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I. INTRODUCTION 

Within our grasp is a deep scientific 

understanding of how the brain’s 

mechanisms give rise to perception, 

cognition, emotion, action and social 

engagement with others. Such an 

understanding will have a revolutionary 

impact on science, medicine, economic 

growth, security, and social wellbeing. 

One way to understand this complicated 

system is through the construction of 

working models. Developing neural 

models that follow the architecture and 

dynamics of brain networks, combined 

with building robotic systems that 

physically ground these models, has 

great potential to solve one of the Grand 

Challenges posed by the United States 

National Academy of Engineering: 

Reverse-Engineering the Brain. Our 

laboratory attempts to meet this 

challenge in four complementary ways 

by: 1) Promoting the field of Cognitive 

and Brain-Based Robotics. 2) 

Developing adaptive action selection 

systems based on principles of 

vertebrate neuromodulation. 3) 

Data-mining neuroinformatic and gene 

expression databases. 4) Constructing 

large-scale, detailed models of cortical 

and subcortical processing on parallel 

computing platforms. 

II. COGNITIVE AND BRAIN-BASED 

ROBOTICS 

For over 10 years, we have been 

promoting the field of Cognitive 

Robotics, or Neurorobotics. These 

brain-based robots are physical devices 

whose control systems have been 

modeled after aspects of brain 

processing. The goals of these robots are 

to better understand cognition through 

the construction of physical artifacts, 

and to create practical systems that 

demonstrate cognitive capabilities. 

Neurorobotics is built on the notion that 

the brain is embodied in the body, which 

is, in turn, embedded in the environment, 

and that this coupling is necessary for an 

intelligent system. The field is small, but 

growing, due to technological advances 

and increased interdisciplinary research.  

Our group has developed a series of 

neurorobotic models that have 

successfully demonstrated perceptual 

categorization and conditioning [1], 

visual binding and scene segmentation 

[2], texture discrimination with artificial 

whiskers [3], adaptive motor control [4], 

spatial memory and navigation [5, 6], 

and neuromodulation as a 

general-purpose robot control system [7, 

8]. These algorithms have several 

important features for autonomous robot 

control in general, such as fluid 

switching of behavior, gating in 

important sensory events, and 

separating signal from noise. Our 

algorithms and models have been tested 

on several robotic platforms in our 

laboratory, and we are currently 

working with other robotics laboratories 

around the world to demonstrate their 

applicability.  

As an extension of our previous 

neurorobotic work in spatial memory 

and navigation, we are developing 

cognitive robots capable of contextual 

learning. A main goal of this research is 

to create a robot capable of constructing 

a cognitive map of its environment 

while foraging for different valued 

resources under varying environmental 

conditions. The system should lead to a 

better understanding of how areas of the 

medial temporal lobe interact with 

cortical areas to create flexible episodic 

memory. Such a system would be a 

major step forward for autonomous 

navigation by artificial systems. 

Another research direction of our lab, 

which builds upon our cognitive 

robotics work, is to deploy teams of 

cognitive robots. These robot teams, or 

swarms, can be fairly large in size, and 

as a result, an inexpensive robot with 

strong communication capabilities is 

favourable.  To that end, we have 

developed an open source robotic 

platform that leverages smartphone 

technology as a control system [9, 10]. 

The computing, communication, and 

sensing capabilities of current 

smartphones affords an inexpensive yet 

highly capable robotic platform that can 

be used for education and research. The 

platform, called leCarl, consists of an 

Android phone, R/C car platform, IOIO 

interface board, and additional sensors 

(see Figure 1). In the near future, our 

action selection, learning, and cognitive 

mapping algorithms will be deployed on 

a leCarl swarm in a Search and Rescue 

task. 

 
Figure 1. Android based robotic platform. The 

Android phone serves as the computing and 

sensing device. The IOIO provides an interface to 

add additional sensors, such as IR range finders. 

The base is installed on the chassis of a R/C truck. 

The robotic head is composed of a rectangular tube, 

two servos for the pan and tilt unit, and a phone 

holder made of foam. Adapted from [9]. 

III. ADAPTIVE ACTION SELECTION 

SYSTEMS BASED ON PRINCIPLES OF 

VERTEBRATE NEUROMODULATION 

The vertebrate neuromodulatory system 

plays a key role in regulating 

decision-making and responding to 

environmental challenges. In particular, 

the serotonergic system underlies 

control of stress, social interactions, and 

risk-taking behavior. The dopaminergic 

system has been implicated in the 

prediction of rewards and incentive 

salience. The cholinergic and 

noradrenergic systems are thought to 

play important roles in attention and 

judging uncertainty. We suggested that 

the behavior of an autonomous system 
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modeled after the vertebrate 

neuromodulatory system, might 

demonstrate the complexity and 

flexibility associated with higher order 

animals by monitoring its surroundings, 

adapting to change, and responding 

decisively to important environmental 

events [11]. Since the publication of this 

paper, our group has demonstrated how 

these systems can modulate attention in 

uncertain environments [12], shape 

decision-making in social situations [13, 

14], and be used as an adaptive 

controller for autonomous robots [8, 15]. 

