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Abstract—Several disciplines, including artificial intelligence,

problems or providing decision support for human decision

operations research and many others, study how to make good makers.

decisions. In this overview article, we argue that the key to
making progress in our research area is to combine their ides,
which often requires serious technical advances to recoriei
their different assumptions and methods in a way that resul$
in synergy among them. To illustrate this point, we give a
broad overview of our ongoing research on search and plannip
(with a large number of students and colleagues, both at the
University of Southern California and elsewhere) to demontsate
how to combine ideas from different decision making discighes.
For example, we describe how to combine ideas from artificial
intelligence, operations research, and utility theory to ceate the
foundations for building decision support systems that fit he
risk preferences of human decision makers in high-stake onshot
decision situations better than current systems. We also deribe
how to combine ideas from artificial intelligence, economis,
theoretical computer science and operations research to lid
teams of robots that use auctions to distribute tasks autormaously
among themselves, and give several more examples.

Index Terms—agents, ant robotics, artificial intelligence,
auction-based coordination, decision theory, dynamic prgram-
ming, economics, freespace assumption, goal-directed rigation,
greedy online planning, heuristic search, high-stake onshot
decision making, incremental heuristic search, Markov deision
processes, multi-agent systems, nonlinear utility funatins, opera-
tions research, planning, real-time heuristic search, reiforcement
learning, risk preferences, robotics, scarce resourceseguential-
single item auctions, terrain coverage, utility theory.

I. INTRODUCTION
RTIFICIAL INTELLIGENCE is rooted in building cog-

Artificial intelligence has developed tools for building
agents that perform well with respect to given performance
measures. Other decision making disciplines provide rdiffe
and potentially complementary tools. In general, the large
one’s toolbox, the more decision problems one is able to
tackle. By combining ideas from different decision making
disciplines, one can expect to improve on existing tools and
build new tools that either perform better than existingne
or solve decision problems that existing tools cannot solve
This provides an incentive to study different decision mgki
disciplines, develop curricula that allow students torestvout
several decision making disciplines, and create a unilersa
science of intelligent decision making that combines ideas
from different decision making disciplines, includingificial
intelligence, operations research, economics, decisieory,
and control theory. One obstacle that needs to be overcome
is that different decision making disciplines typicallyugy
different applications and thus make different assumpgtion
resulting in different decision making methods. Combining
ideas from different decision making disciplines therefor
often requires serious technical advances to reconcile the
different assumptions and methods in a way that results in
synergy among them. A second obstacle is that that different
decision making disciplines focus on different aspectseafi-d
sion problems and have different ideas about what conssitut
a good solution to a given decision problem, often due to
the disciplinary training of their researchers. For exampl

—\ nitive systems (that is, systems that operate in a wayatistics researchers often tend to focus on the uncsytain
similar to the human mind) but today is more and more abojf the data and how it can be resolved; optimization re-
engineering intelligent systems (that is, systems thatesolsearchers often tend to assume that the data is correct and

tasks that require difficult decisions) even if these systeim

focus on finding optimal or close to optimal (rather than

not operate in a way similar to the human mind. For examimely) solutions (concentrating on "planning” rather ttha

ple, the popular textbook "Artificial Intelligence: A Moder

"operations”); and artificial intelligence researcherenftend

Approach” [52] by Stuart Russell and Peter Norvig viewg, focus on the ability of agents to make good decisions enlin

artificial intelligence as the science of creating raticengents,

taking into account the limitations of the agents (such a# th

where agents are control systems that interact with an enyinited sensing, computational and communication cajtésil
ronment. They can sense to gather information about the stgk well as their noisy actuation) in addition to their intgian

of the environment and execute actions to change it. Ratioj@th the environment (such as information collection) and

agents, according to the textbook, should select acticatstie

each other (such as coordination), which explains the title

expected to maximize given performance measures. In genegg this overview article. A third obstacle is that different
agents must be able to make good decisions in complgxcision making disciplines often use different termimylo

situations that involve a substantial degree of uncertairet

and notation. Multi-disciplinary training can overcomesse

find solutions in a t|me|y manner. Researchers from artlﬁciabstac|es and transform the second obstacle into a St[ength

intelligence therefore create a strong foundation fording

Artificial intelligence often pursues general principlést

such agents, typically focusing more on autonomous detisigpply widely to decision making and problem solving (rather
making and optimization than modeling of complex decisiofhan problem-specific methods), perhaps due to its roots in

Sven Koenig is with the Department of Computer Science, é&miv
sity of Southern California, Los Angeles, CA, 90089-0781SA) e-mail:
skoenig@usc.edu, web page: idm-lab.org.

