
Feature Article: John E. Hopcroft and Kun He 3

IEEE Intelligent Informatics Bulletin December 2017 Vol.18 No.2



Abstract—For fifty years, computer science was focused on

making computers useful. The emphasis was on algorithms,

programming languages, and operating systems. Today the focus

has changed to applications. Some of the drivers are the amount

of computing power available, the quantities of data, and the

internet. The impact on computer science created an interest in

applications and interdisciplinary research. In this article we will

review some of the recent work in clustering in social networks,

learning theory, the size of data, and the digitalization of records

and the need for privacy in computer systems.

Index Terms—Community clustering, deep neural networks,

large graph, privacy and security

I. CLUSTERING

ARLY work in the area of clustering was involved in

partitioning vertices of social networks into disjoint

clusters. This work evolved into finding overlapping

communities. More recently there have been two major

advances. One is as the size of social networks increased to

billions of vertices, global clustering was replaced by local

clustering. In global clustering if one partitions a billion vertex

graph into ten or so clusters, the clusters would have hundreds

of millions of vertices. With recursive partitioning one may

find clusters of size a hundred, but the process is inefficient.

Overlapping community detection is also more costly and hard

to scale to large networks. Instead one might want local clusters

for the seed members of interest. Say a cluster of fifty friends

of three or so designated individuals. One method for doing

this is to use spectral clustering. In spectral clustering one

creates a matrix whose columns are the first few spectral

vectors of the adjacency matrix of the network and then finds

the minimum one norm vector in the space spanned by the

columns [1, 2].

Instead of finding the minimum one norm vector in the space

spanned by the singular vectors one might start random walks

from a few vertices in the local community, but halt the process

when the walks have converged to the stationary probabilities

for the vertices in the community but not for the whole graph.

The minimum one norm vector in the space spanned by these

unconverged vectors will give the local community.

This work was supported by US Army Research Office

(W911NF-14-1-0477), and National Natural Science Foundation of China

(61772219).

John E. Hopcroft is with the Department of Computer Science, Cornell
University, Ithaca, NY 14853, USA (e-mail: jeh@cs.cornell.edu).

Kun He, is with the Department of Computer Science, Huazhong University

of Science and Technology, Wuhan 430074, China (e-mail:
brooklet60@hust.edu.cn).

Another direction in clustering is finding hidden structure [3,

4]. Suppose one had images of a number of letters and the

letters were in several shades of gray and different type fonts.

If you were asked to cluster the images you would probably

cluster them by letter. However, one could cluster them by

color or by type font. The letter is the dominant structure. The

type font and color of letters are the hidden structures, which

are weaker and incoherent with the dominant clustering. Real

networks have both dominant and several levels of hidden

structure. How do you find the hidden structure in a social

network?

Select your favorite clustering algorithm and find the

dominant structure. Then weaken the dominant structure in the

graph by randomly removing edges in the clusters. The again

apply your clustering algorithm to the graph and it will find the

hidden structure. If you go back to the original graph and now

weaken the hidden structure and again find the dominant

structure you will probably improve the clustering algorithms.

If you alternately weaken the dominant and then the hidden

structure you will converge to good clusterings of both the

dominant and the hidden structure. Some real world networks

have several levels of hidden structure that can be retrieved.

Applying this technique to the Facebook data of Rice

University students [5] one gets a dominant structure and three

levels of hidden structure. The dominant structure is the dorm

the student lives in and one of the hidden levels is the year of

the student, freshman, sophomore, junior, or senior. The other

two levels have high modularity and are incoherent with earlier

levels but we were unable to identify what they corresponded

to; maybe sports or other interests.

II. DEEP LEARNING

Machine learning has been extremely valuable for a number

of years. Its major tool was the support vector machine.

However, in 2012 advances in deep learning changed the field.

Until 2012 reducing the classification error in the ImageNet

ILSVRC competition [6,7] was very small. ImageNet has 1.2

million images classified in 1,000 categories.