Our attentional study showed how the 

noradrenergic and cholinergic systems 

interact with each other, and suggested 

how this could lead to behavioral 

adaptation in the face of uncertainty [12]. 

We suggested that basal forebrain 

activity tracks expected uncertainty and 

that this shapes attentional search. We 

also suggested that the locus coeruleus 

tracks unexpected uncertainty, and this 

leads rapid responses to changes in the 

environment. 

Game theory can be a powerful tool for 

testing models and discovering the 

neural correlates of decision-making in 

cooperative and competitive situations. 

In a set of human robot interaction 

studies using socioeconomic game 

theory, specifically the Hawk-Dove 

game, we showed that adaptive agents, 

whose behavior is guided by simulated 

dopaminergic and serotonergic systems, 

could evoke changes in strategy, 

reward/cost tradeoffs, and reciprocal 

behavior in subjects [14]. We also 

showed that division into two groups 

best described subjects’ responses 

during these games [13]. Lowering 

subjects’ serotonin levels through Acute 

Tryptophan Depletion caused some 

subjects to be more aggressive (as 

expected), but others to be less 

aggressive (unexpected). We suggest 

that individual variation, possibly due to 

genetic differences in serotonin and 

dopamine action, may be influencing 

this variability. To further understand 

this relationship, we turned to another 

socioeconomic game, called the Stag 

Hunt, which focuses on cooperation. In 

the Stag Hunt, subjects can either hunt a 

low valued hare on their own or form a 

social contract with another player to 

hunt a highly valued stag (see Figure 2). 

We constructed an adaptive agent, based 

on the interaction between the 

dopaminergic and serotoninergic 

systems, which learned to play Stag 

Hunt and develop strategies based on 

the human player’s tendencies [16]. In 

this study, we tested the performance of 

40 subjects playing against five 

opponent types (the adaptive agent, and 

four other set strategies) in a 

spatiotemporal version of the Stag Hunt 

game. Subjects put more thought in their 

movements and in considering the 

movements of the agent when playing 

against the adaptive agent. Similar to 

our Hawk-Dove study, we observed 

differences between subjects on the 

individual level, with several 

responding to the adaptive agent by 

almost always cooperating, and several 

others remaining nearly exclusively 

uncooperative. In future work, we are 

interested in both the development of 

the agent strategy and the subjects’ 

reaction to adaptive agents. Moreover, 

we plan to further investigate the neural 

correlates of these behaviors through 

brain imaging, pharmacological 

manipulations and genetic screening. 

 
Figure 2. Screenshot of Stag Hunt game board. 

The game board included a 5x5 grid of spaces 

upon which the player (stick figure image), agent 

(robot image), stag (stag image), and hare (hare 

image) tokens resided. The screen included a 

button to start the experiment, the subject’s score 

for the round, the subject’s overall score for the 

experiment, the game number within the round, a 

3-second countdown to the start of the game, and a 

10-second counter monitoring the game’s timeout. 

At the beginning of each game, the locations for 

the stag, player, and agent tokens were randomly 

placed along either the top row, bottom row, or 

middle column at least one square away from each 

other. The initial positions of the hares were fixed 

in the locations shown above for all games. The 

player and agent could move one square at a time 

towards their goal at the start of the game, while 

the targets remain fixed. Adapted from [16]. 

IV. DATA-MINING NEUROINFORMATIC 

AND GENE EXPRESSION DATABASES. 

In addition to our modeling work, we 

are taking a neuroinformatic approach 

to understanding cognitive function. 

Neuroinformatics is an emerging 

technique concerned with the 

management and sharing of 

neuroscience data. In recent work, we 

performed an exploratory survey of 

receptor gene expression associated 

with classical neuromodulatory systems 

(i.e., cholinergic, dopaminergic, 

noradrenergic, and serotonergic) within 

anatomical origins of these 

neuromodulatory systems, as well as in 

the amygdala [17]. Investigation of 

receptor gene expression in these 

regions was undertaken using the Allen 

Mouse Brain Atlas, a growing 

neuroinformatic resource that contains 

data sets of extensive mouse gene 

expression and neuroanatomical data. 

As a result, this type of exploratory 

analysis revealed many connectivity 

relations and receptor localization of 

these neuromodulatory systems that had 

not been previously reported (Figure 3). 

