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Abstract—It is a big challenge to find useful associations in
databases for user specific needs. The essential issue is howto pro-
vide efficient methods for describing meaningful associations and
pruning false discoveries or meaningless ones. One major obstacle
is the overwhelmingly large volume of discovered patterns.This
paper discusses an alternative approach called multi-tiergranule
mining to improve frequent association mining. Rather than
using patterns, it uses granules to represent knowledge implicitly
contained in databases. It also uses multi-tier structuresand
association mappings to represent association rules in terms of
granules. Consequently, association rules can be quickly accessed
and meaningless association rules can be justified according
to the association mappings. Moreover, the proposed structure
is also an precise compression of patterns which can restore
the original supports. The experimental results shows thatthe
proposed approach is promising.

Index Terms—knowledge discovery in databases, association
rule mining, granule mining, pattern mining, decision rules,
support restoration.

I. I NTRODUCTION

T HE association mining consists of two phases: pattern
mining and rule generation. Many efficient algorithms

have been developed for pattern mining; However, the chal-
lenging issue for pattern mining is not efficiency but inter-
pretability, due to the huge number of patterns generated
by the mining process [33], [18]. Frequent closed patterns
partially alleviate the redundancy problem. Recently, many
experiments [29], [36], [13], [16] have proved that frequent
closed patterns are good alternative of terms for representing
text features. Several approaches for pattern post-processing
have also been proposed recently. Pattern compression [30],
pattern deploying [29] and pattern summarization [33], [24]
were proposed to summarize patterns.

The phase of rule generation is to find interesting rules based
on discovered patterns and a minimum confidence, which
is also a time consuming activity that can generate many
redundant rules. The approaches for pruning redundant rules
can be roughly divided into two categories, the subjective
based approach and objective approach. The former is to find
rules that satisfy some constraints or templates [7], [2]. The
later is to construct concise representations of rules without
applying user-dependent constraints [35], [31].

There are several obstacles when we consider using associa-
tion mining in applications: the overwhelmingly large volume
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of discovered patterns and rules, false discoveries, the lack of
semantic information along with the mining process, and the
incompleteness of knowledge coverage. Frequent association
mining has been extended to multilevel association mining,
which uses concept hierarchies or taxonomy trees to find
rules [8]. The leaves of a taxonomy tree represent items at the
lowest level of abstraction. Using a top-down strategy, at each
level, frequent patterns are calculated based on accumulated
counts. Recently, mining flipping correlations [1] has been
proposed to find positive and negative correlations in taxon-
omy trees. Another paradigm is the filtered-top-k association
discovery [28] which used three parameters: a user specified
measure of how potential interesting an association is, filters
for discarding inappropriate associations, andk the number of
associations to be discovered.

One important finding is that the use of closed patterns can
greatly reduce the number of extracted rules; however, a con-
siderable amount of redundancy still remains [32]. Therefore,
the size of the set of closed patterns need to be further reduced.
The summarization approaches can achieve this purpose. But
the summarization approaches are loss methods that they carry
errors when restoring the support of original patterns fromthe
compressed patterns. Moreover, both the closed patterns and
summarization approaches do not annotate the patterns with
semantic information.

Based on our knowledge, currently there are three different
approaches for the interpretation of discovered knowledge
based on some sorts of semantic annotations: an OLAP based
visualization method [17], a generating semantic annotation
method [18] and multi-tier structures [15], [14], which used
“granules” instead of “patterns” and “rules”, and defined
meaningless rules based on the relationship between long rules
and their general ones (short rules).

In previous research we have found that granules were also
a compressed representation. Thus, in this paper, we explore
the capability of multi-tier structures for estimating supports
for patterns without information loss. This paper proposesthe
concepts and definitions to illustrate the relationship between
patterns and granules. We also presents a method to estimate
patterns’ support based on granules. A set of experiments has
been conducted and the experimental results show that the
proposed approach is promising.

The remainder of the paper is structured as follows. Section
II discusses related work. Section III and IV introduces basic
concepts of granules and the multi-tier structures and describes
the basic and derived association mappings. Section V presents
the definition of association mappings and discusses their
properties. Section VI then presents the support estimation
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discussion for pattern and granule based methods. Section VII
evaluates the proposed approach and the last section is the
conclusion.

II. RELATED WORK

Pattern mining played an important role for the development
of association mining. Many efficient algorithms have been
developed for pattern mining [6], [9] in transaction databases.
Pattern mining has also been developed for mining frequent
itemsets in multiple levels [5], [6], and constraint-based
techniques [19], [3], [12], [11], [23].

