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Abstract—A grand goal of future medicine is in modelling
the complexity of patients to tailor medical decisions, health
practices and therapies to the individual patient. This trend
towards personalized medicine produces unprecedented amounts
of data, and even though the fact that human experts are excellent
at pattern recognition in dimensions of ≤ 3, the problem is
that most biomedical data is in dimensions much higher than 3,
making manual analysis difficult and often impossible. Experts
in daily medical routine are decreasingly capable of dealing with
the complexity of such data. Moreover, they are not interested
the data, they need knowledge and insight in order to support
their work. Consequently, a big trend in computer science is
to provide efficient, useable and useful computational methods,
algorithms and tools to discover knowledge and to interactively
gain insight into high-dimensional data. A synergistic combi-
nation of methodologies of two areas may be of great help
here: Human–Computer Interaction (HCI) and Knowledge Dis-
covery/Data Mining (KDD), with the goal of supporting human
intelligence with machine learning. A trend in both disciplines
is the acquisition and adaptation of representations that support
efficient learning. Mapping higher dimensional data into lower
dimensions is a major task in HCI, and a concerted effort of
computational methods including recent advances from graph-
theory and algebraic topology may contribute to finding solutions.
Moreover, much biomedical data is sparse, noisy and time-
dependent, hence entropy is also amongst promising topics. This
paper provides a rough overview of the HCI-KDD approach and
focuses on three future trends: graph-based mining, topological
data mining and entropy-based data mining.

Index Terms—HCI-KDD, interactive knowledge discovery, ma-
chine learning, graph-based data mining, topological data mining,
entropy-based data mining

I. INTRODUCTION

EXPERTS in the life sciences have to deal with large
amounts of complex, high-dimensional, heterogenous,

noisy, and weakly structured data sets [1], [2], and large
amounts of unstructured information [3].

This ”Big Data” [4] in the medical domain is driven by the
trend towards precision P4-medicine (Predictive, Preventive,
Participatory, Personalized) [5], [6], and has resulted in an
explosion in the amount of generated data sets, in particu-
lar ”-omics” data, for example from genomics, proteomics,
metabolomics, epigenetics, transcriptomics, lipidomics, flux-
omics, phenomics, microbiomics, etc. [7], [8], [9]. The trend
is in moving from a reactive to a proactive medicine and P4-
medicine is closely related to systems approaches to disease
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and content analytics tools [10], [11]. The well-known chal-
lenges with such data include the complexity of feature dimen-
sions (scaling and mapping problems), the heterogeneity of the
data (problems of data integration, data fusion), the change
over time, and most of all the classic medical data problem:
uncertainty of the data quality, false, incomplete data and the
danger of modelling artifacts. The often mentioned problem
of large amounts of data is rather an advantage with machine
learning approaches: Big data actually can provide benefits,
as in the biomedical domain, we look often at only a few
hundred training examples, so there is the danger of random
guessing. Having millions of training samples will raise the
precision. The issue of large data sets connects to this question:
”What constitutes predictable structures in the world?” as
something might be predictable but not comprehensible [12].
Machine learning researchers study algorithms being capable
of learning from data and because learning is an important
aspect of intelligent behavior, machine learning has become a
modern and central aspect of research in artificial intelligence.
The most obvious example of learning occur in humans, so
there is a natural bridge between research in machine learning
and cognitive science, which is strongly related to HCI.

The paradigmatic shift, from classical science, where you
first have the question and then collect the data, to data
sciences, where you first have the data and then ask questions
[13]. The main challenge in this new approach is to ask
relevant questions so to find relevant structural patterns and/or
temporal patterns (”knowledge”) in such data, because those
are often hidden and not directly accessible to the expert [14].

This paper is organized as follows: In section 2 some key
terms are briefly explained. In section 3 the basic idea of
the HCI-KDD approach is presented, along with the seven
research areas involved, however, in the following we con-
centrate briefly on only three of them: In section 4 on graph-
based data mining, in section 5 on topological data mining
and in section 6 on entropy-based data mining, concluding
by emphasizing that the combination of such approaches may
bring added values. In the limited space given, such vast topics
can only be touched, so the goal of this tutorial is to provide
a coarse overview, to motivate and stimulate further research
and to encourage to test crazy ideas.