December 2012 Vol.13 No.1

building cognitive systems. It is therefore not surpristhgt
artificial intelligence, over time, has incorporated idéasn
other decision making disciplines. For example, the third
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edition of "Artificial Intelligence: A Modern Approach” cars and artificial intelligence, aiming to improve decision popt
local search in Chapter 4, including hill-climbing searsim- in the presence of massive data bases, partial and/or aircert
ulated annealing, local beam search, and genetic algaitim information, and distributed decision makers. Papers have
covers utility theory in Chapter 16, including utility futgns, covered topics from computational social choice to prefege
multi-attribute utility functions, and influence diagramié modeling, from uncertainty to preference learning, andanfro
covers sequential decision problems in Chapter 17, inatudimulti-criteria decision making to game theory [51].
Markov decision processes and dynamic programming meth\We sketch some of our own research in the remainder
ods such as value and policy iteration. It covers game theafy this overview article to illustrate why we believe that it
in Chapter 17, including single-move, repeated, and sd@lenis important to combine ideas from different decision mak-
games. It also covers mechanism design in the same chaptey,disciplines. Not surprisingly, our research centesuad
including auctions. All of these topics have also been stuthethods for decision making (planning and learning) that
ied in other decision making disciplines, such as operatioanable single agents and teams of agents to act intelligientl
research and economics, and typically originated there. Rbeir environments and exhibit goal-directed behavioreal+
example, researchers from artificial intelligence disceddo- time, even if they have only incomplete knowledge of their
tally and partially observable Markov decision processemf environment, imperfect abilities to manipulate it, lindt®r
operations research when working on foundations for datisinoisy perception or insufficient reasoning speed. Our rekea
theoretic planning and reinforcement learning and then, fgroup, the Intelligent Decision Making group, develops new
example, developed new ways of representing and solvidgcision making methods, implements them and studies their
them by incorporating insights from knowledge representproperties theoretically and experimentally. We demaistt
tion and planning (where states are typically represented awound 1995 that it is possible to combine ideas from differe
collections of facts), resulting in both symbolic and stewed decision making disciplines by developing a robot navigyati
dynamic programming. Symbolic dynamic programming, fagrchitecture based on partially observable Markov degisio
example, is a generalization of dynamic programming fqrocesses from operations research that allows robotsvto na
solving Markov decision processes that exploits symboligate robustly despite a substantial amount of actuator and
structure in the solution of relational and first-order @i sensor uncertainty, which prevents them from knowing their
Markov decision processes to avoid the full state and actipnecise location during navigation [27]. This researchuitesl
enumeration of classical dynamic programming methods [544 a reliable robot architecture that overcomes the defigéen
Outsiders often do not know about these and other recerfifpurely topological or metric navigation methods [58Jn&:
achievements of artificial intelligence and, for this reasothen, our research group has continued to combine ideas from
might not appreciate the ideas that it has to offer to theniifferent decision making disciplines. In the following.ew
There exist some established but narrow interfaces betweksscriboe some of these research directions in more detail.
artificial intelligence and other decision making disaigls. While they might appear diverse, there is a common under-
An example of a step in the direction of an interface bdying thrust, namely to bring about advances that extend the
tween artificial intelligence and control theory is [8]. Anreach of search (in a broad sense, including heuristic kearc
example of a step in the direction of an interface betwedsill-climbing and dynamic programming), and to apply the
artificial intelligence and operations research is thertrge results to robot navigation.
tional Conference on Integration of Artificial Intelligema@and
Operations Research Techniques in Constraint Programming 1
for Combinatorial Optimization Problems (CPAIOR), which
is by now an established conference series with 9 confesenceFinding plans that maximize the expected utility for non-
since 2004, preceeded by 5 workshops. Similarly, [LOtnear utility functions is important in both high-stake esn
eventually integrated software for constraint prograngrand shot decision situations and decision situations with cecar
linear optimization. In general, however, artificial inigénce resources [7].
probably needs to reach out even more to other decisiors In high-stake one-shot decision situations, huge gains or
making disciplines with the objective to inform them and losses of money or equipment are possible, and human
create a universal science of intelligent decision makidhile decision makers take risk aspects into account. Risk-
this might appear to be an obvious objective, progress in averse decision makers, for example, tolerate a smaller
this direction has been made mostly recently. For example, expected plan-execution reward for a reduced variance
an algorithmic decision theory community formed around (although this explanation is a bit simplified). For ex-
2000 and eventually created the International Conferemce o ample, they try to avoid huge losses when fighting
Algorithmic Decision Theory (ADT). The First Internationa forest fires, containing marine oil spills or controling
Conference on Algorithmic Decision Theory took place in  autonomous spacecraft (and other decision problems that
Venice, Italy, in 2009, and the Second International Con- artificial intelligence researchers study) and thus add
ference on Algorithmic Decision Theory took place in New  more sensing operations than necessary to maximize
Brunswick, USA, in 2011. The conference series, according the expected reward [26]. Planning systems need to
to the conference announcement at www.adt2011.org, iegolv ~ reflect these risk preferences. Bernoulli and Von Neu-
researchers from such disparate fields as decision theisry, d = mann/Morgenstern’s utility theory [60] [4] suggests that
crete mathematics, theoretical computer science, ecaspmi  rational human decision makers choose plans that max-