Since these approaches produce a huge volume of patterns,
a new major challenging issue for pattern mining is how to
present and interpret discovered patterns. Several approaches
have been developed for this issue. A concise representation of
patterns is a lossless representation, for example, non-derivable
patterns [4], condensed patterns [22], maximal patterns, closed
patterns, and regular patterns [25]. Pattern post-processing was
also presented recently, for example, pattern compression[30],
pattern deploying [29], [13] and pattern summarization [33],
[27], [10], [24].

A transaction database can be formally described as an
information table(T, V T ), whereT is the set of transactions,
and V T = {a1, a2, . . . , an} is the set of items (or called
attributes) for all transactions inT .

Let α be anitemset, a subset ofV T . Its coversetis the set
of all transactions (or objects)t ∈ T such thatα ⊆ t, and its
support is|coverset(α)|

|T | . An itemsetα is calledfrequent pattern
if its support≥ min sup, a minimum support. Given a set of
transactions (objects)Y , its itemsetdenotes the set of items
(attributes) that appear in all the objects ofY . For a pattern
α, its closureclosure(α) = itemset(coverset(α)).

A pattern α is closed if and only if α = closure(α).
Closed patterns can be summarized into pattern profiles [33]
by clustering the patterns with respect to KL-divergence , and
a pattern’s support can be estimated by using pattern profiles.

Let T ′ =
⋃

1≤i≤m Tαi
, whereTαi

is the coverset of pattern
αi. A profile M is a triple〈pr, φ, ρ〉, wherepr is a probability
distribution vector of the items in this profile;φ is called
master pattern which is the union of a set of patterns (α1,
α2, ... , αm); andρ is the support of the profile which equals
to |T ′|

|T | .
The profile based summarization can largely reduce the

pattern number, however, it has following limitations. Firstly,
a pattern is possibly covered by multiple profiles. Secondly, it
is lack of error guarantee in the support estimation. To achieve
a result with less error, a greater number of profiles is required
that can reduce the performance of pattern summarization. Fi-
nally, the estimation sometimes falsely mark some infrequent
patterns as frequent ones, or vise versa.

The concepts of decision rules and granules are well ac-
ceptable in the rough set community [20]. Rough set theory
has been developed to deal with vagueness for reasoning
precisely about approximations of vague concepts. Decision
rules have been used for rule-based classification [26], and
the construction of decision trees and flow graphs [21].

The advantage of using decision rules is to reduce the
two-phases of association mining (pattern mining and rule

TABLE I
AN INFORMATION TABLE

Object(Transaction) Items(Attributes)

t1 a1 a2

t2 a3 a4 a6

t3 a3 a4 a5 a6

t4 a3 a4 a5 a6

t5 a1 a2 a6 a7

t6 a1 a2 a6 a7

TABLE II
A DECISION TABLE

Granule a1 a2 a3 a4 a5 a6 a7 Ng

g1 1 1 0 0 0 0 0 1
g2 0 0 1 1 0 1 0 1
g3 0 0 1 1 1 1 0 2
g4 1 1 0 0 0 1 1 2

generation) into one process. In this research, we develop
granule mining into multi-tier granule mining in order to
identify meaningless rules and efficiently access association
rules for user specific needs.

III. DECISION TABLE AND TWO-TIER STRUCTURE

In the multi-tier granule mining, the information table is
firstly compressed into a decision table for a selected set
of attributes by using the Group By operation. The decision
table is then represented into a two-tier structure based ona
partition of attributes, which classifies the set of attributes into
condition attributes and decision attributes, and describes the
associations between condition granules and decision granules.
The two-tier structure can be further derived into different
multi-tier structures to summarize all possible associations
between granules based user selected attributes and tiers.

Formally, the decision table of a information table (T , V T )
is denoted as a tuple of(T, V T , C, D) if C ∩ D = ∅ and
C ∪ D ⊆ V T . C and D are two groups of attributes which
are conditions and decision attributes respectively.

