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A Multidisciplinary Survey of
Social Network Diffusion Models

Paulo Shakarian

Abstract—Various models for the diffusion of information and
behavior in a social network have been introduced in various
disciplines. This paper (a companion to tutorials presented at
IJCAI-2015 and AAAI-2016) provides an overview of several
major families of models. In particular, we describe deterministic
tipping, linear threshold/independent cascade, logic program-
ming diffusion models, and evolutionary graph theory.

Index Terms—social network analysis, social network diffusion,
social influence

I. INTRODUCTION

IN recent years, research on diffusion process in social net-
works has grown in a variety of fields including computer

science, physics, and biology. Recently, we have reviewed
some of the major models in each of these disciplines in
a tutorial we presented at IJCAI-2015 - which will also be
presented at AAAI-2016. This paper gives an overview of
these paradigms. Please refer to our recent book [1] for more
detailed technical descriptions. 1 Specifically, we will review
the following:
• Deterministic Models. The classic deterministic model

first introduced for social networks by Mark Granovet-
ter [2] is sometimes referred to as “opinion dynamics.”
Under this paradigm, each individual in a social network
adopts a new behavior once the number of influencing
friends previously adopting that behavior exceeds a cer-
tain threshold.

• Independent Cascade and Linear Threshold Models. In-
troduced in the seminal work of [3], these probabilistic
models were designed to capture the intuition of various
previously-introduced paradigms such as the susceptible-
infected-recovered (SIR) model. They have become es-
tablished as the standard models to study information
diffusion in computer science.

• Evolutionary Graph Theory. Originally introduced to
model the spread of a mutant gene in a structured popu-
lation in the classic work of [4], these models are much-
studied in theoretical biology and statistical physics. They
are also used in research on game theory - primarily to
study the conditions that can lead to the emergence of
cooperation in a social network.

• Logic Programming Models. Leveraging years of estab-
lished research from artificial intelligence, these frame-
works allow for more fine-grain modeling of the con-
ditions upon which influence among individuals occurs
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1Slides for the IJCAI and AAAI tutorials, along with a preprint of the book

can be found at http://lab.engineering.asu.edu/cysis/diffusion/.

by allowing for the consideration of attributes of both
individuals and their relationships.

We believe that by understanding the various models from
a variety of disciplines, researchers can better understand

which model is appropriate for a given application - or
which model can be most easily modified to address a new
research concern. For example, the traditional deterministic
tipping, linear threshold, and independent cascade models
make the “progressive assumption” - meaning that the number
of adopters of a new behavior is increasing with time while this
assumption is not made in evolutionary graph theory. Likewise,
logic programming models allow for diffusion to also depend
on the attributes of nodes and edges - which is generally not
the case for the other paradigms. We do not argue for one
model over the rest as a “one size fits all” solution but rather
that one must consider various aspects of the models involved
while considering them in a given application.

Throughout this paper, we will assume that there is an
underlying population of n individuals amongst which there
are m directed relationships - allowing us to represent the
population as a graph G = (V,E) where each (i, j) ∈ E
in interpreted as individual i having the ability to influence
individual j. We use the notation η(in)

i and η(out)
i to denote the

incoming and outgoing neighbors of individual i respectively.
In some of the probabilistic models - such as independent
cascade and evolutionary graph theory, we will use the nota-
tion pij associated with edge (i, j) to denote the probability
of j being infected by i conditioned on i being infected
previously. In other models (such as linear threshold and
logic programming approaches) there is a weight associated
with the edges - denoted wij which specifies a strength
on the influence relationship but does not necessarily have
a probabilistic interpretation. In many models, unweighted
graphs are considered – which can often be treated as a special
case of a weighted or probabilistic version of the model.

