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Abstract—While classification rules are essential in supervised
classification methods, they are not noticed well in methods of
clustering. Nevertheless, some clustering techniques have clear
rules of classification, while they are not obvious in other
methods. This paper discusses classification rules or classification
functions in the former class including K-means, fuzzy c-means,
and the mixture of distributions, and shows theoretical properties
that exhibit the nature of a method in this class. In contrast,
linkage methods of agglomerative hierarchical clustering do not
appear to have classification rules. We show, however, the single
linkage method has the rule of nearest neighbor classification,
while other linkage methods not. An advanced method using
positive-definite kernels is also discussed.

Index Terms—Agglomerative hierarchical clustering, K-
means, fuzzy K-means, mixture of distributions, classification
rules, inductive property.

I. INTRODUCTION

DATA clustering, or simply clustering, is becoming one
of major tools for analyzing large scale data in this

world of the ‘big data’. Many years ago, clustering techniques
have supplementary roles to supervised classification. Due to
the increase of necessities to survey and examine huge and
unorganized data collections, we are confronting with more
unsupervised cases, and thus unsupervised classification is
being noted to be important.

Although there are various methods of unsupervised classi-
fication, we discuss solely clustering which has a long history
in this class of methods. At least its age is more than 60 years,
and on the other hand new methods are developed and various
applications are actively studied.

Most papers on methods of clustering have a simple struc-
ture:

1) Propose a new algorithm.
2) Apply it to a number of examples and compare results

with those by typical existing methods.
3) Show that the proposed method is superior to the com-

pared old methods.
Many studies have been like this, but a fundamental question
is: is this way of discussion really useful?

Such discussions may expand methods of clustering, but do
not serve deeper understanding of methods of clustering, for
which theoretical studies are needed.

Theoretical considerations are minor in foregoing literature
but important studies have been done: a typical example is
K-means++ [2] where the efficiency of the K-means [9] is
improved and theoretical properties on the efficiency of the
algorithm is discussed.
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In this paper we do not consider the efficiency of algorithms,
but we study theoretical properties of well-known classes of
methods.

What we focus upon is classification rules in some methods
of clustering. A classification rule obviously exists in a method
of supervised classification, whereas it is ambiguous or unclear
in clustering, since clustering implies generation of classes on
a set of given objects and nothing more, and thus to have a
classification rule does not seem to be a matter of interest.
Classification rules are, however, essential to understand the-
oretical properties of methods of clustering, which we will
show in this paper.

We consider two well-known classes of methods for this
purpose: first class is the K-means and related methods; sec-
ond class is the agglomerative hierarchical clustering including
different linkage methods.

Some methods in these classes have clearly defined clas-
sification rules, while others not. Note also that classification
rules may include fuzzy rules or probabilistic rules.

Most discussions in this paper is methodological and exam-
ples are simple and for the purpose of illustration.

The rest of this paper is organized as follows. Chapter 2
discusses the K-means and related methods. Not only fuzzy
K-means [3], [5] but also the model of mixture of distribu-
tions [10] are considered to be related methods to the K-
means. Chapter 3 studies agglomerative hierarchical clustering
where the single linkage and other linkage methods [6] are
contrasted. Chapter 4 finally concludes the paper.

To save space, we omit the proofs of the propositions;
they are not difficult and readers may refer to the literature,
e.g., [13].

II. K-MEANS AND RELATED METHODS

We begin with giving notations. X = {x1, x2, . . . , xN} is
the set of objects for clustering, in which xk (k = 1, 2, . . . , N )
is a point in Rp, xk = (xk,

1 , . . . , xp
k)

⊤ ∈ Rp. Rp is the p-
dimensional Euclidean space with the Euclidean norm ∥x∥ =√
x⊤x.
Clusters of X denoted by G1, . . . , GK are subsets of X that

form a partition of X:
K∪
i=1

Gi = X, Gi ∩Gj = ∅ (i ̸= j). (1)

However, this property holds only for hard clusters. When we
consider fuzzy clusters and probabilistic clusters, the above
property should be weakened.

A. The Basic K-Means

The name of K-means comes from the well-known paper
of MacQueen [9], but the basic algorithm of the K-means
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mentioned in the literature is simpler than the one described
in [9]. Actually the name of K-means indicates a class of
related algorithms instead of a single algorithm.

We first describe a prototypical procedure for K-means:
A Prototype Procedure for K-Means
1) Generate initial clusters randomly.
2) Determine a prototype vector for each cluster.
3) Allocate each object to the nearest prototype
4) If clusters are convergent, stop. Else go to Step 2).