Usually, it is assumed (see [21]) that there is a function for
every attributea ∈ V T such thata : T → Va, whereVa is
the set of all values ofa. We callVa the domain ofa. Let B
be a subset ofV T . B determines a binary relationI(B) on T
such that(t1, t2) ∈ I(B) if and only if a(t1) = a(t2) for all
a ∈ B, wherea(t) denotes the value of attributea for object
t ∈ T . It is easy to prove thatI(B) is an equivalence relation,
and the family of all equivalence classes ofI(B) is denoted
by U = T/B. We call each equivalence class inU a granule.
The granule inU that contains transactiont is denoted by
B(t). Let UC = T/C andUD = T/D, granules inUC or UD

are also referred toC-granulesor D-granules, respectively.
Table I list out a sample transaction table, whereV T =

{a1, a2, ..., a7} and T = {t1, t2, ..., t6}. Let a1 to a5 be the

TABLE III
C-Granules

Condition Granule a1 a2 a3 a4 a5 coverset

cg1 1 1 0 0 0 {t1, t5, t6}
cg2 0 0 1 1 0 {t2}
cg3 0 0 1 1 1 {t3, t4}

December 2012 Vol.13 No.1 IEEE Intelligent Informatics Bulletin



Feature Article: Yuefeng Li and Jingtong Wu 23

TABLE IV
D-Granules

Decision Granule a6 a7 coverset

dg1 0 0 {t1}
dg2 1 0 {t2, t3, t4}
dg3 1 1 {t5, t6}

condition attributes anda6, a7 be the decision attributes, then
table I can be grouped byV T into a decision table as shown
in table II, whereT/C∪D = {g1, g2, g3, g4}. Based on this
definition, we also have the condition and decision granules
as listed out in table III and IV.

In this paper, a relationRB betweenU and T is used to
describe the relationships between granules and transactions
in formal concept analysis [34]. That is, given a transaction
t ∈ T and a granuleg ∈ U , we sayg is induced byt or t has
the propertyg if g = B(t) (also written astRBg).

Let B be a subset ofV T andU = T/B, and granuleg ∈ U
be induced by transactiont. Its covering setcoverset(g) =
{t′|t′ ∈ T, t′RBg}. Let granuleg = cg ∧ dg, wherecg is a
C-granuleand dg is a D-granule. We can easily prove that
coverset(g) = coverset(cg) ∩ coverset(dg). Table III and
IV also list out the coversets for the sampleC-granuleand
D-granule.

The smallest granules only contain one single attribute,
we also call them primary granules. A large granule can be
generated from some smaller granules by using logic operation
“and”, ∧. Every granule in the decision table can be mapped
into an association rule(or calleddecision rule), where the
antecedent is aC-granulewhich consists of attributes inC,
and the consequent is aD-granulewhich consists of attributes
in D. The decision rules can also be regarded as larger
granules generated by the condition and decision granules.For
instance, the granulesg1, g2, g3 andg4 shown in table II can
be generated by theC-granulesandD-granulesas follows:

g1 = cg1 ∧ dg1;
g2 = cg2 ∧ dg2;
g3 = cg3 ∧ dg2;
g4 = cg1 ∧ dg3.

Fig. 1. A 2-tier structure

With these definitions of condition and decision granules
as well as the relations between them, a 2-tier structure can
be built. Fig. 1 illustrates a 2-tier structure to describe the
relationship between these granules in Table II, III and IV.The
links (arrows) also represent the associations (decision rules)
between condition granules and decision granules. Based

on the 2-tier structure, varieties of multi-tier structures and
mappings can be derived. The details will be discussed in the
following two sections.

IV. MULTI-TIERS STRUCTURE

In this section, we first discuss the concept of multi-tier
structures. We also define the concept of general rules (i.e.,
rules with shorter antecedents) of decision rules in order to
clarify the meaning of meaningless in granule mining. At last,
we present the method to estimate patterns’ support based on
granules.

To describe more associations between granules, we can
further divide the condition attributes into some categories in
accordance with what users want. For example, letCi and
Cj be two subsets ofC, which satisfyCi ∩ Cj = ∅ and
Ci ∪Cj = C, hence aC-granulecg can be divided into aCi

granulecgi andCj granulecgj and havecg = cgi ∧ cgj .
A multi-tier structurecan be describes as a pair(H, A),

whereH is a set of granule tiers andA is a set of association
mappings that illustrate the associations between granules in
different tiers.

Fig. 2. An example of a multi-tier structure

Fig. 2 illustrates a 3-tier structure, whereC-granulesare
divided into Ci-granulesand Cj-granules(i.e., the first two
levels in the figure), and we haveH = {Ci, Cj , D}. The Ci

tier includesCi-granules= {cgi,1, cgi,2, . . . , cgi,k}, theCj tier
includesCj-granules= {cgj,1, cgj,2, . . . , cgj,r}, and theD tier
includesD-granules= {dg1, dg2, . . . , dgv}, wherek = 2, r =
3 andv = 3.