II. DETERMINISTIC TIPPING MODELS

The deterministic tipping model sometimes referred to as
opinion dynamics was initially studied in both sociology [2]
and economics [5]. In this framework, individuals can be
thought to be in one of two states - active (those who adopted
the behavior) or inactive. In most work under this paradigm,
individuals can only move from inactive to active. Each
individual i in the population is associated with a threshold
(κi). When κi individuals in the set η(in)

i are active, then
individual i also becomes active (i.e. adopts that behavior).
When an initial group if individuals adopts a new behavior
(often called a seed set) they initiate a deterministic cascading
process that must terminate in n steps or fewer.
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Hence, while it is relatively simple to simulate a cascad-
ing process under deterministic tipping dynamics, a natural
problem to study is can we identify a seed set of size k such
that at least x number of individuals in the population are
active. This is often referred to as the target set selection
problem or when k is sought to be minimized the min-seed
problem. Dryer and Roberts [6] introduce this problem and
prove it to be NP-hard - even in the case of certain threshold
settings (i.e. when the threshold for all individuals in the
network is 2). The hardness of approximation for this problem
is described in [7]. The work of [8] presents an algorithm
for target-set selection whose complexity is determined by the
tree-width of the graph. The work of [9] proves a non-trivial
upper bound on the smallest seed set. Despite the intractability
of this problem and associated difficulty of approximation,
scalable heuristics are available that can find small seed
sets in practice [10][11]. However, there are drawback with
deterministic tipping dynamics - specifically that it makes the
progressive or monotonic assumption - in that the number
of active individuals increases with time. Further, as it is
deterministic, it does not represent uncertainty. However, real
world uses are possible - for instance in [12] it was used as
a way to create effective features in a graph-based machine
learning problem.

III. THE LINEAR THRESHOLD AND INDEPENDENT
CASCADE MODELS

One way to address the issue of determinism in the tipping
model is to have all nodes draw their thresholds from a uniform
random distribution - the intuition being that actual thresholds
will be difficult to observe in practice. Such a model was
introduced in [3] and is known as the linear threshold (LT)
model. A related model, the independent cascade (IC) model
was also introduced in the same paper. In the IC model, each
edge is associated with a probability (as described in the
introduction). So, when node i is infected in a given time
step, it has a single chance to infect each outgoing neighbor j
with a probability pij . This model can be considered a variant
of the popular susceptible-infected-recovered (SIR) model that
is well-studied in epidemiology and physics [13][14]. In a
similar manner, non-negative real-valued weights are assigned
to edges of the graph in the LT model such that for each node
j the quantity

∑
i∈ηin

j
wij is less than or equal to one. Hence,

the threshold for each node is selected uniformly at random
from the interval [0, 1] and the node is active when the sum
of incoming active weights exceeds the threshold.

As the LT and IC models are stochastic, the quantity
often studied is the expected number of active nodes upon
completion of the diffusion process. For a given seed set
S ⊆ V , the expected number of active nodes is often denoted
σ(S). It turns out that evaluation of σ is #P-hard for both mod-
els [15][16] and often simulation runs are used to approximate
this value - though several heuristics are available - notably
MIIA for IC [15] and SIMPATH-SPREAD for LT [16].

The reduction used to show the #P-hardness of calculating
σ(S) used a proof technique called the live edge model. This
technique often used in the formal analysis of the IC and

LT models. With this technique, the stochastic process is
mapped to a set of deterministic processes that each occur
in a subgraph of G - each of which is considered as a
possible (and disjoint) world and can be associated with a
probability based on the model. For example, in the IC model,
the probability associated with subgraph G′ = (V,E′) is∏

(i,j)∈E′ pij×
∏

(i,j)∈E\E′(1−pij). Note that within a given
subgraph G′ (often referred to as a realization of the diffusion
process), the expected number of infected nodes given seed
set S is simply all nodes in G′ for which there exists a path
from S in that graph (often termed reachability and denoted
RG′(S)).

One important result shown under both IC and LT models
shown using the live edge model is the submodularity of the
σ function. The intuition behind this mathematical property is
that there are diminishing returns. Formally, for S′ ⊆ S ⊆ V
and i ∈ V \ S we have:

σ(S ∪ {i})− σ(S) ≤ σ(S′ ∪ {i})− σ(S′)

Hence adding node i provides a larger increase to the expected
number of active nodes when added to a subset. Submodularity
of σ follows from the submodularity of reachability and
that, using the live-edge model, σ(S) is equal to a positive
linear combination of submodular functions (which is also
submodular).