The above procedure is not an algorithm in a strict sense, since
how prototypes are determined is not described.

The reason why we describe this prototype is that different
algorithms are expressed as variations of this prototypical
procedure; hence they are regarded as members of a family
related to K-means prototype. Note also that the number of
clusters K should be decided beforehand.

1) The hard K-means: The K-means, which is also called
hard K-means, uses centroids, in other words, centers of
gravity as the prototypes:

vi =
1

|Gi|
∑

xk∈Gi

xk (2)

where |Gi| is the number of elements in Gi.
Hence the algorithm KM of the K-means becomes as

follows:
KM1: Generate initial clusters G1, . . . , GK randomly.
KM2: Calculate cluster prototypes vi (1 = 1, . . . ,K) by

(2).
KM3: Allocate every object xk ∈ X to the cluster of the

nearest prototype:

xk → Gi ⇐⇒ i = arg min
1≤j≤K

∥xk − vi∥2 (3)

KM4: If clusters are convergent, stop. Else go to Step KM2.
Another way to determine cluster prototype is in Kohonen’s
SOM [8]: the VQ (vector quantization) algorithm can be used
for clustering, where a learning scheme

v
(t+1)
i = v

(t)
i + α(t)(xk − v

(t)
i ) (4)

is used for cluster prototypes. Note that t is the number
of iterations and α(t) is the learning parameter; xk in this
equation is the last element allocated to cluster Gi.

2) Fuzzy K-means: Fuzzy K-means [5], [3] is a variation
of the K-means, where cluster prototypes are fuzzy centroids
vi. Instead of the nearest allocation, fuzzy nearest allocation
using membership uki is used:

uki =

 K∑
j=1

(
∥xk − vi∥2

∥xk − vj∥2

) 1
m−1

−1

(5)

vi =

∑
k

(uki)
mxk∑

k

(uki)
m

(6)

where m > 1 is a fuzzifying parameter. It has been shown
that as m → 1, the solutions approach to those of the K-
means [13]. The algorithm of fuzzy K-means repeats (5)

and (6) until convergence, and hence fuzzy K-means can be
regarded as a variation of the K-means.

3) Mixture of Distributions: Usually the model of the
mixture of distributions is different from the K-means and
fuzzy K-means, but this model can be related to those in
a sense. Let us take the most typical case of the Gaussian
mixture.

Let us also suppose that covariances for clusters are known
and given by

σ2I =
1

2λ
I, (7)

where λ is a given positive parameter and I is the identity
matrix. This assumption appears a bit strange but is convenient
for our purpose.

Then the parameter estimation is only for the averages of
the Gaussian distribution. Let vi is the mean vector and let
uki = P (Gi|xk). Using the EM algorithm [10], we have

uki =
exp(−λ∥xk − vi∥2)

K∑
j=1

exp(−λ∥xk − vj∥2)

, (8)

vi =

∑
k

ukixk∑
k

uki

. (9)

The algorithm repeats (8) and (9) until convergence. Note that
these equations are similar to those for fuzzy K-means. Thus
the Gaussian mixture in this restricted form is regarded as a
variation of K-means.

4) Fuzzy K-means and Gaussian mixture: We can observe
relations between the Gaussian mixture and fuzzy K-means
in more detail. For this purpose we review the formulation
of fuzzy K-means, which is an alternate optimization of the
following objective function:

J(U, V ) =
K∑
i=1

N∑
k=1

(uki)
m∥xk − vi∥2, (m > 1), (10)

with simplified notations of membership matrix U = (uki)
and matrix V collecting the prototypes: V = (v1, . . . , vK). A
constraint is imposed upon U :

M = { U = (uki) :
c∑

j=1

ukj = 1, ∀j; ukj ≥ 0,∀k, j }. (11)

The alternate optimization means that, with a give random
initial value of U and/or V , we optimize J(U, V ) with respect
to U with the previously determined V , and then we optimize
J(U, V ) with respect to V with the previously determined U ,
until convergence. As a result the solutions (5) and (6) are
obtained and thus we repeat (5) and (6).

We introduce here another objective function:

JE(U, V ) =
K∑
i=1

N∑
k=1

{
uki∥xk − vi∥2 + λ−1uki log uki

}
,

(12)
where λ > 0. This function has been considered as a variation
of fuzzy K-means by a number of researchers [12], [13]. By
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the alternate optimization described above using JE(U, V )
instead of J(U, V ), and with the same constraint (11), we
have the solutions (8) and (9). Thus the restricted form of
the Gaussian mixture is equivalent to fuzzy K-means using
JE(U, V ), which is sometimes called entropy-based fuzzy K-
means.

