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Abstract—For fifty years, computer science was focused on 

making computers useful.  The emphasis was on algorithms, 

programming languages, and operating systems.  Today the focus 

has changed to applications.  Some of the drivers are the amount 

of computing power available, the quantities of data, and the 

internet.  The impact on computer science created an interest in 

applications and interdisciplinary research.  In this article we will 

review some of the recent work in clustering in social networks, 

learning theory, the size of data, and the digitalization of records 

and the need for privacy in computer systems. 

 
Index Terms—Community clustering, deep neural networks,  

large graph, privacy and security 

 

I. CLUSTERING 

ARLY work in the area of clustering was involved in 

partitioning vertices of social networks into disjoint 

clusters. This work evolved into finding overlapping 

communities.  More recently there have been two major 

advances.  One is as the size of social networks increased to 

billions of vertices, global clustering was replaced by local 

clustering.  In global clustering if one partitions a billion vertex 

graph into ten or so clusters, the clusters would have hundreds 

of millions of vertices. With recursive partitioning one may 

find clusters of size a hundred, but the process is inefficient. 

Overlapping community detection is also more costly and hard 

to scale to large networks. Instead one might want local clusters 

for the seed members of interest.  Say a cluster of fifty friends 

of three or so designated individuals.  One method for doing 

this is to use spectral clustering.  In spectral clustering one 

creates a matrix whose columns are the first few spectral 

vectors of the adjacency matrix of the network and then finds 

the minimum one norm vector in the space spanned by the 

columns [1, 2].   

Instead of finding the minimum one norm vector in the space 

spanned by the singular vectors one might start random walks 

from a few vertices in the local community, but halt the process 

when the walks have converged to the stationary probabilities 

for the vertices in the community but not for the whole graph.  

The minimum one norm vector in the space spanned by these 

unconverged vectors will give the local community. 
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Another direction in clustering is finding hidden structure [3, 

4]. Suppose one had images of a number of letters and the 

letters were in several shades of gray and different type fonts.  

If you were asked to cluster the images you would probably 

cluster them by letter.  However, one could cluster them by 

color or by type font.  The letter is the dominant structure. The 

type font and color of letters are the hidden structures, which 

are weaker and incoherent with the dominant clustering. Real 

networks have both dominant and several levels of hidden 

structure. How do you find the hidden structure in a social 

network? 

Select your favorite clustering algorithm and find the 

dominant structure.  Then weaken the dominant structure in the 

graph by randomly removing edges in the clusters.  The again 

apply your clustering algorithm to the graph and it will find the 

hidden structure.  If you go back to the original graph and now 

weaken the hidden structure and again find the dominant 

structure you will probably improve the clustering algorithms.  

If you alternately weaken the dominant and then the hidden 

structure you will converge to good clusterings of both the 

dominant and the hidden structure.  Some real world networks 

have several levels of hidden structure that can be retrieved. 

Applying this technique to the Facebook data of Rice 

University students [5] one gets a dominant structure and three 

levels of hidden structure.  The dominant structure is the dorm 

the student lives in and one of the hidden levels is the year of 

the student, freshman, sophomore, junior, or senior.  The other 

two levels have high modularity and are incoherent with earlier 

levels but we were unable to identify what they corresponded 

to; maybe sports or other interests. 

II. DEEP LEARNING 

Machine learning has been extremely valuable for a number 

of years. Its major tool was the support vector machine.  

However, in 2012 advances in deep learning changed the field.  

Until 2012 reducing the classification error in the ImageNet 

ILSVRC competition [6,7] was very small.  ImageNet has 1.2 

million images classified in 1,000 categories.   

The task is to train a network on a training set of the images 

and see how well it generalizes to a test set.  Prior to 2012 the 

error rate was approximately 25%. Then in 2012, AlexNet 

dropped the error rate to 15%, a truly major improvement.  Two 

years later GoogleNet reduced the error rate to 6.7% and in 

2015 ResNet reduced it further to 3.6%.  The human error rate 

with training is about 5%. These deep networks outperform 

humans.  Since 2012 deep networks have been applied in many 

applications and they have performed exceptionally well 

although little is known as to why they work so well.   
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One of the issues with supervised learning is the lack of 

sufficiently large labeled data sets.  Recently there has been 

progress in unsupervised learning.  Instead of training a deep 

network to classify images one can train the network to 

reproduce the image. This results in good internal 

representations of images and raises the question of what 

internal gates learn. This has significantly increased the 

research on unsupervised learning. 