The 3-tier structure in Fig. 2 includes three association map-
pings (arrows),Γcd, Γij , andΓid (i.e., A = {Γcd, Γij , Γid}),
which show the linkages betweenC-granulesandD-granules
(e.g., the solid arrows),Ci-granules and Cj -granules, and
Ci-granulesand D-granules, respectively. These association
mappings can be used to generate association rules.

Given a C-granule cgk and aCi-granule cgi,x, Γcd(cgk)
includes all possible associations (links and their strengths)
betweencgk andD-granules; Γij(cgi,x) includes all possible
associations betweencgi,x andCj-granules; andΓid(cgi,x) in-
cludes all possible associations betweencgi,x andD-granules.

The link strengthbetween granulecgk and granuledgz is
defined as

lstrength(cgk, dgz) = |coverset(cgk ∧ dgz)|

which is the number of transactions that have the property
“cgk ∧ dgz”.
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As defined above, the rule “cgk → dgz” is a decision rule
(or association rule), wherecgk is its antecedent anddgz is
its consequent (note the following concepts are also applicable
for “cgi,x → dgz”). Its support is

|coverset(cgk ∧ dgz)|

|T |
=

1

N
lstrength(cgk, dgz)

and itsconfidenceis

|coverset(cgk ∧ dgz)|

|coverset(cgk)|
=

lstrength(cgk, dgz)

|coverset(cgk)|
(1)

whereN = |T |, the total number of transactions.
Different to decision tables, we can discuss general associ-

ation rules (rules with shorter premises) of decision rulesin a
multi-tier structure.

Let cgk be a C-granule, dgz be a D-granule and cgk =
cgi,x ∧ cgj,y. We call “cgi,x → dgz” (or “ cgi,y → dgz”) a
general ruleof rule “cgk → dgz”.

Especially in the multi-tier structure, we can define the term
“meaningless” for a decision rule based on selected tiers. We
call “cgk → dgz” meaninglessif its confidence is less than or
equal to the confidence of its a general rule.

The rationale of this definition is analogous to the definition
of interesting association rules, whereα → β is an interesting
rule if P (β|α) (conditional probability) is greater thanP (β).
If we add a piece of extra evidence to a premise and obtain
a weak conclusion, we can say the piece of evidence is
meaningless.

V. ASSOCIATION MAPPINGS

In the last section, we discussed a three tiers structure
(H, A), whereH = {Ci, Cj , D}, Ci∪Cj = C andCi∩Cj = ∅,
and A = {Γcd, Γij , Γid}. Association mappings are used
to describe the association relationships between granules in
different tiers. They can be used to enumerate all association
rules between the associated granules. Usually, there are many
possible pairs(Ci, Cj) such thatCi∪Cj = C andCi∩Cj = ∅,
and Ci and Cj can be further divided into smaller sets.
Therefore, it is necessary using derived association mappings
(e.g.,Γid) for efficient rule generations in multi-tier structures.

A. Basic Association Mapping

The basic association mapping is the mapping between
granules from two tiers. For example, the mappings between
the condition and decision granules are basic mappings. As
the previous definitions, letU = T/VT , UC = T/C and
UD = T/D to be the set of granules, condition and decision
granules. Also letg1 ∈ UC and letg2 ∈ UD. Then based on
Eq.(1) and Section IV, we have

lstrength(g1, g2) = |coverset(g1 ∧ g2)|
= |coverset(g1) ∩ coverset(g2)|
= |{t ∈ T |tRCg1 and tRDg2}|.

The basic associations betweenC-granulesandD-granules
can be described as a basic association mappingΓcd such
that Γcd(g) is a set ofD-granule link-strength pairs for all

g ∈ UC . Formally, Γcd is defined asΓcd :: UC → 2UD×I ,
which satisfies

Γcd(g) = {(dg, lstrength(g, dg))|dg ∈ UD,
{t ∈ T |tRCg and tRDdg} 6= ∅}

for all granulesg ∈ UC , whereI is the set of all integers.
Obviously, supports and confidences of association rules can

be easily calculated based on the basic association mapping.
Let g1 ∈ UC , g2 ∈ UD, and “g1 → g2” be a decision rule, its
support and confidence can be derived as follows:

sup(g1 → g2) = 1
N

lstrength(g1, g2)
= 1

N

∑

(g2,ls)∈Γcd(g1) ls

conf(g1 → g2) = lstrength(g1,g2)
|coverset(g1)|

=

∑

(g2,ls)∈Γcd(g1)
ls

∑

(g,ls)∈Γcd(g1)
ls

B. Derived Association Mappings

The very interesting property of the multi-tier structuresis
that we can derive many association mappings based on the
basic association mapping rather than using the original set of
transactions. This property is significant on time complexities
for rule generations.