The task is to train a network on a training set of the images

and see how well it generalizes to a test set. Prior to 2012 the

error rate was approximately 25%. Then in 2012, AlexNet

dropped the error rate to 15%, a truly major improvement. Two

years later GoogleNet reduced the error rate to 6.7% and in

2015 ResNet reduced it further to 3.6%. The human error rate

with training is about 5%. These deep networks outperform

humans. Since 2012 deep networks have been applied in many

applications and they have performed exceptionally well

although little is known as to why they work so well.

Computer Science in the Information Age

John E. Hopcroft, Life Fellow, IEEE, Kun He, Member, IEEE

E

4 Feature Article: Computer Science in the Information Age

December 2017 Vol.18 No.2 IEEE Intelligent Informatics Bulletin

One of the issues with supervised learning is the lack of

sufficiently large labeled data sets. Recently there has been

progress in unsupervised learning. Instead of training a deep

network to classify images one can train the network to

reproduce the image. This results in good internal

representations of images and raises the question of what

internal gates learn. This has significantly increased the

research on unsupervised learning.

There are many research problems that might shed some

insight into deep learning. Do some gates learn the same thing

as other gates? If we train a network twice from different

random starting positions do the gates learn the same things or

does the network develop entirely different way to classify

images [8]? What determines what a gate learns. How does

what a gate learns evolve over time. Do gates in the first or

second convolution levels learn features of images independent

of what the images are? In training a deep network one

encounters many local minima with the same error rate. Which

local minima will generalize better? Experimentally broader

local minima seem to generalize better. This may be because

the error function for the training set is very close to the true

error function and a small shift will not disturb a broad local

minimum as much as it will on a sharp local minimum.

Generative adversarial networks [9] have become very

popular. If one wants to generate realistic looking images one

might train an adversarial network to distinguish between real

images and generated images. Then they could feed the

adversarial component the output of the generative component

and train the generative component until the adversarial

component could not distinguish between the generated image

and a real image. At that point one trains the adversarial

component to do better. By interacting with the two units one

can generate good images.

Another application might be language translation. In the

past one used pieces of text where one had the same text in both

languages to train a network. But if one does not have sufficient

samples in both languages they could use an adversarial

network as follows. To create a translator from English to

German one first build a translator that will take an English

sentence and output German words. The one build an

adversarial network that distinguishes between German words

and German sentences. Finally, one takes the output of the first

devices that outputs German words and builds a device that

creates English sentences and compares the sentences

generated to the original sentence. Training the three networks

forces the output of the first device to be a German sentence

rather than just German words. And training the last device

forces the German sentence to be a true translation.

There are many other problems researchers are exploring.

An interesting one is how one can fool a deep network by

making changes to an image that are so small a human cannot

detect the changes, but cause the deep network to change the

classification of the image [10]. All of a sudden what appears

to be an image of a cat is classified as a car. The reason this is

possible is that the set of images of a cat map into a manifold of

dimension much smaller that the dimension of the activation

space. Thus if one moves in activation space perpendicular to

the surface of the manifold one is likely to change the

classification.

AI programs do not extract the essence of an object and

understanding its function or other important aspects. It may be

another 40 years before we have another information revolution

where function or other property is extracted. This will lead to

an enormous range of intellectual ability.

III. SIZE OF GRAPHS

In early research in the 1960's, graphs had ten to fifteen

vertices. When the computer came graph size increased to

1,000 vertices, with faster computers 10
6
 vertices. Then sparse

graph such as the world wide web came with billions of

vertices. Today we compute with 10100 graphs with 10100

vertices. Remember the number of atoms in the visible

universe is only 1070. How do we store a graph with 10100

vertices in the computer? We don’t. One can do a random walk

on a graph without storing it in the computer. All they need is

an algorithm which given a vertex will identify the adjacent

vertices. All we need to keep is the current vertex the random

walk is at. However, how long does it take for a random walk

to converge to its stationary probability? It turns out that if the

graph is an expander, the random walk will converge to its

stationary probability in logarithmic number of steps. For the

10100vertex graph this means some number of step within 100

times some constant. Problems in of this size occurring in

many applications are handled every day.