There are many research problems that might shed some 

insight into deep learning.  Do some gates learn the same thing 

as other gates?  If we train a network twice from different 

random starting positions do the gates learn the same things or 

does the network develop entirely different way to classify 

images [8]? What determines what a gate learns.  How does 

what a gate learns evolve over time.  Do gates in the first or 

second convolution levels learn features of images independent 

of what the images are?  In training a deep network one 

encounters many local minima with the same error rate.  Which 

local minima will generalize better? Experimentally broader 

local minima seem to generalize better.  This may be because 

the error function for the training set is very close to the true 

error function and a small shift will not disturb a broad local 

minimum as much as it will on a sharp local minimum.  

Generative adversarial networks [9] have become very 

popular.  If one wants to generate realistic looking images one 

might train an adversarial network to distinguish between real 

images and generated images. Then they could feed the 

adversarial component the output of the generative component 

and train the generative component until the adversarial 

component could not distinguish between the generated image 

and a real image. At that point one trains the adversarial 

component to do better.  By interacting with the two units one 

can generate good images. 

Another application might be language translation.  In the 

past one used pieces of text where one had the same text in both 

languages to train a network. But if one does not have sufficient 

samples in both languages they could use an adversarial 

network as follows. To create a translator from English to 

German one first build a translator that will take an English 

sentence and output German words. The one build an 

adversarial network that distinguishes between German words 

and German sentences.  Finally, one takes the output of the first 

devices that outputs German words and builds a device that 

creates English sentences and compares the sentences 

generated to the original sentence.  Training the three networks 

forces the output of the first device to be a German sentence 

rather than just German words. And training the last device 

forces the German sentence to be a true translation. 

There are many other problems researchers are exploring.  

An interesting one is how one can fool a deep network by 

making changes to an image that are so small a human cannot 

detect the changes, but cause the deep network to change the 

classification of the image [10].  All of a sudden what appears 

to be an image of a cat is classified as a car. The reason this is 

possible is that the set of images of a cat map into a manifold of 

dimension much smaller that the dimension of the activation 

space.  Thus if one moves in activation space perpendicular to 

the surface of the manifold one is likely to change the 

classification.  

AI programs do not extract the essence of an object and 

understanding its function or other important aspects.  It may be 

another 40 years before we have another information revolution 

where function or other property is extracted.  This will lead to 

an enormous range of intellectual ability. 

III. SIZE OF GRAPHS 

In early research in the 1960's, graphs had ten to fifteen 

vertices. When the computer came graph size increased to 

1,000 vertices, with faster computers 10
6
 vertices.  Then sparse 

graph such as the world wide web came with billions of 

vertices.  Today we compute with 10100  graphs with 10100 

vertices.  Remember the number of atoms in the visible 

universe is only 1070.  How do we store a graph with 10100 

vertices in the computer? We don’t.  One can do a random walk 

on a graph without storing it in the computer.  All they need is 

an algorithm which given a vertex will identify the adjacent 

vertices.  All we need to keep is the current vertex the random 

walk is at.  However, how long does it take for a random walk 

to converge to its stationary probability?  It turns out that if the 

graph is an expander, the random walk will converge to its 

stationary probability in logarithmic number of steps.  For the 

10100vertex graph this means some number of step within 100 

times some constant.  Problems in of this size occurring in 

many applications are handled every day. 

Given the size of data and graphs that are dealt with 

frequently requires that we randomly sample the data.  This 

might require a random sequence which is a sequence with no 

short description.  How can you store such a sequence?  You 

don’t.  Instead you use a pseudo random sequence.  This raises 

the question of how much randomness do you need.  Usually 

one only needs two-way randomness.  A sequence of zeros and 

ones is two-way pseudo random if each element is equally 

likely to be a zero or a one and given the value of one element in 

the sequence it does not give any information about any other 

element. If I give you two elements, I may be giving you 

information about all elements in the sequence. 

An example where one uses randomness is in determining 

the number of distinct elements in a sequence.  Suppose you 

work for a major chain store such as Walmart and want to know 

how many customers you have.  You have access to a data 

stream of every purchase world-wide along with a credit card 

number associated with the purchase.  You wish to count the 

number of card numbers.  Each number is 16 digits long.  You 

could set up a Boolean vector of length 10
16

, or you could keep 

a linked list of numbers, or you could use a hash table or some 

other technique. However, if you are happy with a good 

estimate you can do this with only one word of storage.  Keep 

track of the minimum credit card number.  If you lay out a 

sequence of integers from one to 1016and mark every number 

you see, the expected distance between elements will be the 

1016divided by the number of distinct elements.  Hence the 

minimum is approximately 1016 divided by the number of 
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distinct elements.  Thus a good approximation for the number 

of distinct elements is 1016 divided by the minimum number 

seen. 