. EXAMPLE: NONLINEAR UTILITY FUNCTIONS
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imize the expected utility, where the utility is a monorover can visit to perform science experiments and assigned
tonically increasing function of the reward. For examscience return value to each of them [40]. Other approaches
ple, exponential utility functions completely preserve thalso exist [41], together with extensions to teams of robots
structure of planning tasks because they are the only cl§42].
of nonlinear utility functions for which decisions do not Methods from artificial intelligence exploit the structwé
depend on the accumulated reward. However, one-switdbcision-theoretic planning tasks [45]. For example fiaiai
utility functions often model the risk attitudes of humarintelligence has investigated how to represent searchespac
decision makers better than exponential utility functionignplicitly and exploit the resulting decomposability tohe®
[2]. Markov decision processes efficiently without having to-enu
« In decision situations with scarce resources, there areerate their state spaces completely. For instance, stagtt
often limits to how much of a resource (such as timeersions of value iteration represent the transition pesdic
energy or memory) can be consumed before it rums factored form, which allows them to represent policies
out. For example, a lunar rover that reaches a sciene®re compactly than with tables to speed up their compu-
target with minimal expected energy consumption dogstions and generalize policies across states [5]. An el@amp
not necessarily maximize the probability of achieving its SPUDD, that uses algebraic decision diagrams instead of
within its battery limit. Resource limits can be modeledables [20]. Artificial intelligence has also investigafedvard
with monotonically (but perhaps not strictly monotonisearch methods that, different from value and policy iterat
cally) increasing utility functions that map total rewardgonsider only states that are reachable from the start. state
(the negative of the total resource consumptions) to redr instance, LAO* uses heuristic search to restrict theieval
values. For example, a hard resource limit can be modelgpdates only to relevant states rather than all states [16]
with a step function that is zero to the left of the negativigl4]. We have generalized these methods to find plans that
resource limit (where the total resource consumption fmaximize the expected utility for nonlinear utility funetis
greater than the resource limit) and one to the right of [B5]. Other decision making disciplines have developecth
[15]. ways of exploiting the structure of decision-theoretiolzag
tasks [49], meaning that there are opportunities for combgin
Decision-theoretic planning methods in artificial intelli different ideas. Overall, this research combines insidtus
gence are these days typically, either explicitly or imiglic  artificial intelligence, operations research, and utilitgory for
based on Markov decision processes. One can use dynapianning with nonlinear utility functions. Operations easch
programming methods, such as value iteration [3] or polidyas studied the properties of Markov decision processes in
iteration [21], to maximize the expected total (undisceahnt detail, artificial intelligence and operations researchtgbute
or discounted) reward. One can also use these methoddd&as for solving them, and utility theory provides a rdilis
maximize the expected utility for nonlinear utility funatis optimization criterion for high-stake one-shot decisidiua
(studied in the context of risk-sensitive Markov decisiotions.
processes in operations research [22] and control the®jy [3
but then, except for exponential utility functions, needs t
add the accumulated reward to the states, which increases
the number of states substantially. We and other artificial Centralized control is often inefficient for teams of robots
intelligence researchers have therefore studied “funatfo in terms of the amount of communication and computation re-
versions of value and policy iteration that do not maintaiquired since the central controller is the bottleneck ofshe
a value for each augmented state but rather a value functtem. Researchers from artificial intelligence and robdtiage
for each original state (that maps the total reward to theevaltherefore studied robot coordination with cooperativetians
of the state) and operate directly on these value functi6hs [9]. An auction is “a market institution with an explicit sef
[48] [12] [34] [43], which allows one to solve larger decigio rules determining resource allocation and prices on thésbas
problems than what would be possible otherwise due to thé bids from the market participants” [46]. Auctions have
following advantages: First, the value functions can sinmet  been developed for the allocation of resources in situation
be represented exactly and compactly (that is, with a finiteghere agents have different utilities and private infoiiorat
number of parameters), as we have shown for one-switdlictions are therefore promising decentralized methods fo
utility functions [36] [38] and piecewise linear utility ic- teams of robots to allocate and re-allocate tasks in re@d-ti
tions with optional exponential tails [37]. Second, theueal among themselves in dynamic, partially known and time-
functions can also be approximated to a desired degree (fonstrained domains with positive or negative synergiesam
example, with piecewise linear functions), sometimesltiegu tasks. Furthermore, the short length of a bid is helpful when
in approximation guarantees, which allows one to trade afbmmunication bandwidth is limited. Artificial intelligen
between runtime and memory consumption on one hand aatl later robotics have explored auction-based coordimati
solution quality on the other hand [37]. More complex demisi systems at least since the introduction of contract netsvork
problems can be solved in a similar way. For example, a lun&5], mostly from an experimental perspective. In auction-
rover might have to maximize its science return within itbased coordination systems, the bidders are robots, and the
battery limit despite uncertainty about its energy constiomp items up for auction are tasks to be executed by the robots.
when scientists have designated several locations that #ierobots bid their costs. Thus, the robot with the smallaist