Given the size of data and graphs that are dealt with

frequently requires that we randomly sample the data. This

might require a random sequence which is a sequence with no

short description. How can you store such a sequence? You

don’t. Instead you use a pseudo random sequence. This raises

the question of how much randomness do you need. Usually

one only needs two-way randomness. A sequence of zeros and

ones is two-way pseudo random if each element is equally

likely to be a zero or a one and given the value of one element in

the sequence it does not give any information about any other

element. If I give you two elements, I may be giving you

information about all elements in the sequence.

An example where one uses randomness is in determining

the number of distinct elements in a sequence. Suppose you

work for a major chain store such as Walmart and want to know

how many customers you have. You have access to a data

stream of every purchase world-wide along with a credit card

number associated with the purchase. You wish to count the

number of card numbers. Each number is 16 digits long. You

could set up a Boolean vector of length 10
16

, or you could keep

a linked list of numbers, or you could use a hash table or some

other technique. However, if you are happy with a good

estimate you can do this with only one word of storage. Keep

track of the minimum credit card number. If you lay out a

sequence of integers from one to 1016and mark every number

you see, the expected distance between elements will be the

1016divided by the number of distinct elements. Hence the

minimum is approximately 1016 divided by the number of

Feature Article: John E. Hopcroft and Kun He 5

IEEE Intelligent Informatics Bulletin December 2017 Vol.18 No.2

distinct elements. Thus a good approximation for the number

of distinct elements is 1016 divided by the minimum number

seen.

One problem is that algorithm assumes the elements are

random. This is not likely to be so since the credit card numbers

might not be issued randomly. Thus you want to use a hash

function to make the data statistically independent. We cannot

store a hash function that will give full independence.

However, only two-way independence is needed.

IV. DIGITALIZATION OF MEDICAL RECORDS

As we digitize medical records the need for privacy and

security becomes critically important. For example, if my

entire medical history was digitized and I became ill

somewhere in the world, I would like my doctor to be able to

see my entire medical history to give me the best possible

treatment. However, I do not want my insurance company to

see my entire medical history. In fact, the insurance company

does not need to see my medical record at all. All they need is a

rigorous proof that they owe a doctor a certain amount of

money. Medical researchers would like to access every one’s

medical record to improve medical techniques. How do we

allow them to access statistical information without letting

them have access to any individual information? Two

techniques are emerging to help with this issue: zero knowledge

proofs [11] and differential privacy [12].

A. Zero Knowledge Proof

A zero knowledge proof of a statement is a proof that the

statement is true without providing any other information. To

illustrate a zero knowledge proof, consider the game Sudoku. I

can prove that I know how to fill in a Sudoku board without

giving you any information on how to do it. I will take pieces

of cardboard and write the appropriate number on each piece

and place the card board pieces down over the appropriate

squares so the numbers are not visible. Now you want to check

that I have correctly filled in the first row. I pick up the

cardboard pieces from the first row and shuffle them and show

you that I have the correct numbers for the row. You check

every row, column and three by three square and see that I have

correctly filled in each. Actually this is not quite sufficient to

prove that I have a correct solution since you don’t know that I

put the card pieces back in the same order each time. However,

if I do not have a solution you will detect it with some

probability and as you ask about more rows, columns and three

by three squares with repetitions, you can drive the probability

that I do not have a solution to zero.

A similar technique can be applied to three coloring a graph

so that no two adjacent vertices have the same coloring. This is

an NP-complete problem and there is no known polynomial

time algorithm for the three coloring problem. Suppose you

have a graph with a million vertices that you want to color and I

have a business where I provide colorings. However, we

cannot do business since we don’t trust one another and you do

not want to pay me until you know I actually have a coloring for

your graph and I do not want to show you the coloring until you

pay me. The solution is to give you a proof that I have a

coloring without giving you any information as to the coloring.

Again we use a zero knowledge proof.