One problem is that algorithm assumes the elements are 

random. This is not likely to be so since the credit card numbers 

might not be issued randomly. Thus you want to use a hash 

function to make the data statistically independent.  We cannot 

store a hash function that will give full independence.  

However, only two-way independence is needed. 

 

IV. DIGITALIZATION OF MEDICAL RECORDS 

As we digitize medical records the need for privacy and 

security becomes critically important.  For example, if my 

entire medical history was digitized and I became ill 

somewhere in the world, I would like my doctor to be able to 

see my entire medical history to give me the best possible 

treatment.  However, I do not want my insurance company to 

see my entire medical history. In fact, the insurance company 

does not need to see my medical record at all.  All they need is a 

rigorous proof that they owe a doctor a certain amount of 

money.  Medical researchers would like to access every one’s 

medical record to improve medical techniques.  How do we 

allow them to access statistical information without letting 

them have access to any individual information? Two 

techniques are emerging to help with this issue: zero knowledge 

proofs [11] and differential privacy [12].  

A. Zero Knowledge Proof 

A zero knowledge proof of a statement is a proof that the 

statement is true without providing any other information. To 

illustrate a zero knowledge proof, consider the game Sudoku.  I 

can prove that I know how to fill in a Sudoku board without 

giving you any information on how to do it.  I will take pieces 

of cardboard and write the appropriate number on each piece 

and place the card board pieces down over the appropriate 

squares so the numbers are not visible.  Now you want to check 

that I have correctly filled in the first row.  I pick up the 

cardboard pieces from the first row and shuffle them and show 

you that I have the correct numbers for the row.  You check 

every row, column and three by three square and see that I have 

correctly filled in each.  Actually this is not quite sufficient to 

prove that I have a correct solution since you don’t know that I 

put the card pieces back in the same order each time.  However, 

if I do not have a solution you will detect it with some 

probability and as you ask about more rows, columns and three 

by three squares with repetitions, you can drive the probability 

that I do not have a solution to zero. 

A similar technique can be applied to three coloring a graph 

so that no two adjacent vertices have the same coloring.  This is 

an NP-complete problem and there is no known polynomial 

time algorithm for the three coloring problem.  Suppose you 

have a graph with a million vertices that you want to color and I 

have a business where I provide colorings.  However, we 

cannot do business since we don’t trust one another and you do 

not want to pay me until you know I actually have a coloring for 

your graph and I do not want to show you the coloring until you 

pay me.  The solution is to give you a proof that I have a 

coloring without giving you any information as to the coloring.  

Again we use a zero knowledge proof.   

For each vertex I place the appropriate color in an envelope 

and seal it.  You ask to see the color of two adjacent vertices 

and I allow you to open the two appropriate envelops.  This 

gives you no information about a coloring since one could 

permute the colors of the vertices to achieve the two colors of 

these two vertices.  However, if I allow you to see another 

vertex, I have given you some information.  So instead I destroy 

all the envelopes, permute the colors on the graph and recreate 

envelops with the appropriate color for each vertex.  This sound 

like a lot of work.  However, we don’t use physical envelops, 

instead we agree on a digital encoding.  When you want to see 

two vertices I give you the key to decode those two vertices.  

Since this is all done electronically it takes only a few minutes 

to convince you I indeed have a coloring and we can do 

business. 

These toy problems are just examples of zero knowledge 

proofs. 

B. Differential Privacy 

Privacy is needed in many business applications involving 

car guidance, supply chains, and transportations systems.  For 

example, the route guidance system in your car does not give 

you the best route guidance since it does not know the 

conditions of back roads and thus it keeps you on main roads.  If 

the guidance system could improve routing and reduce mileage 

by a few percent, it would be a savings in millions of dollars of 

gasoline.   

The route guidance system may record your GPS coordinates 

for the last month.  If when you take your car in for service the 

GPS coordinates were down loaded, the route guidance system 

could improve its guidance by making use of the knowledge of 

local drivers.  However, one may not want the GPS coordinates 

down loaded since one could determine the car owner by where 

the car was parked at night, where one works, shops, etc.  

However, if we could provide the condition of back roads 

without reveling any individual information it would be a 

success.  Many systems that will be created in the future will 

face such problems of privacy. 

V. CONCLUSION 

The availability of large amounts of data, enormous 

computing power, the internet, and advances in AI are driving 

an information revolution.  Intellectual tasks will be automated, 

changing the nature of work.  In this paper we discussed some 

of the applications and advances that will influence our 

future.  Those individuals, institutions, and nations that position 

themselves for the future will benefit enormously. 
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