functioning of brain, Darwinian evolution, 

group behavior, cell membranes and morphogenesis - that are 

abstracted from natural phenomena. Fuzzy-granulation or 

f-granulation is inherent in human thinking and reasoning 

process, and plays an essential role in human cognition. The 

article deals with rough-fuzzy granular approach in natural 

computing framework. The concept of knowledge encoding 

using rough sets and the role of f-granulation to make it more 

efficient are illustrated. Examples of judicious integration, viz., 

rough-fuzzy case generation, rough-fuzzy classification, 

rough-fuzzy c-medoids and rough-fuzzy entropy measures with 

their merits and characteristics are described. The 

bioinformatics problems of protein sequence analysis for 

determining bio-bases using rough-fuzzy clustering, and gene 

selection from microarray data using f-information measures on 

fuzzy equivalence partition matrices are considered. Class 

dependent granulation with neighborhood rough set has better 

class discrimination ability than class dependent granulation 

with Pawlak’s rough set. The algorithm is useful in scarcity of 

training samples. The effect of granules in improving the 

quality of image segmentation vis-a-vis fuzzy entropic 

segmentation is established. Performance wise rough-fuzzy 

c-medoids clustering is superior to its hard, rough and fuzzy 

clustering versions in selecting bio-bases. FEPM based 

information measures provide higher or same accuracy with 

lower number of genes selected. Further references on these 

issues are available in [29]-[34].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 SVM based classification accuracy with selected genes 

using FEPM, Discrete and Parzen window techniques. 

 

 
 

 Fig. 14 Number of genes required to obtain highest accuracy. 
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 The methodologies described here basically provide new 

machine learning modules. Although some specific 

applications are demonstrated, they can be applied to other real 

life problems application of these rough-fuzzy methodologies 

and the underlying concepts in modeling f-granularity 

characteristics   of   computational   theory of perception (CTP)  

 [1, 2] constitutes a challenging task to future researchers. 
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