II. GLOSSARY AND KEY TERMS

• Algebraic Topology: is concerned with computations of
homologies and homotopies in topological spaces [15].
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• Alpha Shapes: family of piecewise linear simple curves
in the Euclidean plane associated with the shape of a finite
set of points [16]; i.e. α-shapes are a generalization of
the convex hull of a point set: Let S be a finite set in R3

and α a real number 0 ≤ α ≤ ∞; the u-shape of S is a
polytope that is neither necessarily convex nor necessarily
connected. For α → ∞ the α-shape is identical to the
convex hull of S [17]; important e.g. in protein-related
interactions [18].

• Betti Number: can be used to distinguish topological
spaces based on the connectivity of n-dimensional sim-
plicial complexes: In dimension k, the rank of the k-th
homology group is denoted βk, useful in the presence
of noisy shapes, because Betti numbers can be used as
shape descriptor admitting dissimilarity distances stable
under continuous shape deformations [19].

• Graph mining: is the application of graph-based meth-
ods to structural data sets [20], a survey on graph mining
can be found here [21].

• Homomorphism: is a function that preserve the opera-
tors associated with the specified structure.

• Homotopy: Given two maps f, g : X → Y of topological
spaces, f and g are homotopic, f ' g, if there is a con-
tinuous map H : X× [0, 1]→ Y so that H(x, 0) = f(x)
and H(x, 1) = g(x) for all x ∈ X [22].

• Homology: (and cohomology) are algebraic objects as-
sociated to a manifold, which give one measure of
the number of holes of the object. Computation of the
homology groups of topological spaces is a central topic
in topology; if the simplicial complex is small, the
homology group computations can be done manually; to
solve such problems generally a classic algorithm exists
[23].

• Human–Computer Interaction: study, design and de-
velopment of the interaction between end users and
computers; this classic definition goes back to the work of
Alan Newell and Herbert Simon (refs), and HCI research
has in the last decades focused almost exclusively on
ergonomics of the user interface, while the HCI-KDD
approach concentrates almost exclusively on human–data
interaction.

• Information Entropy: is a measure of the uncertainty in
a random variable. This refers to the Shannon entropy,
which quantifies the expected value of the information
contained in a message.

• Manifold: is a fundamental mathematical object which
locally resembles a line, a plane, or space.

• Network: Synonym for a graph, which can be defined
as an ordered or unordered pair (N,E) of a set N of
nodes and a set E of edges [24]. Engineers often mention:
Data + Graph = Network, or call at least directed graphs
as networks; however, in theory, there is no difference
between a graph and a network.

• Pattern discovery: subsumes a plethora of machine
learning methods to detect complex patterns in data sets
[25]; applications thereof are, for instance, graph mining
[26] and string matching [27].

• Persistent Homology: Persistent homology is an alge-

braic tool for measuring topological features of shapes
and functions. It casts the multi-scale organization we
frequently observe in nature into a mathematical formal-
ism [28].

• Simplicial Complex: is made up of simplices, e.g. a
simplicial polytope has simplices as faces and a simplicial
complex is a collection of simplices pasted together
in any reasonable vertex-to-vertex and edge-to-edge ar-
rangement. A graph is a 1-dim simplicial complex.

• Small world networks: are generated based on certain
rules with high clustering coefficient [24], [29] but the
distances among the vertices are rather short in average,
hence they are somewhat similar to random networks
and they have been found in several classes of biological
networks, see [30].

• Topological Entropy: is a nonnegative real number that
is a measure of the complexity of a dynamical system
[31].

III. THE HCI-KDD APPROACH

The HCI-KDD approach [32] is a beneficial synergistic
combination of methodologies and approaches of two ar-
eas that offer ideal conditions towards unraveling some of
the ”big data” problems mentioned above: Human-Computer
Interaction (HCI) and Knowledge Discovery/Data Mining
(KDD), with the goal of supporting human intelligence with
computational intelligence - by bringing the human into the
loop. This approach appreciates both what humans can do
best and what computers can do best. A good example for
demonstrating the strengths of humans over sophisticated
computers is GO, which is a board game from China more
than 2,000 years old. It still remains a challenge for computers
[33], [34]. Humans are very good at pattern recognition in
the low-dimensional space, although humans do not see in
three spatial dimensions directly, but via sequences of planar
projections. Humans spend a lot of their life time to learn
how to infer three-dimensional spatial data from these paired
planar projections. Years of practice have tuned a remarkable
ability to extract global structures from representations in
lower dimension [35]. Kernels in machine learning have a
high relevance for understanding issues of generalization and
similarity in cognitive science. It is very interesting that
most similarity measures considered by psychologists were
examples of positive definite kernels, for which a rich body of
mathematical theory exists [36]. Consequently, kernel methods
can be seen as a unifying theoretical tool showing how
several competing and seemingly incommensurate theories in
cognitive science (exemplar models versus perceptron models)
can be put together [37]. Arguably, the problem of learning
represents a gateway to understanding intelligence in both
brains and machines, to discovering how the human brain
works and to develop intelligent algorithms, which learn from
data and improve their competencies - the same as children
do [38].