To simplify the process of deriving, we first consider the
method for deriving association mappingΓij betweenCi-
granulesandCj -granulesbased on the basic associationΓcd,
where Γij(g) is a set of Cj-granule integer pairs, which
satisfies

Γij :: Ui → 2Uj×I

and

Γij(gi) = {(gj, lstrength(gi, gj))|gj ∈ Uj ,
{t ∈ T |tRigi and tRjgj} 6= ∅}

for all granulesgi ∈ Ui, whereCi ∪ Cj = C, Ci ∩ Cj = ∅,
Ui = T/Ci (the set ofCi-granules), Uj = T/Cj (the set of
Cj-granules), andRi andRj are relations betweenUi andT ,
andUj andT , respectively.

We can also derive the association mappingΓid betweenCi-
granulesand D-granulesbased on the association mappings
Γij andΓcd, which satisfies

Γid :: Ui → 2UD×I

and

Γid(gi) = {(dg, lstrength(gi, dg))|dg ∈ UD,
{t ∈ T |tRigi and tRDdg} 6= ∅}

for all granulesgi ∈ Ui.
Fig. 3 illustrates the relations between these association

mappings. In this figure, the set of condition attributes are
split into two sets:Ci and Cj , and theC-granules(UC) are
also correspondingly compressed intoCi-granules (Ui) and
Cj-granules(Uj). As defined before,Γcd is used to describe
the association relationship betweenUC andUD. Association
mappingΓij is used to describe the association relationship
betweenUi and Uj, and association mappingΓid is used to
describe the association relationship betweenUi andUD.
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Fig. 3. Relations for derived association mappings

The relationship between the basic mapping and derived
mappings can be defined by the following definitions:

Let C ⊆ B ⊆ VT , then the relationship between the granules
in UC = T /C and granules inUB = T /B can also be defined.
A granuleg ∈ UC is called ageneralized granule of granule
g’ ∈ UB if ∀t ∈ coverset(g’) ⇒ tRCg (i.e., coverset(g’) ⊆
coverset(g)). This is denoted asg’ ⋗ g for the generalized
relationship betweeng’ and g.

Then for all g ∈ UC , the relation between the coverset of
g and its generalized granuleg′ is formally denoted as the
following equation:

coverset(g) =
⋃

coverset(g′)
{g′∈UB |g′⋗g}

(2)

VI. SUPPORTESTIMATION

The support estimation is originally proposed to provide a
method to restore the support for the patterns that summarized
into limited number of profiles or compressed representation.
Given a pattern, usually its support can not be obtained directly
from the profiles or compression. Thus, the support of the
given pattern only can be estimated through the corresponding
restore calculation using the information stored in the profiles
or representatives. Moreover, because the profiles are loss
summarization, a measure called restoration error is used to
examine the precision of the estimated support. This measure
is also applied to the estimated support calculated through
granules.

A. Support estimation for summarization

After the closed frequent patterns are summarized into the
profiles, the support for a pattern needs to be retrieved through
the calculation from the profile information. Because one
pattern can be covered by multiple profiles, then the maximum
result is selected as estimated support. Formally, for a given
patternαk, its estimated support can be calculated as follows:

ŝ(αk) = maxM (ρM ×
∏

ai∈αk

prM (ai = 1)) (3)

which selects the maximum one from all profilesM that
includeαk.

One method to measure the accuracy of the estimated
support is to measure the average relative error between the
estimated support and the original support. Formally, given a
summarization or compression of the original patterns and a
set of testing pattern setT = {α1, α2, ..., αl}, the quality of

this summarization or compression can be evaluated through
the average relative error, called restoration error denoted as
J , defined as follow:

J =
1

|T |

∑

α
k
∈T

|s(αk) − ŝ(αk)|

s(αk)
(4)

whereT = {α1, α2, ... , αl} is a given test set of patterns.
s(αk) is the real support of the patternαk, while the ŝ(αk)
is the estimated support calculated by the pattern profiles or
granules.

In the actual calculation, the original pattern sets can be
used as the testing set so that the restoration error measures
difference between the real support and the estimated support.
The smaller the error rate is, the closer is the estimated support
to the actual support. It is obvious that if the restoration error
is zero, the estimated support equals to the actual support.