I1l. EXAMPLE: AUCTION-BASED COORDINATION
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cost is best suited for a task. All robots then execute thestasnsights from artificial intelligence, economics, thearat
that they win. Auction-based coordination systems are easymputer science and operations research for the develdpme
to understand, simple to implement and broadly applicablef. auction-based coordination systems and their anal28is [
They promise to be efficient both in communication (since
robots communicate only essential summary informationl) an
in computation (since robots compute their bids in pargllel
A typical application is multi-robot routing [10], where a Robots often operate in domains that are only incompletely
team of robots has to visit given targets and repeateddpown or change over time. One way of dealing with incom-
reassigns targets among the robots as it learns more aljmlate information is to interleave search with action exiecu

the initially unknown terrain, as robots fail or as additn In this case, the robots need to replan repeatedly. To make
targets get introduced. Examples include environmenéarcl search fast, one can use heuristic search methods witledimit
up, mine clearing, space exploration, and search-andieesdookahead (agent-centered search, such as real-timestieuri
Multi-robot routing problems are NP-hard to solve optimallsearch [30]) or heuristic search methods that reuse infikoma
even if the locations of obstacles, targets, and robots drem previous searches (incremental heuristic searchjp- Co
initially known and (except for the locations of the robots}ider, for example, a robot that has to move from its current
do not change [32]. Their similarity to traveling salesjpers location to given goal coordinates in initially unknownren.
problems [33] allows one to use insights from theoreticdlhe robot does not know the locations of obstacles initially
computer science and operations research for their asalybut observes them within its sensor radius and adds them to it
Economics has an extensive auction literature but its agentap. Planning in such non-deterministic domains is typjical
are rational and competitive, leading to long decision eygcl time-consuming due to the large number of contingencies,
strategic behavior, and possibly collusion. Such issuesalo which provides incentive to speed up planning by sacrificing
arise in auction-based coordination systems because tlésrothe optimality of the resulting plans. Greedy online plangni
faithfully execute their programs. On the other hand, aumcti methods interleave planning and plan execution to allowit®b
based coordination systems must operate in real-timd, Stib gather information early and then use the acquired inderm
some insights from economics can be exploited for buildingn right away for replanning, which reduces the amount of
them, such as the concepts of synergy and different auctiglanning performed for unencountered situations. For gtem
mechanisms, including parallel, combinatorial, and satjge goal-directed navigation with the freespace assumptioa is
single-item (SSI) auctions. For example, SSI auctionsgedc common-sense version of assumption-based planning that is
in several rounds, assigning one additional target perdoupopular in robotics for moving a robot to a given goal locatio