On the other hand, computers can be very beneficial in
dealing with high-dimensional data, where we can make use of
the benefits of computational topology [39], e.g. by replacing
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Fig. 1. This image, created originally by A. Holzinger as logo for his
group hci-kdd.org, shall emphasize the importance of the manipulating data
in the high-dimensional computational space in Rn and highlights the reality
that current devices only allow data visualization in R2. Consequently, a
major challenge for Human–Computer Interaction is to map data from high-
dimensional spaces into lower-dimensional spaces.

a set of point cloud data with a simplicial complex, which
converts the data into global topological objects. To combine
the most desirable of these formidable talents might highly
benefit the knowledge discovery process [32], [40] however,
the most critical and most difficult part is in interaction and
visualization (see Figure 1).

The original idea of the HCI-KDD [41] approach (Fig-
ure 2) is in combining aspects of the best of two worlds:
Human–Computer Interaction (HCI), with emphasis on per-
ception, cognition, interaction, reasoning, decision making,
human learning and human intelligence, and Knowledge Dis-
covery/Data Mining (KDD), dealing with data processing,
computational statistics, artificial intelligence and particularly
with integrative machine learning [42]. The most important
aspect is the human-in-the-loop approach. Meanwhile it is ac-
knowledged that in many domains computational approaches
can not be completely automated - especially in the biomedical
domain. The domain knowledge of the expert is of extreme
importance and the grand goal is to enable them to interac-
tively manipulate their data, so that they can interactively ask
questions to their data sets. An early example for such an
approach was given in the medical radiology domain: The
clinically useful information in an image typically consists of
gray level variations in highly localized regions of the x-ray
image and to extract such regions automatically by standard
image processing techniques is a hard problem. To bring
the physician-in-the-loop means that the expert delineates the
pathology bearing regions and a set of anatomical landmarks
in the image. To the so marked regions, low-level computer
vision tools and image processing algorithms can be applied
to extract attributes related to the variations in gray scale [43].
A more recent emphasise of interaction of that kind can be
found in [44] and [45].

Whilst interactive knowledge discovery encompasses the
horizontal process ranging from physical aspects of data (left
in Figure 2) to the human aspects of information processing
(right in Figure 2), data mining can be seen vertically and deals
specifically with methods, algorithms and tools for finding
patterns in the data. In the HCI-KDD approach, seven (the new

Fig. 2. The big picture of the HCI-KDD approach: KDD encompasses the
whole horizontal process chain from data to information and knowledge;
actually from physical aspects of raw data, to human aspects including
attention, memory, vision, interaction etc. as core topics in HCI, whilst DM as
a vertical subject focuses on the development of methods, algorithms and tools
for data mining (Image taken from the hci-kdd.org website, as of December,
19, 2014)

magical number 7) essential research areas can be determined
as outlined in Figure 2, including: Area 1: Data integration,
data fusion and data mapping; Area 2: mining algorithms and
Area 6: data visualization [46], [47], [48]. The remainder
of this paper focuses on three hot topics, Area 3: Graph-
based Data Mining (GDM) [49], [50], [51], [52]. Area 4:
Entropy-based Data Mining (EDM) [53], [54], and Area 5:
Topological Data Mining (TDM) [55].

In the biomedical domain as in some other domains issues
of Area 7: privacy, data protection, safety and security are
mandatory [56].

IV. GRAPH-BASED DATA MINING

Graphs have been used in the life sciences for quite a
time and there is a new trend to combine graph theory,
machine learning, and statistical data analysis to arrive at a
new field, network analysis, to explore complex biomedical
graph data. Large-scale generation of genomics, proteomics,
metabolomic etc. and signaling data allows the construction
of networks that provide a new framework for understanding
the molecular basis of physiological and pathological states.
Networks and network-based methods have been used in
biology to characterize genomic and genetic mechanisms as
well as protein signaling; diseases are researched as abnormal
perturbations of critical cellular networks. Onset, progression,
and intervention in complex diseases including cancer and
diabetes can be analyzed today using network approaches.
Once the system is represented by a graph = network, methods
of graph theory can be applied to find novel insights, important
system properties, in structure, time and function. Various
statistical and machine learning methods have been developed
for this purpose and have already been applied to networks
[57], [58]. Graph theory provides powerful tools to map data
structures and to find novel connections between single data
objects [24], [59]. A mapping of already existing and in
medical practice approved knowledge spaces as a conceptual
graph (as e.g. demonstrated in [50] and a subsequent visual and
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graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge
discovery. Another benefit of a graph-based data structure is
in the applicability of methods from network topology and
network analysis and data mining, for example the small-world
phenomenon [60], [61], and cluster analysis [62], [63].