The property of submodularity plays an important role in
the influence maximization problem - the stochastic analogue
to the target set selection problem. In this problem, one
seeks to find a set S ⊆ V of size k or less such that
σ(S) is maximized. Even with access to an oracle that can
efficiently compute σ, the influence maximization problem for
both IC and LT is NP-hard by reductions from well-known
combinatorial problems [3]. However, as σ is submodular,
monotonically increasing (for S′ ⊆ S, σ(S′) ≤ σ(S)), and
normalized (σ(∅) = 0), then by the result of [17], the standard
greedy algorithm provides a 1− 1/e approximation (where e
is the base of the natural logarithm) under the assumption that
there is access to an oracle for σ.

Another model known as the generalized threshold model is
shown to capture both LT and IC as special cases. In this mod-
el, each node i is associated with a function fi : 2η

(in)
i → [0, 1]

which maps subsets of active incoming neighboring nodes to
a normalized non-negative real number. In this model, each
node again selects a threshold (i.e. θi) uniformly at random
and the node is activated when for a set of active in-neighbors
(η′) the function fi exceeds the threshold (fi(η′) ≥ θi). In
a very interesting result, when the associated fi function is
submodular for each node i, then computing the the expected
number of infectees under this model is also submodular
- allowing for the greedy approximation even in this more
general case.

IV. EVOLUTIONARY GRAPH THEORY

Another important class of stochastic diffusion models that
has received much attention is known as evolutionary graph
theory (EGT). Originally introduced by [4], EGT studies
the ability of a mutant gene to overtake a finite structured
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population. Here the population’s structure is a directed graph
and the progression of the mutant gene through the population
is the diffusion process. Since its introduction, numerous
results on EGT, both analytical and experimental, have been
produced - see the survey [18] for an overview. Additionally,
several extensions to the model have been proposed, including
game-theoretic ones. The application of EGT to game theory
has provided researchers new insight about the evolution of
cooperation and other game-theoretic concepts in structured
populations.

The dynamics of EGT is an extension of an earlier model of
the spread of a mutant gene in a population of n individuals
where there is no specified graph-structure relating them to
each other (this is known as a well-mixed population). The
Moran Process of [19] is a stochastic process used to model
evolution in such a population. It is defined as follows. At
each time-step a randomly selected individual is chosen to
reproduce. Then, a second individual is chosen at random to
die – replaced by a duplicate of the first individual. Individuals
are selected for reproduction based on fitness. Typically, each
individual is assigned one of two labels - resident and mutant
- and often residents are assigned a fitness of 1 and mutants
are assigned a fitness of r - a positive real value. The mutant
is advantageous if r > 1 and disadvantageous when r < 1.
The case where r = 1 is known as neutral drift. An often-
studied problem is determining the probability that a single
mutant will eventually overtake the population. This is known
as the fixation probability (the opposite event - that all mutants
die out - is called extinction and a population with a lower
fixation probability is deemed more evolutionarily stable as
it is resistant to invasion by a mutant). This probability, ρ1,
arising from this n original Moran Process, is often termed
the Moran probability and can be shown to be equal to the
quantity 1−1/r

1−1/rn .
In the original work that introduced EGT [4], Lieberman et

al. generalize the model of the Moran Process by specifying
relationships between the n individuals of the population in
the form of a directed, weighted graph (again, we will use
the notation G = (V,E)). We also assume a probability
associated with each edge - just as with the IC model, except
here ∀i,

∑
j pij = 1. The dynamics proceed as follows. At

each step, first an individual is selected from the population
proportional to its fitness (just as with the standard Moran
process, this is r/(nmutantr + n− nmutant) for mutants and
1/(nmutantr + n − nmutant) for residents – where nmutant
is the number of individuals in the population with a mutant
label). This individual is selected for “birth.” Then, a single
outgoing neighbor j of node i is chosen with a probability pij .
Individual j then “dies” and is replaced with a clone of node i.
In other words, j adopts i’s label for the next iteration. Again, a
key problem explored in the literature on EGT is to determine
the fixation probability - the probability that all members in
the population adopt a mutant label given an initial invasion
of mutants.