General Gaussian mixture model has the covariance matrix
in addition to the mean vector. For this general case we
still have similar relations in which generalized entropy-based
fuzzy K-means express a generalization of the solutions
derived from the EM algorithm [7], of which we omit the
details for simplicity. See, e.g., [7] or [13].

B. Classification Rules in K-Means and Related Methods

We consider the method of hard K-means again and study
classification rule associated with it.

1) Voronoi regions as classification rule: Let us introduce
characteristic function ui(x) for cluster Gi: For each xk ∈ X ,

ui(xk) = 1, xk ∈ Gi, (13)
ui(xk) = 0, xk /∈ Gi. (14)

Thus ui : X → {0, 1}. For such a function defined on
a discrete set X , it is difficult to observe a mathematical
property. However, extending ui to the whole space Rp is
straightforward, as we will see below.

A key for this extension is the Voronoi region (see Fig. 1)
which is actually referred to in vector quantization [8]. Thus
the K-means is understood as the algorithm to generate
Voronoi regions with centers of the cluster prototypes.

Let us denote the Voronoi regions be Wi(V ) (i = 1, . . . ,K)
with centers V = (v1. . . . , vK):

Wi(V ) = {x ∈ Rp : ∥x−vi∥ ≤ ∥x−vj∥, ∀j, j ̸= i }. (15)

Assume that the K-means algorithm is repeated and the
converged cluster prototypes are V̄ . Also suppose that the
obtained clusters are G1, . . . , GK . We then have

Gi = Wi(V̄ ) ∩X, i = 1, . . . ,K. (16)

Thus the extended function ui : R
p → {0, 1} is:

ui(x) = 1, x ∈ Gi, (17)
ui(x) = 0, x /∈ Gi. (18)

They are respectively derived from (13) and (14) by replacing
object symbol xk with variable symbol x.

2) Mixture of distributions and fuzzy K-means: Let us
move to the discussion of the mixture of distributions. The
basic model of the mixture of distributions is as follows:

P (Gi|x) =
p(x|Gi)P (Gi)∑K

j=1 p(x|Gj)P (Gj)
(19)

where p(x|Gi) is the probability density with the condition of
class Gi; P (Gi) is the prior probability of class Gi. As the
result P (Gi|x), the posterior probability that x belongs to class
Gi, is calculated. This equation is common between supervised

3
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1
v
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v

5
v

Fig. 1. A simple example of Voronoi regions with six centers on a plane.

and unsupervised classifications. Thus P (Gi|x) is actually
the probabilistic allocation rule, whereby the probabilistic
membership of xk to Gi is obtained by substituting x = xk.

Let us turn to fuzzy K-means and consider what we have
in relation to the mixture of distributions. As in the case of
the K-means, let us replace object symbol xk by variable x
in (5). We then have uki → Ui(x):

Ui(x) =

 K∑
j=1

(
∥x− vi∥2

∥x− vj∥2

) 1
m−1

−1

. (20)

The entropy-based method has another fuzzy rule

UE
i (x) =

exp(−λ∥x− vi∥2)
K∑
j=1

exp(−λ∥x− vj∥2)

, (21)

by replacing xk in (8) by x. This equation can also be derived
as UE

i (x) = P (Gi|x) using the Gaussian mixture with fixed
variances (7) as above.

3) Theoretical properties: The Voronoi regions are rela-
tively clear but the properties of the probabilistic and/or fuzzy
allocation rules are not trivial, which we study in this section.

We first note that the probabilistic or fuzzy rules are closely
related to Voronoi regions.

When we use probabilistic or fuzzy clustering, we often
want to have hard reallocations of the objects. In such a case
reallocation rule using the maximum of fuzzy memberships is
natural:

ui(x) = 1 ⇐⇒ i = arg max
1≤j≤K

Ui(x), (22)

where ui(x) is the final hard allocation rule and Ui(x) is a
fuzzy or probabilistic allocation rule.

