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Advances In Inference Methods for Markov Logic
Networks

Deepak Venugopal

Abstract—Markov  Logic Networks (MLNs) are expressive Specifically, with just a few compact formulas, MLNs are able
models that can be used to specify complex and uncertain to represent extremely large Markov networks containimgith
background knowledge in the form of weighted first-order logc  g514s of variables and factors. For instance, consider plesim

formulas. However, inference in MLNs is highly challenging . - .
since the underlying probabilistic model can be very large een MLN that models the transitive relationshir i ends x,

for simple MLN structures. Lifted inference has emerged as Friends ,z Friends zx with weight . Every
dominant approach for probabilistic inference in MLNs, where possible instantiation ogroundingof the MLN formula for
the idea is to exploit symmetries in the MLN for scalable a given domain, represents a factor in the Markov network.
inference. In this paper, we provide an overview of MLNS, and  tpa¢ s suppose we consider 1000 people in our domain,
major advances in inference techniques for MLNs over the las )
several years. th_e_ Markov network _u_nderly|_ng our examp_le MLN has 1
) o ] billion factors and 1 million variables. Performing infae on
Index Terms—Markov Logic Networks, Statistical Relational \y Ns js infeasible using traditional inference algorithifios
Learning, Probabilistic Graphical Models, Probabilistic Infer- . . o
ence. graphical models, which we refer to pgpositionalmethods,
since they work on the Markov network representation of the
first-order MLN. Thus, the challenge is to perform inference
I. INTRODUCTION . . N
] - by taking advantage of thifted representation in MLNs.
TATISTICAL Relational Al [1] unifies two corner-stones ~ap interesting aspect about the MLN representation is
f Artificial Intelligence, namely, first-order logic andihat the number of weights in the MLN is typically much
probabilities, to represent relational knowledge in thespr smaller than the number of factors in the underlying Markov
ence of uncertainty. Several notable SRL models have bggftwork. In other words, all instantiations of a formslaare
proposed over the last several years including Markov Logife same weight. This induces symmetries in the probability
Networks (MLNs) [2], 3], Bayesian Logic (BLOG) [4], prob- gjstriputions encoded by an MLN. Therefore, a significant
abilistic soft logic (PSL) [5] and ProbLog [6]. MLNs are ar-amount of research in MLNs has aimed towards exploit-
guably one of the most popular models for SRL, and combifigy these symmetries to improve scalability. In particular
first-order logic with undirected probabilisti(_:_graphimd)dels _starting with the pioneering work by Poole [12], the pre-
also known as Markov networks [7]. Specifically, an MLN igjominant method for inference is the idealified inference
a set of first-order logic formulas with real-valued weightghich performs reasoning over groups of indistinguishable
attached to each formula. The first-order formulas encoggriaples in the model. For exampleFfif i ends Alice Bob
knowledge corresponding to an application domain, whiée thyng Fri ends BohCarl have the same distributions, then
weights represent uncertainty associated with that krdgée jnference results fofFr i ends Alice Bob can be re-used
The larger the v_veight of a formula, greater is our belief iaar[th_for Fri ends BohCarl . The main challenge in developing
formula, and vice-versa. Thus, MLNs soften the semantiggicient lifted inference algorithms is to efficiently comtp
of first-order logic (where formulas are either true/faJse)Jroups of symmetric variables at a first-order level, withou

More specifically, MLNs are essentially template models th@xplicitly grounding the MLN, which could potentially crea
can encode different probability distributions based oa thy, extremely large Markov network.

instantiations of its first-order formulas. Given the camsés in The aim of this paper is to provide readers an overview
a domain-of-interest, the probability distribution in arLM  of MLNs in general, and in particular, to summarize major
is represented in factored form as a Markov network. Notgjyances in inference over the last few years. Fast andoeala
that by combining the compactness of first-order logic anflference algorithms are critical to the success of not only
Markov networks, MLNs are capable of representing largfiLNs, but the general field of Statistical Relational Al.
complex, uncertain relational knowledge in a succinct reannwith a growing interest in Statistical Relational Al due to
Therefore, they have been used in diverse areas includipg expressiveness, and explainability of its models [0,
NLP [8], computer vision [9], intelligent tutoring systerfi0]  pelieve that developments in this area should be of intéoest

and health informatics [11]. the intelligent systems community in general.
However, the expressiveness of MLNs comes at the cost
of increased complexity of probabilistic inference, andse- Il. BACKGROUND

quently learning, which typically uses inference as a $ep-s A. First-order Logic
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and logical connectives ( , , , , and ). A predicatground atoms, is given by the following log-linear expressi

is a relation that takes a specific number of arguments asw = Z N w whereN w is the number of

input and outputs eitherRUE (synonymous with ) oFALSE groundings off that are true ino and Z is a normalization

(synonymous with ). The arity of a predicate is the humbepnstant, also called the partition function.