There has been much research on the computation of
fixation probability in EGT. To compute this value for an
initial, single, randomly-placed mutant, [4] shows that the
network structure plays a significant role in this computation as

this is only equal to the Moran probability for a special class
of graphs referred to as isothermal that is for all nodes (i),
the quantity

∑
j pji is the same. This quantity is often called

the temperature as nodes will change label more often if it is
higher (hence in isothermal graphs the temperature is the same
for all nodes). Many researchers [20][21][24][22][23] have
studied the problem of computing the probability of fixation
given that a certain subset of nodes are mutants. If the mutants
inhabit set C ⊆ V , then this probability is written PC . Hence
the fixation probability for a randomly selected mutant (ρ) is
simply the average of the PC for all singleton sets. In [25] the
authors provide a set of linear constraints for solving for PC -
though there are an intractable number of these constraints. As
with LT and IC, simulation is often used to estimate fixation
probabilities. However, analytical results are available in many
special cases of graphs and algorithms such as that of [22] can
provide faster approximations for certain cases.

One of the most popular applications of EGT is game theory.
In the game theoretic context, nodes of a graph represent
agents and edges represent potential for interaction between
them. Interactions between agents are games played that can
be described using a normal game theoretic payoff matrix.
EGT thus provides a structural component for interactions
in populations of agents. Evolutionary game theory, which
is concerned with the population-dependent success of game
theoretic strategies, has initially mostly focused on well-
mixed populations in which interactions between all agents are
equally likely. Combining EGT with evolutionary game theory
can take into account the effect of population structure, which
has the capacity to crucially impact evolutionary trajectories,
outcomes, and strategy success. Thus EGT is a welcome
tool to explore how many of the results for well-mixed
populations are affected by population structure. In game-
theoretic applications of EGT, the evolutionary fitness (fi)
of individual i is often related to their game theoretic payoff
(p) (based on game-play with neighbors) with the following
relationship: fi = 1−w+w ·p. Where the parameter w relates
the payoff acquired from games played to fitness. If w = 1,
the payoff acquired is equal to the fitness. If w = 0, the game
is irrelevant and we are at neutral drift. An often explored
special case is weak selection, where w << 1, which reflects
the assumption that the game of interest plays only a partial
role in the overall fitness of individuals. Using this paradigm,
researchers have reached a variety of important conclusions on
the effects of population structure on game-theoretic concepts.
For instance, Santos et al. [26] investigate the effects of single-
scale and scale-free networks on cooperation in the Prisoner’s
Dilemma, Snow-Drift, and Stag-Hunt games through simu-
lations. The authors find that in degree-heterogeneous graphs
cooperation is easier to sustain than in well-mixed populations
and thus identify heterogeneity as a “powerful mechanism for
the emergence of cooperation.” Additionally, the authors find
that the sustainability of cooperation also depends on“detailed
and intricate ties” between agents. As evidence of this, scale
free networks which exhibit properties like those that emerge
from models of growth from preferential attachment (Albert-
Barbarasi topology) are shown to produce higher cooperation
than random scale-free networks.
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V. LOGIC PROGRAMMING BASED FRAMEWORKS

Attributes about individuals within a social network, along
with characteristics about the relationships among them, can
play a significant role in diffusion. For instance, a close friend
may have a stronger influence relationship than an office co-
worker. Likewise, individuals of different ages, genders, and
education levels may respond to various social contagion in
different ways. While models such as deterministic tipping,
IC, and LT can capture the structure of a population, they do
not inherently capture attributes of the individuals, their rela-
tionships, and the social contagion itself. Logic programming
brings a natural representation of these additional factors -
along with a suite of long-established results. The intuition
is that a graph with multiple labels on nodes and edges is
embedded into a logic program - along with additional rules
that specify complex diffusion relationships.

The logic-programming approach to social network dif-
fusion first introduced in [27] and later extended in [28].
Since its introduction, there have been other variants of the
logic-based approach that have leveraged formalisms such as
probabilistic soft logic (PSL) [29] and modal logic [30] in
addition to tackling problems such as non-monotonic diffusion
reasoning [31] and informing the creation of diffusion-specific
centrality measures [32]. A key advantage is with these frame-
works is that they do not specify a single diffusion model,
but rather provide a language for reasoning about a whole
class of diffusion models. These approaches even allow for
the composition of models - enabling reasoning about multiple
diffusion processes that occur at the same time and potentially
interact.