to some robot. We have exploited the fact that SSI auctioim- initially unknown terrain [47] and can be analyzed with
based coordination systems with marginal-cost bidding [5®ols from theoretical computer science [28]. It finds a shor
perform a form of hill-climbing search to analyze the reisigit (unblocked) path from the current location of the robot te th
team performance [59]. We have used tools from theoretigal location given its current knowledge of the locatiofis o
computer science to show that SSI auction-based coordinatobstacles under the assumption that the terrain is otherwis
systems can provide constant factor performance guasantiee of obstacles. If such a path does not exist, it stops
even though they run in polynomial time and, more genemnsuccessfully. Otherwise, the robot follows the path lunti
ally, that they combine advantageous properties of paralie either reaches the goal location, in which case it stops
and combinatorial auctions [32], resulting in one of the fewuccessfully, or observes the path to be blocked, in which
existing performance analyses. Some intuition for thislltes case it repeats the process using its revised knowledgesof th
can be gained from interpreting the greedy construction lafcations of obstacles. Incremental heuristic search ousth
minimum spanning trees as a cooperative auction [31]. \WWelve such series of similar path planning problems often
have investigated several versions of SSI auctions to buflkster than searches from scratch [17] (by reusing infaomat
SSI auction-based coordination systems that increasedme t from previous searches to speed up their current search), ye
performance while still allocating targets to robots inlti@e. differ from other replanning methods (such as planning by
For example, we have generalized auction-based coordimatanalogy) in that their solution quality is as good as the tsmu
systems based on SSI auctions to assign more than guoality of searches from scratch [25]. The first incremental
additional target during each round (called the bundle)sizéeuristic search methods was published in artificial intell
which increases their similarity with combinatorial aocts gence and robotics [56]. It has been discovered since ttagn th
by taking more synergies among targets into account amtremental search had been studied much earlier already (f
making the resulting hill-climbing search less myopic. Wexample, in the context of dynamic shortest path problems in
have shown that, for a given number of additional targetseto hlgorithms), which allowed us to develop a new incremental
assigned during each round, every robot needs to submit ohburistic search method by combining ideas from different
a constant number of bids per round and the runtime of winngisciplines. D* Lite [24] is now a popular incremental hestic
determination is linear in the number of robots [29]. Thhg t search method for planning with the freespace assumption
communication and winner determination times do not depetitht combines ideas from incremental search (namely, to
on the number of targets, which helps the resulting auctiorecalculate only those start distances that can have cbange
based coordination systems to scale up to a large numbeiooihave not been calculated before) with ideas from hearisti
targets for small bundle sizes. Overall, this research doesh search (namely, to use approximations of the goal distances

IV. EXAMPLE: FAST REPLANNING
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to recalculate only those start distances that are reldeant robotics had investigated spanning tree-based coveratie me
recalculating a shortest path). In particular, it combiitesas ods in unweighted terrain, where the travel times of robots
behind DynamicSWSF-FP [50] from algorithms with ideaare the same everywhere in the terrain. Single-robot cgeera
behind A* from artificial intelligence. Overall, this regea problems are solved with minimal cover times by Spanning
combines insights from artificial intelligence, roboti@nd Tree Coverage (STC), a polynomial-time single-robot cover
theoretical computer science for the development of famgyje method published in robotics and artificial intelligenc

replanning methods and their analysis. that decomposes terrain into cells, finds a spanning tree of
the resulting graph, and makes the robot circumnavigate it
V. EXAMPLE: ANT ROBOTS [13] [14]. This method had been generalized to Multi-Robot

Researchers from robotics are interested in simple robci%anmng Tree Coverage (MSTC), a polynomial-time multi-

with limited sensing and computational capabilities aslw X ot coverage method published in robotics [18] [19]. Whil

as noisy actuation. Such ant robots have the advantage gtTC provably improves the cover imes compared to STC, it

. . catnnot guarantee its cover times to be small. We showed that
they are easy to program and cheap to build. This makesit . : : :
solving several versions of multi-robot coverage probleritls

feasible to dgploy groups of ant robots an_d take advamal%?nimal cover times is NP-hard, which provides motivation
of the resulting fault tolerance and parallelism. Reseznsh

: ) . for designing polynomial-time constant-factor approxiioia
from robotics had studied robots that can follow trails Ialaniw)ethods. We generalized STC to Multi-Robot Forest Coverage

by other robots but we studied robots that leave trails in ﬂZFAFC) a polynomial multi-robot coverage method based on

Ler:(r:azlno':orgo;gzegllose;s t(regal:?re((;h?(t)rlss,u\r/\llselglI:rallgg Ioga;)trlgiﬁ method published in operations research [11] (in the gbnte
: €p Yi. d . . » 9 qg deciding where to place nurse stations in hospitals) for
terrain, mine sweeping, and surface inspection. Ant robc%s . : .
. Tinding tree covers with trees of balanced weights, one tree f

cann_ot use convennona}l planning m_(_at_hods due to the'rdmmteach robot. We also generalized MFC from unweighted terrain

sensing and computational capabilities. To overcome th Seweighted ; .