For each vertex I place the appropriate color in an envelope

and seal it. You ask to see the color of two adjacent vertices

and I allow you to open the two appropriate envelops. This

gives you no information about a coloring since one could

permute the colors of the vertices to achieve the two colors of

these two vertices. However, if I allow you to see another

vertex, I have given you some information. So instead I destroy

all the envelopes, permute the colors on the graph and recreate

envelops with the appropriate color for each vertex. This sound

like a lot of work. However, we don’t use physical envelops,

instead we agree on a digital encoding. When you want to see

two vertices I give you the key to decode those two vertices.

Since this is all done electronically it takes only a few minutes

to convince you I indeed have a coloring and we can do

business.

These toy problems are just examples of zero knowledge

proofs.

B. Differential Privacy

Privacy is needed in many business applications involving

car guidance, supply chains, and transportations systems. For

example, the route guidance system in your car does not give

you the best route guidance since it does not know the

conditions of back roads and thus it keeps you on main roads. If

the guidance system could improve routing and reduce mileage

by a few percent, it would be a savings in millions of dollars of

gasoline.

The route guidance system may record your GPS coordinates

for the last month. If when you take your car in for service the

GPS coordinates were down loaded, the route guidance system

could improve its guidance by making use of the knowledge of

local drivers. However, one may not want the GPS coordinates

down loaded since one could determine the car owner by where

the car was parked at night, where one works, shops, etc.

However, if we could provide the condition of back roads

without reveling any individual information it would be a

success. Many systems that will be created in the future will

face such problems of privacy.

V. CONCLUSION

The availability of large amounts of data, enormous

computing power, the internet, and advances in AI are driving

an information revolution. Intellectual tasks will be automated,

changing the nature of work. In this paper we discussed some

of the applications and advances that will influence our

future. Those individuals, institutions, and nations that position

themselves for the future will benefit enormously.

REFERENCES

[1] Kun He, Yiwei Sun, David Bindel, John E. Hopcroft and Yixuan Li,
“Detecting overlapping communities from local spectral subspaces,” in

6 Feature Article: Computer Science in the Information Age

December 2017 Vol.18 No.2 IEEE Intelligent Informatics Bulletin

15th IEEE International Conference on Data Mining (ICDM), Atlantic
City, USA, 2015, pp. 769-774.

[2] Yixuan Li, Kun He, David Bindel and John E. Hopcroft. “Uncovering the
small community structure in large networks,” in 24th International
Conference on World Wide Web (WWW), Florence, Italy, 2015, pp.
658-668.

[3] Kun He, Sucheta Soundarajan, Xuezhi Cao, John E. Hopcroft and
Menglong Huang, “Revealing multiple layers of hidden community
structure in networks,” CoRR abs/1501.05700, 2015.

[4] Kun He, Yingru Li, Sucheta Soundarajan and John E. Hopcroft, “Hidden
community detection in social networks,” Information Sciences, vol. 425,
pp. 92-106, Jan. 2018.

[5] Alan Mislove, Bimal Viswanath, P. Krishna Gummadi, Peter Druschel,
“You are who you know: inferring user profiles in online social
networks,” in Proceedings of the 3rd International Conference on Web
Search and Web Data Mining (WSDM), New York, NY, USA, 2010, pp.
251-260.

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Fei-Fei Li, “ImageNet Large
Scale Visual Recognition Challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, April 2015.

[7] ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
[Online]. Available: http://www.image-net.org/challenges/LSVRC/.

[8] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E.
Hopcroft, “Convergent learning: Do different neural networks learn the
same representations? ” in ICLR, 2016.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio,
“Generative adversarial networks,” in Advances in Neural Information

Processing Systems(NIPS). Montreal, Quebec, Canada, 2014, pp.
2672-2680.

[10] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep neural networks are
easily fooled: high confidence predictions for unrecognizable images,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015.

[11] Blum, Manuel, Feldman, Paul; Micali, Silvio. “Non-interactive
zero-knowledge and its applications,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing (STOC), Chicago,
Illinois, USA, 1988, pp. 103–112.

[12] Cynthia Dwork. “Differential Privacy, Automata, Languages and
Programming,” in 33rd International Colloquium (ICALP), Venice, Italy,
2006, pp. 1-12.

https://www.sciencedirect.com/science/journal/00200255/425/supp/C