The first question is ”How to get a graph?”, or simpler ”How
to get point sets?”, because point cloud data sets (PCD) can
be used as primitives for such approaches. The answer to this
question is not trivial [64], apart from “naturally available”
point clouds, e.g. from laser scanners [65], protein structures
[66], or text mapped into a set of points (vectors) in Rn

[67]. Looking at the last example, graphs are intuitively more
informative as example words/phrase representations [68], and
graphs are the best studied data structures in computer science,
with a strong relation to logical languages [69]. The beginning
of graph-based data mining approaches was two decades ago,
some pioneering work include [70]–[72]. According to [69]
there are five theoretical bases of graph-based data mining
approaches such as (1) subgraph categories, (2) subgraph
isomorphism, (3) graph invariants, (4) mining measures and
(5) solution methods. Furthermore, there are five groups of
different graph-theoretical approaches for data mining such
as (1) greedy search based approach, (2) inductive logic
programming based approach, (3) inductive database based
approach, (4) mathematical graph theory based approach and
(5) kernel function based approach [73]. However, the main
disadvantage of graph-theoretical text mining is the compu-
tational complexity of the graph representation, consequently
the goal of future research in the field of graph-theoretical
approaches for text mining is to develop efficient graph mining
algorithms which implement effective search strategies and
data structures [68].

In [74] a graph-theoretical approach for text mining is
used to extract relation information between terms in ”free-
text” electronic health care records that are semantically or
syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like
illnesses [75].

Moreover there can be content-rich relationship networks
among biological concepts, genes, proteins and drugs devel-
oped with topological text data mining like shown in [76].
According to [77] network medicine describes the clinical ap-
plication field of topological text mining due to addressing the
complexity of human diseases with molecular and phenotypic
network maps.

A recent example is PEGASUS, an open source graph min-
ing library, which performs typical graph mining tasks such as
computing the diameter of a graph,the radius of each node and
finding connected components. PEGASUS is implemented on
the HADOOP platform, the open source version of MAPRE-
DUCE. Many graph mining operations (Page Rank, spectral
clustering, diameter estimation, connected components etc.)
are a repeated matrix-vector multiplication; in PEGASUS the
authors use a primitive, called generalized iterated matrix-
vector multiplication, which is optimized and achieved good
performances tested with a Web graph with 6,7 billion edges
[78].

V. TOPOLOGICAL DATA MINING

Closely related to graph-based methods are topological data
mining methods; for both we need point cloud data sets - or
at least distances - as input. A set of such primitives forms
a space, and if we have finite sets equipped with proximity
or similarity measure functions simq : S

q+1 → [0, 1], which
measure how “close” or “similar” (q+1)-tuples of elements of
S are, we speak about a topological space. A value of 0 means
totally different objects, while 1 corresponds to equivalent
items. Interesting are manifolds, which can be seen as a topo-
logical space, which is locally homeomorphic (that means it
has a continuous function with an inverse function) to a real n-
dimensional space. In other words: X is a d-manifold if every
point of X has a neighborhood homeomorphic to Bd; with
boundary if every point has a neighborhood homeomorphic to
B or Bd

+ [79].
A topological space may be viewed as an abstraction

of a metric space, and similarly, manifolds generalize the
connectivity of d-dimensional Euclidean spaces Bd by being
locally similar, but globally different. A d-dimensional chart at
p ∈ X is a homeomorphism φ : U → Rd onto an open subset
of Rd, where U is a neighborhood of p and open is defined
using the metric. A d-dimensional manifold (d-manifold) is a
topological space X with a d-dimensional chart at every point
x ∈ X [80].

For us also interesting are simplicial complexes (”simpli-
cials”) which are spaces described in a very particular way,
the basis is in Homology. The reason is that it is not possible
to represent surfaces precisely in a computer system due
to limited computational storage; thus, surfaces are sampled
and represented with triangulations. Such a triangulation is
called a simplicial complex, and is a combinatorial space
that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated.
Zomorodian [80] compares it with the separation of syntax
and semantics in logic.