B. Support estimation for granules

In terms of multi-tier structure of granules, the estimated
support is calculated through the granules and association
mappings. The estimated support can be calculated by the
granule support if the given pattern is derived by the granule
or the support can be calculated through the link strength of
the association mappings between granules that containing
the pattern. In some circumstance, the estimated support
calculated through the multi-tier structure can achieve a zero
restoration error rate.

There are several different calculation to obtained the
estimated support from the multi-tier structure of granules
according to what is the definition of the current multi-tier
structure and which tiers of granule are containing the given
pattern.

The first case is to estimate the support for a pattern with
a decision table. LetG be the decision table of information
table(T , V T ), then the estimated support is calculated solely
through sum of support of the granules containing the pattern.
The equation to calculate the estimated support for a given
patternα is as follow:

ŝ1(α, G) =

∑

g∈G,α⊆g

sup(g)

∑

gi∈G

sup(gi)
=

∑

g∈G,α⊆g

sup(g)

|T |

The second case is calculating the estimated support with a
two tier structure. For a 2-tier structure, letCG be the set of
C-granules andDG be the set ofD-granules. Given a pattern
α, it can be divided into two patternsα1 andα2 such thatα1

= α ∩ C andα2 = α ∩ D, respectively. Then the estimation
support is calculated as the summary of granules support if
patternα only contained by the granules in one tier. Or it
can be calculated through the link strength of the association
mappings between the granules that containingα1 andα2. The
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equations for the estimated support calculation are as follow:

ŝ2(α, CG, DG) =























1
|T |

∑

g∈CG,α1⊆g

sup(g) = ŝ1(α1, CG) if α2 = ∅

1
|T |

∑

g∈DG,α2⊆g

sup(g) = ŝ1(α2, DG) if α1 = ∅

1
|T |

∑

α1⊆g1∈CG,α2⊆g2∈DG

lstrengh(g1 → g2)otherwise

(5)

For other cases with the n-tier structures, the estimated
support can be calculated by different methods depending on
how many tiers of granules that the given pattern is derived
from. There are three categories of the calculation method
for the estimated support in the multi-tier structure. The first
case is that the given pattern is only contained by granules
in only one tier, then the support can be calculated by using
the supports of the granules in the corresponding tier. The
second case is for the patterns which are contained by the
granules of two tiers in the multi-tier structure. The calculation
for the support in such cases can use the link strength of the
mappings between the two granules to obtain the support. This
calculation is done directly in the current multi-tier structure.
The third method is for the patterns that are contained by
the granules from three or more tiers. To get the support
for such patterns, the calculation needs to use the mapping
informations from the 2-tier structure to compute the support
through Eq.(5).

To demonstrate the estimated support calculation from the
multi-tier structure, here uses a 3-tier structure as an example
to illustrate the calculation details. Let a 3-tier structure be
H = {Ci, Cj , D} containing three sets of granule that areCiG,
CjG and DG respectively. Then a patternα can be divided
into three patterns, namelyα1 = α∩CiG, α2 = α∩CjG and
α3 = α∩DG. If only one ofα1, α2 or α3 is non-empty, then
the support is calculated through the sum of support of only
one set of granules as follow:

ŝ3(α, CiG, CjG, DG) =























1
|T |

∑

g∈CiG,α1⊆g

sup(g) = ŝ1(α1, CiG) if α2, α3 = ∅

1
|T |

∑

g∈CjG,α2⊆g

sup(g) = ŝ1(α2, CjG)if α1, α3 = ∅

1
|T |

∑

g∈DG,α3⊆g

sup(g) = ŝ1(α3, DG) if α1, α2 = ∅

(6)

For the second case, that is one ofα1, α2 andα3 is empty,
then the support is calculated using the link strength of the
mappings ofΓi,j , Γi,d or Γj,d as follow:

ŝ3(α, CiG, CjG, DG) =



















1

|T |

∑

α1⊆g1∈CiG,α2⊆g2∈CjG

lstrengh(g1 → g2)if α3 = ∅

1

|T |

∑

α1⊆g1∈CiG,α3⊆g3∈DG

lstrengh(g1 → g3)if α2 = ∅

1

|T |

∑

α2⊆g2∈CjG,α3⊆g3∈DG

lstrengh(g2 → g3)if α1 = ∅

(7)