L Cr ghted terrain, where the travel times of robots are not

limitations, we developed navigation methods that leavekma ) . )

ings in the terrain, similar to the pheromone trails of reatlpe same_everywhere_. The cover times of .MFC n weighted
N anéi unweighted terrain are at most about sixteen timesrlarge

ants. These markings are shared among all ant robots ?ﬁ‘

allow them to cover terrain even if thev do not have any'@" minimal and experimentally close to minimal in all &sbt
y Ycenarios [62]. Overall, this research combines insigtum f

kind of memory, cannot maintain maps of the terrain, nor_ .. . " . : :
. a{t|f|C|aI intelligence, robotics, and operations reshdor the
plan complete paths. They can be used by single ant robqts . . .
. eévelopment of terrain coverage methods and their analysis
as well as groups of ant robots and provide robustness in
situations where some ant robots fail, ant robots are moved
without realizing this, the trails are of uneven qualityfl@ome
trails are destroyed. Robot architectures based on partial In this overview article, we described some of our own
observable Markov decision processes provide robots Wéh tresearch to illustrate why we believe that it is important to
best possible location estimate to overcome actuator arebse combine ideas from different decision making disciplinde.
uncertainty, while ant robots achieve their goals withotgre are convinced that we have overlooked lots of developments
worrying about where they are in the terrain. We built phgkicbut encourage researchers from artificial intelligencedn-c
ant robots that cover terrain and test their design both timue to reach out to other decision making disciplines with
realistic simulation environments and on a Pebbles Ill tobdhe objective to inform them about our latest research aityg he
We modeled the coverage strategy of such ant robots with make progress towards a universal science of intelligent
graph dynamic programming methods that are similar to realecision making.
time heuristic search methods (such as Learning Real-Time
A*) [30] and reinforcement learning methods (such as Real- ACKNOWLEDGMENTS
Time Dynamic Programming) [;] from artificial intelligence We would like to thank the chairs and organizers of
(except that the values are written on the floor rather th?ﬁ . .

. . e IEEE/WIC/ACM International Conference on Intelligent
stored in memory), which allowed us to use tools fro

. . : : gent Technology 2012 for inviting us to give a talk, the
theoretical computer science to analyze their behaviot. [57 = . ) i
. editors of the IEEE Intelligent Informatics Bulletin forlalv-
Other researchers, such as Israel Wagner and his collabsrat . ) . : .
A . . . ing us to summarize our thoughts in this overview article,
have similar interests and work on the intersection of rimispt . X L .
e ) : . and operations researcher Craig Tovey for giving extensive
artificial intelligence, and theoretical computer scieffié],

) . . b comments on a draft of this article, which now includes salver
see also http://www.cs.technion.ac.il/"wagner/. Ovettails re- o . S T

X . . . . of his ideas. The research summarized in this article iscbase
search combines insights from artificial intelligence,atits,

biology, and theoretical computer science for the devekmm on a number of |nterd|sg|pl|nary collaborations with a larg
S : : number of co-authors (including colleagues and students),
of navigation methods for ant robots and their analysis.

whose substantial contributions we would like to acknogked
The overall perspective is novel to this publication white t
VI. EXAMPLE: TERRAIN COVERAGE research synopses re-use larger portions of earlier faioits,
Robot coverage of known terrain can be sped up wiguch as [62] and [23], and the web pages of the author. The
multiple robots that coordinate explicitly. Researchaxaf perspective is based upon work supported by NSF (while the

VII. CONCLUSIONS
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author served as program director there), ARL/ARO undgm]
contract/grant number W911NF-08-1-0468 and ONR in form
of a MURI under contract/grant number N00014-09-1-103F”
The views and conclusions contained in this document are
those of the author and should not be interpreted as represé&f!
ing the official policies, either expressed or implied, oé th
sponsoring organizations, agencies or the U.S. governmen
We apologize for the necessary generalizations, resuiting
research stereotypes, and our inability to include refegemno

all relevant research - there are just too many of them.
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