The well-known annotated logic - Generalized Annotated
Programs (GAP) was the first to be adapted for social network
diffusion [27][28]. In this case, a social network was defined as
a 5-tuple: (V,E, `node, `edge, w) where V is the set of nodes,
E is a multi-set of relationships, `node, `edge are functions that
label the nodes and edges respectively, and w is a weighting
function that assigns weights to multi-edges. This structure can
be easily embedded into a logic program along with associated
diffusion rules.

To provide more concrete intuition for how a social network
and associated diffusion processes can be embedded in a logic
program, consider Figure 1 which shows a toy social network
the cell phone company might use. Here, we might have a
set of node labels {male, female, adopter, temp adopter,
non adopter} denoting the sex and past adoption behavior
of each vertex; and a set of edge labels {phone, email, IM}
denoting the types of interactions between nodes (phone call,
email, and instant messaging respectively). The function `node
is shown in Figure 1 by the shape (denoting past adoption
status) and shading (male/female). The type of edges (bold
for phone, dashed for email, dotted for IM) is used to depict
`edge. w(v1, v2) denotes the percentage of communications of
type `edge(v1, v2) initiated by v1 that were with v2 (measured
either w.r.t. time or bytes).

We can easily embed this social network into a GAP. For
instance, we would include the rule female(v1) : 1 ←
meaning that node v1 is assigned an annotation of 1 (signifying

v1 

v4 

v5 

v11 

v17 

v9 

v3 

v6 

v7 
v8 

v15 

v14 

v13 

v16 

v10 

v12 

v18 

v20 

1.0 

0.7 

1
.0

 

v19 

v2 

(shaded) female (unshaded) male 
    adopter            temp_adopter     
    non_adopter 

Fig. 1. Example cellular social network.

truth). Likewise, IM(v3, v13) : 0.4 ← specifies that there is
an instant messaging relationship between v3 and v13 with a
weight of 0.4. We can specify the diffusion process through
GAP rules as follows (note we use capital letters to denote
nodes as these refer to arbitrary nodes rather than specific
ones).

1) will adopt(V0) : 0.8 ×X + 0.2 ← adopter(V0) : 1 ∧
male(V0) : 1 ∧ IM(V0, V1) : 0.3 ∧ female(V1) : 1 ∧
will adopt(V1) : X.

2) will adopt(V0) : 0.9 ×X + 0.1 ← adopter(V0) : 1 ∧
male(V0) : 1 ∧ IM(V0, V1) : 0.3 ∧ male(V1) : 1 ∧
will adopt(V1) : X.

3) will adopt(V0) : 1 ← temp adopter(V0) : 1 ∧
male(V0) : 1 ∧ email(V1, V0) : 1 ∧ female(V1) :
1 ∧ will adopt(V1) : 1.

Rule 1 says that if V0 is a male adopter and V1 is female
and the weight of V0’s instant messages to V1 is 0.3 or more,
and we previously thought that V1 would be an adopter with
confidence X , then we can infer that V0 will adopt the new
plan with confidence 0.8 ×X + 0.2. The other rules may be
similarly read.

Due to the results of [33], determining the outcome of a
diffusion process under this model can be computed efficiently
under some natural assumptions. However, a solving a social
network diffusion optimization problem (SDNOP) in such a
framework (the analogue to influence maximization or target
set selection) remains NP-hard as the tipping model can be
easily embedded into this framework. There are also special
cases of GAPs where the diffusion process exhibits submod-
ularity (known as linear GAPs) and allow for the greedy
approximation as in the case of IC and LT. However, it should
be noted that, in general, the annotations associated with
the atomic propositions in this framework are not necessarily
probabilistic - and the efficiency of the progression of diffusion
in this framework precludes exact embeddings of probabilistic
models such as IC, LT, and EGT.
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VI. CONCLUSION

This paper surveyed some of the major social network
diffusion models from a variety of disciplines and described
some key results. However, this area of study will continue
to evolve. Lately, network diffusion research where historical
traces of diffusion processes are available are becoming more
prevalent – and empirical studies examining influence and
diffusion in such datasets will lead to further refinements of
these models - and perhaps result in new paradigms.
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