Finally, if none ofα1, α2 or α3 is empty, then it is a case of
the third category. Then the support is calculated through the
mappings ofΓc,d. In order to use these mappings, the division

of α need to be modified. That is, letα1 ∪ α2 = α ∩ CG
whereCG = Ci ∪ Cj such that the support can be obtained
by using a modified equation of Eq.(5). The equation used for
this calculation is as follow:

ŝ3(α, CiG, CjG, DG) =
1
|T |

∑

Cond

lstrengh((g1 ∧ g2) → g3)

Cond :α1 ⊂ g1 ∈ CiG, α2 ⊂ g2 ∈ CjG,
CiG ∪ CjG = CG, α3 ⊆ g3 ∈ DG

(8)

Regarding the quality of the estimation, when using the
two tier structure to calculate the estimated support, it can
achieve the zero restoration error rate because the two tier
structure is a lossless compression. Further, for the multi-tier
structure has more than two tiers, it also can achieve the zero
error rate when using only the mappings of granules from
two tiers or the calculation is performed via the basic 2-tier
structure.

Theorem 1:For a given patternα and a multi-tier structure
H = {C, D}, the estimated support calculated throughH
equals to the original support ofα. That is, ŝ(α, H) = Supα.

Proof: For a patternα, letα = α1∪α2 such thatα1∩α2 =
∅. Then for the support ofα, we have

Supα = |coverset(α1) ∩ coverset(α2)|.

Assumeα1 ⊂ g1 andα2 ⊂ g2, andg1 ∈ CG andg2 ∈ DG.
According to Eq.(2), we have:

coverset(α1) = ∪
g1,i∈CG

coverset(g1,i)

and
coverset(α2) = ∪

g2,i∈CG
coverset(g2,i).

Meanwhile, the link strength of the mapping fromg1 to g2

is:

lstrength(g1 → g2) = |coverset(g1 ∧ g2)|
= |coverset(g1) ∩ coverset(g2)|.

Moreover, we have

Σ
g1∈CG,g2∈DG

lstrength(g1 → g2)

= | ∪
g1∈CG, g2DG

(coverset(g1) ∩ (coverset(g2))|

= | ∪
g1,i∈CG

coverset(g1,i) ∩ ∪
g2,i∈CG

coverset(g2,i)|

= |coverset(α1) ∩ coverset(α2)|
= Supα.

Therefore, we haveSupα = ŝ(α, H).

VII. E XPERIMENTS AND DISCUSSION

Foodmart 2005 data collection contains two databases: SQL
Database and OLAP Database. The data used in this experi-
ment is the customer sales data from the OLAP database (see
http://www.e-tservice.com/), which includes four data cubes.
The Warehouse and Sales cube is used in our experiments,
which contains four measures and we used the unit-sales mea-
sure. The Product dimension used in the Warehouse and Sales
cube, consists of eight levels which are All, Product family,
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TABLE V
THE TIERS AND THEIR ATTRIBUTES

Levels Attributes

2-tiers C D

3-tiers Ci Cj D

Drink Food1 non-
consumable

Food2

4-tiers Ci,1 Ci,2 Cj D
A1..A4 A5..A11 A12..A16 A17..A23

Product department, Product category, Product subcategory,
Brand and Product. In the experiments, we only use the top
three levels: All, Product family, and Product department.

There are total 23 attributes in theProduct Department
level. These attributes are categorized into 4 product fami-
lies: Drink (Alcoholic Beverages, Baking Goods, Beverages,
Dairy), Non-Consumable(Carousel, Checkout, Health and
Hygiene, Household, Periodicals),Food 1 (Baked Goods,
Breakfast Foods, Canned Foods, Canned Products, Deli, Eggs,
Frozen Foods) andFood 2 (Meat, Packaged Foods, Produce,
Seafood, Snack Foods, Snacks, Starchy Foods).

The transactions used in the experiments are the customers’
purchase records stored in the fact table of unit sales. Every
transaction is the record of one day purchase of one customer
for all products which is sum up to product categories.
To build up the decision table and multi-tier structures of
granules, the transactions of the Unit sales are transformed
into an information table using the following procedure. Ifthe
customer purchases one or more products from that product
department, the value of the attribute in the product department
level is set to 1; otherwise, the value is set to 0. The total
number of transactions in the information table is 53,700.

The experiments test the proposed solution from several as-
pects, including space and time complexities, and the restora-
tion error rate of estimated support. We use two baseline
models to compare with the proposed theory. The first baseline
model is the decision table. The attributes are viewed as two
groups: condition and decision attributes. The second baseline
model is a pattern summarization model [33], which used
pattern profiles to estimate the support of any pattern (see
Eq.(3) and (4)).