We then have the following propositions.
Proposition 1: The characteristic function ui(x) derived

from (22) defines the Voronoi region: Wi(V ), where V is
the collection of prototypes derived from (6) or (9). The same
property holds for UE

i (x).
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Proposition 2: Ui(x) given by (20) satisfies

max
x∈Rp

Ui(x) = Ui(vi) = 1, (23)

lim
∥x∥→∞

Ui(x) =
1

K
. (24)

On the other hand, UE
i (x) which has been derived from

the entropy-based fuzzy K-means does not have the above
properties in Proposition 2. Generally,

UE
i (vi) < 1 (25)

and moreover

sup
x∈Rp

UE
i (x) > UE

i (vi). (26)

The behavior of UE
i (x) as ∥x∥ → ∞ is more complicated

than that of Ui(x). We need a new definition for this purpose.
Definition 1: A set of points v1, . . . , vK is called to have a

general position when no three points of them are on a same
line.

When cluster centers v1, . . . , vK are in a general position,
no two boundaries of the Voronoi regions are parallel.

In addition, note that some Voronoi regions are bounded
in the sense that a sufficiently large sphere can include the
region, while others are unbounded.

We now have the next proposition.
Proposition 3: Assume that cluster prototypes v1, . . . , vK

are in a general position. Let V = (v1, . . . , vK). If the Voronoi
region Wi(V ) is bounded, then the corresponding fuzzy rule
satisfies

lim
∥x∥→∞

UE
i (x) = 0, (27)

whereas if the Voronoi region Wj(V ) is unbounded, then the
corresponding fuzzy rule satisfies

lim
∥x∥→∞

UE
j (x) = 1, (28)

provided that x moves inside the region Wj(V ).
4) Implications of fuzzy rules: We thus observe theoretical

properties of probabilistic or fuzzy rules. We see they give
Voronoi regions when clusters are made hard. This means that
fundamental property of allocating objects are same for hard
and fuzzy K-means. In other words, cluster boundaries are
piecewise linear. If we want to have clusters with nonlinear
boundaries which we call here nonlinear clusters for simplicity,
we should use other methods.

There are two methods to have nonlinear cluster boundaries:
one is to use additional variables [13] which we omit here to
save space. Another is to use positive-definite kernel functions
which we describe below.

C. Kernel-Based Clustering

The development of support vector machines [15], [14]
stimulated the use of positive definite kernels [14]. Application
of kernels to K-means clustering is described as follows.

1) High-dimensional mapping: Remember that X is a sub-
set of Rp. Assume H be another Euclidean space which may
be finite or infinite dimensional. The norm of H is denoted
by ∥ · ∥H and its inner product is ⟨·, ·⟩H . Let Φ: Rp → H
a function which is called a high-dimensional mapping. We
assume that Φ(x) itself is unknown but its inner product
⟨Φ(x),Φ(y)⟩H is represented by an explicit function:

K(x, y) = ⟨Φ(x),Φ(y)⟩H . (29)

A typical example is the Gaussian kernel:

K(x, y) = exp(−λ∥x− y∥2). (30)

Let us consider a variation of the objective function of fuzzy
K-means:

J(U,W ) =
K∑
j=1

N∑
k=1

(ukj)
m∥Φ(xk)− wi∥2H (31)

where m ≥ 1: when m > 1, the above function is for kernel-
based fuzzy K-means; when m = 1, it implies hard K-means.
Note that W = (w1, . . . , wK) is the collection of prototypes
in H .

The alternate optimization with respect to U and W cannot
be carried out, since

wi =

∑
k ukiΦ(xk)∑

k uki
(32)

cannot be calculated due to unknown Φ(xk).
The alternate optimization is hence replaced by the iterative

calculation of U and D(xk, wi) = ∥Φ(xk)− wi∥2H :

D(xk, wi) = ∥Φ(xk)− wi∥2H

= K(xk, xk)−
2∑K

k=1(uki)m

N∑
l=1

(uli)
mK(xl, xk)

+
1

(
∑K

k=1(uki)m)2

N∑
j=1

N∑
l=1

(ujiuli)
mK(xl, xj),

(33)

while the membership is given by the same equations as
before:

uki =

 K∑
j=1

(
D(xk, wi)

D(xk, wj)

) 1
m−1

−1

(m > 1) (34)

uki =

{
1 ⇐⇒ i = arg min

1≤j≤K
D(xk, wi)

0 otherwise
(m = 1)

(35)

Note that not only the function Φ(x) but also the space H
need not be explicitly given in this derivation.