Currently, we are using this approach to 

understand the structural and functional 

underpinnings of reward processing by 

acquiring and analyzing expression data 

from dopamine and serotonin signaling 

genes across brain areas associated with 

the reward circuit. 

 
Figure 3. Network model showing overall 

expression of neuromodulatory receptors and their 

implied neuromodulatory projections to target 

areas. Vertices represent brain regions that are 

either standalone (purple = amygdala regions) or 

combined regions (yellow = noradrenergic, green 

= cholinergic, blue = dopaminergic, and red = 

serotonergic). Directed arcs represent projections 

going to and coming from a source. The 

pointed-arrow indicates the target location and the 

non-arrow end of the arc indicates the origin. The 

thickness of each arc, as well as the size of vertices, 
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is proportional to the amount of expression found 

in the target location. Adapted from [17]. 

V. DETAILED MODELS OF CORTICAL 

AND SUBCORTICAL PROCESSING ON 

PARALLEL COMPUTING PLATFORMS 

Despite recent increases in computer 

power, constructing a neural model that 

approaches the size of a human-brain 

will require several orders of magnitude 

increases in computation, 

communication, and memory capacity. 

Conventional computer hardware may 

not be the appropriate architecture for 

modeling a brain. Unlike a conventional 

computer, the brain is a massively 

parallel, analog, fault-tolerant, selective 

system that does not rely on 

programmed instructions. Alternative 

computer architectures and 

programming paradigms, which are 

neurobiologically inspired, are in need 

of investigation [18, 19]. Our group has 

been developing tools to incorporate 

these brain features into computer 

models. Specifically, we have 

constructed large-scale network models 

that capture the dynamics of neural 

signaling at the microcircuit (i.e., within 

brain areas) and macrocircuit (i.e., 

between brain areas) levels. We have 

developed a highly efficient 

implementation of Spiking Neural 

Networks (SNN) by leveraging the 

parallel computing power of Graphical 

Processing Units (GPUs). Our 

publically available software program, 

called CARLsim 

(http://www.socsci.uci.edu/~jkrichma/

CARLsim), is a C/C++ based SNN 

simulator that runs on both generic x86 

CPUs and standard off-the-shelf GPUs. 

With our optimizations, we have 

demonstrated roughly 25X speedups 

over cutting edge desktop computers. 

This simulation environment was 

released to the modeling community so 

that researchers would have easy access 

to large-scale SNN simulations [20]. It 

has been very popular among computer 

scientists, neuroscientists, and engineers. 

Our latest release of simulator software 

extended this prior model to include 

more biologically plausible descriptions 

of synaptic connections and learning 

rules [21]. In particular, this new 

simulation environment facilitates the 

development of very large-scale spiking 

neural networks that follow the brain’s 

architecture. Using this simulator 

environment, we developed cortical 

models of visual form, color, and 

motion processing in which we 

replicated color opponency and motion 

perception results at both the 

psychophysical and neuronal level (see 

Figure 4). This simulation environment 

has also been used to replicate a recent 

and important finding on how basal 

forebrain activation can enhance 

cortical coding of natural scenes [22]. 

Our spiking neuron model, which 

included the basal forebrain, thalamus, 

and visual cortex, suggested that basal 

forebrain activation switches the firing 

mode of thalamic neurons, which in turn 

leads to an increase in within-cell 

reliability and a decrease in 

between-cell redundancy in LGN and 

visual cortex. In near future releases of 

our spiking simulator, we plan to 

introduce an automated parameter 

tuning framework, and a more extensive 

visual motion perception model. In 

addition, we are expanding our 

GPU-accelerated spiking neural 

network simulator (CARLsim) to run 

across many GPUs with the use of MPI. 

We believe this work in the spiking 

neural network domain will have a 

broad impact on the neuromorphic 

engineering community and will one 

day lead to practical applications 

deployed on specialized hardware.  

 
Figure 4. Architecture of the spiking neural 

network model of visual cortex. In the V1 color 

layer, there are four color opponent 

(center+/surround−) responses, which are 

combined in V4 to respond to six primary colors. 

The V1 motion energy model projects to edge 

detecting neurons in V4 and directionally selective 

neurons in cortical area MT Adapted from [21]. 

VI. SUMMARY 

By combining computational modeling 

and neuroinformatics with autonomous 

robots and parallel computing 

techniques, our group has created a 

multi-disciplinary approach to 

understanding the inner workings of the 

brain and cognition. It is our hope that 

this approach will continue to benefit 

both the neuroscience and computer 

science communities and move us closer 

to meeting the grand challenge of 

reverse-engineering the brain. 
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