1) Space and time complexity:In the experiments, the
information table is transformed into a decision table first.
Multi-tier structures are then constructed based on this deci-
sion table and the semantic information of attributes. Table V
shows a special definition of the multi-tier structures, where
the semantic relation between attributes are considered. As
in Table V, there are three multi-tier structures: a two-tier
structure (C and D), a three-tier structure (Ci, Cj and D),
and a four-tier structure (Ci,1, Ci,2, Cj andD).

We also made other 16 definitions of multi-tier structures by
grouping the 23 attitudes in different combinations. For each
definition, a 2-tier structure (C and D) is built firstly. Then
from it a 3-tier structure is built by dividing theC tier into
two smallerCi and Cj . Then theCi tier is further divided
into tier Ci,1 andCi,2 to generate a 4-tier structure (C1, C2,
Cj andD).

Fig 4 depicts the trends of total granule numbers in the
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Fig. 4. Granule numbers under different tier settings

TABLE VI
FREQUENT PATTERN NUMBER

Pattern type min support Number of patterns
Frequent pattern 1 56707
Closed pattern 1 15859

Frequent pattern 5 12217
Closed pattern 5 10963

Frequent pattern 50 1486
Closed pattern 50 1486

multi-tier structures when the number of tiers increases. It is
obvious that in most of the test, the number of granules drops
largely with the tier increases. Table VI shows the number of
patterns in the information table based on different minimum
support values.

Comparing with the multi-tier structures, pattern mining
gets a large amount patterns if themin support is not big
enough. However, when themin support is big enough
(e.g., 50 in this example), pattern mining will lose many
large patterns. Different from the pattern mining, multi-tier
structures can use a very small space to contain all the possible
associations for the chosen data attributes.

Table VII shows the results of the runtime tests. It is
obviously that the time used by multi-tier structures is much
less than that of pattern mining. Only when the minimum
support is set to a very large number of occurrence, the
time to obtain the frequent patterns looks acceptable. Fig
5 also obviously shows these differences between the two
approaches.

The results also reflect that the time used to create new tiers
from smaller granules is less than that from larger granules.

TABLE VII
RUNTIME

Granule Pattern
Multi-tier structure Time(ms) min sup Time(ms)

Decision table 19140 1 1.078e+007
2-tier 6765 5 1.131e+006

3 tier from 2 tier 2593 50 122672
4 tier from 3 tier 171
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For example, the time used to generate a four-tier structure
from a three-tier structure is 171 ms, while it takes 2593 ms for
constructing the three-tier structure from a two-tier structure.
These results show that the proposed theory has achieved the
remarkable performance.
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Fig. 5. Runtime of granule and pattern approach

2) Restoration error rate and meaningless rules:The pat-
tern summarization model uses all closed patterns, which are
generated from the whole information table with a minimum
support of 5, as the input patterns. There are 10963 closed
patterns in total. The restoration error rateJ is calculated by
using Eq.(4). Several tests are carried out with the different
number of profiles. The number of profiles is set to 200, 500,
750 and 1000 respectively. Fig 6 shows the results for the error
rate of the pattern summarization model vs. granule mining.
The results reflect that when using small number of profiles
such as 200, 500 and 750, the restoration error is much higher
than using granules. To be noticed, using a two tier structure
to calculate the support for all patterns (see Eq.(5), (6), (7) and
(8)), theJ values can remain as zero. This result proves the
discussion in section VI-B that the support estimated by the
granules in a two tier structure equals to the pattern’s original
support.
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The multi-tier structures also provide a special feature for

pruning some meaningless rules. Based on the definitions,
in these experiments, we generate general rules first for the
16 definitions of multi-tier structures. We then filter out the
meaningless rules based on their general rules. We found that
the rules contain about30% meaningless rules in average.

VIII. C ONCLUSION

Multi-tier granule mining provide an efficient way to repre-
sent and summarize association rules between granules based
user selected attributes and tiers. This paper continues the
development of multi-tier structures. It presents formalizes
concepts of association mappings and a method to ’estimate
patterns’ support based on related granules and the multi-
tier structures. Moreover, it conducts a set of experimentson
Foodmart 2005 data collection to test the proposed method.
Compared with pattern summarization, the proposed multi-
tier granule mining achieves the best performance with zero
restoration error rate. The experimental results also show
that the multi-tier structures can use a very small space to
store the possible associations, and the multi-tier structures
can be created efficiently. This research provides a promising
alternative approach to find useful associations in databases
for user specific needs.
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