Topological techniques originated in pure mathematics, but
have been adapted to the study and analysis of data during the
past two decades. The two most popular topological techniques
in the study of data are homology and persistence. The
connectivity of a space is determined by its cycles of different
dimensions. These cycles are organized into groups, called
homology groups. Given a reasonably explicit description of a
space, the homology groups can be computed with linear alge-
bra. Homology groups have a relatively strong discriminative
power and a clear meaning, while having low computational
cost. In the study of persistent homology the invariants are in
the form of persistence diagrams or barcodes [81].

In data mining it is important to extract significant features,
and exactly for this, topological methods are useful, since they
provide robust and general feature definitions with emphasis
on global information, for example Alpha Shapes [17].

A recent example for topological data mining is given
by [82]: Topological text mining, which builds on the well-
known vector space model, which is a standard approach in
text mining [83]: a collection of text documents (corpus) is
mapped into points (=vectors) in Rn. Moreover, each word
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can be mapped into so-called term vectors, resulting in a very
high dimensional vector space. If there are n words extracted
from all the documents then each document is mapped to a
point (term vector) in Rn with coordinates corresponding to
the weights. This way the whole corpus can be transformed
into a point cloud data set. Instead of the Euclidean metric
the use of a similarity (proximity) measure is sometimes
more convenient; the cosine similarity measure is a typical
example: the cosine of the angle between two vectors (points
in the cloud) reflects how “similar” the underlying weighted
combinations of keywords are. Amongst the many different
text mining methods (for a recent overview refer to [84]);
topological approaches are promising, but need a lot of further
research.

Due to finding meaningful topological patterns greater in-
formation depth can be achieved from the same data in-
put [85]. However, with increasing complexity of the data to
process also the need to find a scalable shape characteristic is
greater [86]. Therefore methods of the mathematical field of
topology are used for complex data areas like the biomedical
field [86], [81]. Topology as the mathematical study of shapes
and spaces that are not rigid [86], pose a lot of possibilities
for the application in knowledge discovery and data mining, as
topology is the study of connectivity information and it deals
with qualitative geometric properties [87].

One of the main tasks of applied topology is to find and
analyse higher dimensional topological structures in lower
dimensional spaces (e.g. point cloud from vector space model
as discussed in [85]). A common way to describe topolog-
ical spaces is to first create simplicial complexes, because
a simplicial complex structure on a topological space is an
expression of the space as a union of simplices such as
points, intervals, triangles, and higher dimensional analogues.
Simplicial complexes provide an easy combinatorial way to
define certain topological spaces [87]. A simplical complex
K is defined as a finite collection of simplices such that
σ ∈ K and τ , which is a face of σ, implies τ ∈ K, and
σ, σ′ ∈ K implies σ ∩ σ′ can either be a face of both σ and
σ′ or empty [88]. One way to create a simplical complex is to
examine all subsets of points, and if any subsets of points are
close enough, a p-simplex (e.g. line) is added to the complex
with those points as vertices. For instance, a Vietoris-Rips
complex of diameter ε is defined as V R(ε) = σ|diam(σ) ≤ ε,
where diam(ε) is defined as the largest distance between two
points in σ [88]. Figure 2 shows the Vietoris-Rips complex
with varying ε for four points with coordinates (0,0), (0,1),
(2,1), (2,0). A common way a analyse the topological structure
is to use persistent homology, which identifies cluster, holes
and voids therein. It is assumed that more robust topological
structures are the one which persist with increasing ε. For
detailed information about persistent homology, it is referred
to [88].

VI. ENTROPY-BASED DATA MINING

In the real medical world, we are confronted not only
with complex and high-dimensional data sets, but usually
with sparse, noisy, incomplete and uncertain data, where the

VR (1) VR (2) VR (√5)

Fig. 3. Vietoris-Rips complex of four points with varying ε [88].

application of traditional methods of knowledge discovery and
data mining always entail the danger of modeling artifacts.
Originally, information entropy was introduced by Shannon
(1949), as a measure of uncertainty in the data. To date, there
have emerged many different types of entropy methods with a
large number of different purposes and applications. Here we
mention only two:
Graph Entropy was described by [89] to measure structural
information content of graphs, and a different definition, more
focused on problems in information and coding theory, was
introduced by Körner in [90]. Graph entropy is often used for
the characterization of the structure of graph-based systems,
e.g. in mathematical biochemistry, but also for any complex
network [91]. In these applications the entropy of a graph is
interpreted as its structural information content and serves as a
complexity measure, and such a measure is associated with an
equivalence relation defined on a finite graph; by application of
Shannons Eq. 2.4 in [92] with the probability distribution we
get a numerical value that serves as an index of the structural
feature captured by the equivalence relation [92].