2) Fuzzy classification rule: The fuzzy classification rule
of kernel-based clustering is derived from replacing xk by x
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in (33) and (34):

D(x,wi) = ∥Φ(x)− wi∥2H

= K(x, x)− 2∑K
k=1(uki)m

N∑
l1

(uli)
mK(x, xl)

+
1

(
∑K

k=1(uki)m)2

N∑
j=1

N∑
l1

(ujiuli)
mK(xl, xj),

(36)

Ui(x) =

 K∑
j=1

(
D(x,wi)

D(x,wj)

) 1
m−1

−1

(m > 1) (37)

The hard classification rules are omitted, since they are easy
to derive from (35).

3) Another algorithm of kernel-based clustering: In ad-
dition to the above method, there is another algorithm. Let
K = (K(xi, xj)) be N × N matrix derived from a given
kernel function. Note that K 1

2 is well-defined using the square
root of the positive eigenvalues, as all eigenvalues are non-
negative. Assume that ei (1 ≤ i ≤ N ) be ith elementary
vector: e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), and so on.

Let yk = K 1
2 ek, and substitute yk into xk (xk ← yk).

Repeat the ordinary formula (5) and (6) until convergence. In
short, we use the ordinary algorithm to Y = (y1, . . . , yN ).
Then what we have is the same as the ones by (34):

Proposition 4: Let ûki be the solution by putting xk = yk =
K 1

2 ek in (5) and (6). Then we have ûki = uki, where uki is
the solution of (34).

The proof is omitted, but readers can easily check that the
solutions are the same.

4) Inductive and non-inductive clustering: Where is the
difference between the methods to derive ûki and uki in the
last proposition?

Note that Φ: Rp → H , whereas the map xk 7→ K 1
2 ek

is defined on X with the range RN . In this way, although
the solutions are the same, the domains of definition and the
ranges are different. This means that the former method has
the fuzzy rule of classification Ui(x) defined on Rp, while the
latter does not have a classification rule outside of X .

We have seen that a family of methods related to the K-
means has classification rules defined over the whole object
space. Thus when a new object occurs after clustering, each
method can classify it to a certain cluster.

The last algorithm, in contrast, does not have such a
classification rule. It simply generates clusters of X but a new
object cannot be classified.

The former method is called here inductive clustering, while
the latter is called non-inductive. This name is after Vapnik’s
concept of inductive inference and transductive inference in
semi-supervised learning [4]. Thus methods related to the K-
means are inductive, while the last algorithm is that of non-
inductive clustering.

We see another class of methods and consider whether they
are inductive or not.

III. AGGLOMERATIVE HIERARCHICAL CLUSTERING

Another class of methods popular in various application
fields is agglomerative hierarchical clustering which outputs
dendrograms [1], [6]. This class of methods is very old but
the number of users in applications are maybe as large as those
of the K-means.

We assume that a distance between points D(x, y) in this
section is defined in some way, and it need not be an Euclidean
distance or squared Euclidean distance.

The general procedure of agglomerative hierarchical cluster-
ing is in the following, where D(G,G′) is a distance between
clusters, which will be defined after the procedure. Note also
that the procedure has a given real parameter α.

1) Let initial clusters be individual objects Gi = {xi}, i =
1, . . . , N , and let the number of clusters be K = N .

2) Find the pair of clusters of minimum distance:

(Gp.Gq) = arg min
1≤i,j≤K

D(Gi, Gj) (38)

3) If D(Gp, Gq) > α, then stop the merging and output
clusters G(α) = {Gh, . . . , Gl} and the clustering pro-
cess as a dendrogram and stop.

4) Merge: Gr = Gp∪Gq . Delete Gp.Gq and add Gr to the
collection G of clusters. Reduce the number of clusters
K = K − 1.

5) If K = 1, then output the trivial cluster G = {X} and
the clustering process as a dendrogram and stop.

6) Update distances D(Gr, Gj) for all other clusters Gj in
G. Go to step 2).

Note that this procedure has two different kinds of outputs: an
output is G = {Gh, . . . , Gl} and another is a dendrogram (a
dendrogram is undefined here, but readers can refer to standard
texts of clustering like Everitt et al. [6]).