Topological Entropy (TopEn), was introduced by [93] with
the purpose to introduce the notion of entropy as an invariant
for continuous mappings: Let (X,T ) be a topological dynami-
cal system, i.e., let X be a nonempty compact Hausdorff space
and T : X → X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [94].

Hornero et al. [95] performed a complexity analysis of
intracranial pressure dynamics during periods of severe in-
tracranial hypertension. For that purpose they analyzed eleven
episodes of intracranial hypertension from seven patients. They
measured the changes in the intracranial pressure complexity
by applying ApEn, as patients progressed from a state of
normal intracranial pressure to intracranial hypertension, and
found that a decreased complexity of intracranial pressure
coincides with periods of intracranial hypertension in brain
injury. Their approach is of particular interest to us, because
they proposed classification based on ApEn tendencies instead
of absolute values.

Pincus et al. took in [96] heart rate recordings of 45
healthy infants with recordings of an infant one week after an
aborted sudden infant death syndrom (SIDS) episode. They
then calculated the ApEn of these recordings and found a
significant smaller value for the aborted SIDS infant compared
to the healthy ones.

Holzinger et al. (2012) [97] experimented with point cloud
data sets in the two dimensional space: They developed a mod-
el of handwriting, and evaluated the performance of entropy
based slant and skew correction, and compared the results to
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other methods. This work is the basis for further entropy-based
approaches, which are very relevant for advanced entropy-
based data mining approaches.

VII. CONCLUSION, OPEN QUESTIONS AND FUTURE
OUTLOOK

Advances in knowledge discovery in complex, high-
dimensional data sets need a concerted effort of various
topics, ranging from data preprocessing, data fusion, data
integration and data mapping to interactive visualization within
a low-dimensional space. For this reason, graph-based and
topological methods are very useful, since they provide robust
and general feature definitions and may support a ”global
information view”. A promising area of future research is in
graph-theoretical approaches for text mining, in particular to
develop efficient graph mining algorithms which implement
robust and efficient search strategies and data structures [68].
Such approaches can be combined with techniques from ma-
chine learning, e.g. multi-agents and evolutionary algorithms
[98], [99], [49]. However, there remain many open questions,
for example about the graph characteristics and the isomor-
phism complexity [69]. Not only such specific questions are
challenging, there are some grand challenges directly involved,
e.g. there is much work available on feature selection

As [37] pointed out, there is a large literature on feature
selection in machine learning, especially in conjunction with
kernel methods, but there are many more methods that could
potentially be useful for identifying features, or corresponding
similarity measures and in many situations in the real-world
a human category learner has to learn the right features (or
the right similarity measure), at the same time as he or she
learns the categories [100] and machine learning methods can
provide hypotheses on how a human learner might achieve
this.

It is interesting that much work in cognitive science and
machine learning has focused on either supervised or unsuper-
vised learning, i.e. scenarios where either the category labels
for all of the stimuli or for none of the stimuli are provided.
However, in the real world semi-supervised learning can be
beneficial [101].

A definitive challenge when mining high-dimensional data
is in measuring distances, e.g. for clustering, outlier detection,
similarity measures etc.) as interesting patterns might occur in
different subspaces.

A further promising research route is to combine such meth-
ods with entropy-based approaches, which have extensively
been applied for analyzing sparse and noisy time series data,
but so far have not yet been applied to weakly structured data
in combination with techniques from computational topology.
Consequently, the inclusion of entropy measures for discovery
of knowledge in high-dimensional biomedical data is a big
future issue, opening a lot of challenging research routes [53].

The grand vision for the future is to effectively support
human learning with machine learning. The human brain is
an extremely complex organ and can perform many tasks
efficiently and effective by (human) learning, particularly
when humans are faced with problems that they were faced

throughout human evolution (recognizing the Grizzly bear
behind you), so we have to keep in mind that our brain can
be seen as a statistical decison-making organ, however, only
those tasks, which were most important during evolution, are
handled most optimal.

The HCI-KDD network of excellence is proactively sup-
porting this vision in bringing together experts with diverse
background, but sharing a common goal. A recent output of
the network can be found here [102] (for more information
please refer to www.hci-kdd.org).
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