There are different methods of updating D(Gr, Gj) which
are called linkage methods. We consider three linkage methods
below.
Single linkage: The distance is defined to be the minimum of
distances between two points in the two clusters:

D(G,G′) = min
x∈G,y∈G′

D(x, y) (39)

Frequently, an updating formula which calculates D(Gr, Gj)
from D(Gp, Gj) and D(Gq, Gj) is used:

D(Gr, Gj) = min{D(Gp, Gj), D(Gq, Gj)} (40)

Complete linkage: The distance is defined to be the maximum
of distances between two points in the two clusters which can
be contrasted with the single linkage:

D(G,G′) = max
x∈G,y∈G′

D(x, y) (41)

The corresponding updating formula is as follows:

D(Gr, Gj) = max{D(Gp, Gj), D(Gq, Gj)} (42)

Average linkage: The distance is defined to be the average of
distances between every combination of two points in the two
clusters:

D(G,G′) =
1

|G||G′|
∑

x∈G,y∈G′

D(x, y) (43)
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where |G| is the number of elements in G. The corresponding
updating formula is as follows:

D(Gr, Gj) =
|Gp|
|Gr|

D(Gp, Gj) +
|Gq|
|Gr|

D(Gq, Gj). (44)

|Gr| = |Gp|+ |Gq| (45)

There are other two linkage methods of the centroid method
and the Ward method, but we omit the detail of them.

It appears that these linkage methods do not have the
inductive property, in other words, they do not have a particular
classification rule for classifying another object. As we see in
the next section, however, the single linkage method has a
sound classification rule.

A. Inductive property of the single linkage

Unlike other linkage methods, the single linkage method
is known to have a number of good theoretical properties: It
is essentially equivalent to the minimum spanning tree of a
weighted graph [1] and the max-min transitive closure of a
fuzzy relation [11].

The single linkage method is closely related to the nearest
neighbor classification rule, as shown by the definition of the
distance (39).

Let us redefine the collection of clusters G of the output;
as it has parameter α and it is applied to set X , we write the
output as:

G(α;X) = {Gh, . . . , Gl}. (46)

Suppose that we have a new object y to some cluster. We find
the nearest neighbor z ∈ Gi of y and allocate y to Gi. This
rule is written here as

G(α;X)← y. (47)

Note that

G(α;X)← y = {Gh, . . . , Gi ∪ {y}, . . . Gl}. (48)

We have the following.
Proposition 5: Let

α > min
x∈X

D(x, y). (49)

We then have

G(α;X ∪ {y}) = G(α;X)← y. (50)

In other words, clusters obtained from the single linkage with
adding y to X before the algorithm starts and the allocation
of y after clusters of X are obtained leads to the same result,
provided that (49) holds. Note that if α is too small and (49)
does not hold, then {y} forms an isolated cluster in the left
hand of (50).

This means that the single linkage clustering includes the
nearest neighbor allocation rule as its essence. Hence we can
say that the single linkage method has an inductive property.

Figure 2 is a complicated figure in which 20 points with
numbers 1 − 20 on the plane are objects for clustering. The
segments connecting these points forms minimum spanning
trees for the three clusters. They have been derived from the
minimum spanning tree connecting all points by deleting three

longest segments from it. Thus we have three clusters. It is
known that these three clusters are obtained using the single
linkage. Curved arcs are with the radius of a certain value of
α, and the regions inside the arcs mean that when y is given
within a region, y is allocated to the respective cluster, and
(49) and (50) are satisfied. The dotted segments show unions
of the Voronoi regions for the three clusters. If y is given in a
region of the union of the Voronoi region, y will be allocated
to the respective cluster, but (50) is not satisfied in general.
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Fig. 2. Three clusters generated from 20 points by the single linkage. The
regions surrounded by curves satisfy (50), while those regions outside of the
curves and within the dotted lines produce isolated points that finally belong
to the respective clusters.

What about the other linkage methods? We can define
a furthest neighbor allocation rule related to the complete
linkage method and an average allocation rule related to the
average linkage method. However, a result like the one in
Proposition 5 is not derived. Hence we cannot say the other
two methods have the inductive property.

IV. CONCLUSION

Methods related to the K-means, kernel-based K-
means, and agglomerative hierarchical clustering have been
overviewed. The discussion is focused upon classification rules
which include fuzzy rules and probabilistic rules. Methods
with such rules are called inductive, while those without
classification rules are called non-inductive.

We omitted complicated discussions of exceptional cases,
e.g., when an object is on a prototype, or it is on the boundary
of more than one Voronoi regions for simplicity, as such
detailed discussion for exceptional cases will not alter the
essential part of the present results.

The motivation for such clustering rules is mainly method-
ological: investigation of theoretical properties of rules will
help deeper understanding of the method under consideration.
However, such a methodological consideration will help us
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when we want to choose a suitable method of clustering in a
variety of applications.

Other subjects related to classification rules related to
clustering discussed in this paper were omitted due to page
limitation. Readers will find other methods and applications
in [13].
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