of its arguments. A first-order formula connects variouslpre  Important inference queries in MLNs are computing the

cates through the logical connectives. A first-order knolgke partition function, finding the marginal probability of atoen

base (KB) is a set of first-order formulas. We denote logicgiven evidence (an assignment to a subset of variables) and

variables in a KB by lower case letters (e.d,, , z2) and finding the most probable assignment to all atoms given

constants, which model objects in the real-world domain, lwvidence (MAP inference). All these problems are computa-

strings that begin with an uppercase letter (e3gAna Bob).  tionally intractable. Therefore, typically approximatédrence

algorithms are used to solve these problems in practical SILN

B. Markov Logic Networks (MLNs) In a typical use case of MLNs, the application designer \srite
One of the problems with first-order logic is that it canndirst-order logic formulas that encode prior knowledge abou

represent uncertainty, i.e., formulas are either true tsefa the domain, and then relies on domain independent techsique

MLNs soften the constraints expressed by each formula, gplemented in software packages such as Alchemy [16] and

attaching a weight to it. Higher the weight, higher is ourdfel Tuffy [17] to solve two key tasksprobabilistic inference

of the formula being satisfied, all other things being equat. answering queries (making predictions) given the learned

In MLNs, we assume a restricted version of first-order logi¥lLN and observations (evidence), amdeight learning—

with Herbrand semantics. Specifically, we assume that eaddarning the weights attached to the formulas from data.

argument of each predicate is typed and can only be assigiéeight learning internally uses inference within each stegp,

to a finite set of constants. By extension, each logical téeia and therefore developing efficient inference methods isafne

in each formula is also typed. Given a domain of constantsfl#® key problems in MLNs.

groundatom is obtained by substituting all the variables in a

predicate by constants. Similarly, a ground formula is iviete IIl. EXACT LIFTED INFERENCE

by replacing all variables in the formula with constants. A Lifted inference in MLNs can be viewed as the probabilistic

possible world, denoted by, is a truth assignment to all equivalent of reasoning in first-order logic, i.e., theonerav-

ground atoms in the MLN. ing. Specifically, just as theorem proving does not convestt-fi
MLNSs can also be seen as a first-order template for generder formulas in a knowledge base to propositional forsula

ating large Markov networks[15], [7], which is an undiregtte but instead reasons directly on the first-order representat

probabilistic graphical model. To illustrate MLNs, we cates lifted inference aims to perform probabilistic reasoninighw

the prototypical “friends-smokers” social network domairout creating the full Markov network from the ground for-

We can represent common-sense knowledge that “smokimglas. The concept afomain liftableMLNs was introduced

causes cancer” and “smokers tend to have similar smokiimg[18], [19], which refers to MLN structures on which the

habits” using the following weighted formulas: (i) x complexity of exact inference is polynomial in the number
Snokes x Cancer x ; and (ii) X, Snmokes x of domain objects. Notable lifted inference algorithmsttha
Friends x Snokes  where and are the peform domain-lifted exact inference, include lifted faret

weights. Weights lie between and and reflect the graphs [12], First-order Variable Elimination (FOVE) [20]
strength of the constraint. Positive (negative) weightsesent Weighted First-Order Model Counting (WFOMC) [21] and
that the worlds satisfying the formula have higher (lowelrobabilistic theorem Proving (PTP) [22]. Next, we will ddfty
probability than worlds not satisfying the formula. MLNsreview PTP which is one of the most popular exact lifted
generalize first-order logic in the sense that weights that anference methods for MLNs.
equal to infinity represent hard constraints. PTP lifts weighted model countinf3] to the first-order.
Given a set of constants that represent objects in the domHirturns out that the weighted model counting problem is
(e.g. people in the social-network), the Markov network hasjuivalent to computing the partition function of the MLN
one random variable for each grounding of each predicdtd. [22], [23]). PTP computes the partition functions ugin
(one for each instantiation of each logical variable in thevo lifting rules, namely, lifted decomposition and lifted
predicate by a constant) and one feature for each possibtanditioning. Just like the well-known DPLL algorithm [24]
grounding of each first-order formula. The weight attachddr SAT solving, PTP recursively applies the lifting rules o
to the feature is the weight attached to the corresponditige input MLN. Below, we give a informal summary of each
first-order formula. For instance, given two constastsa lifting rule, and refer the reader to [22], [25] for details.
and Boh the first first-order formula in the friends-smokersifted Decomposition identifies identical and independent
MLN vyields the following two ground formulas having thecomponents in the underlying Markov network by only look-

same weight : ()Snmokes Ana Cancer Ana; and ing at the first-order structure. We illustrate this with egle
(i) Sokes Bob Cancer Bob. . Similarly, the second example. Considerthe MLN , Strong(x) W ns(x).
first-order formula with the same constants will yield fouGiven the domainA = X, X , the Markov network
ground formulas. Formally, given a set of weighted firstdefined ovelSt rong(X) W ns(X) is identical and inde-
order formulas f, and a set of constants, the probapendent of the Markov network defined o&rr ong(X )
bility of a world w, which is a truth-assignment to all the W ns(X ). Thus,Z =Z z =Z
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Lifted Conditioning conditions on a first-order predicateinto super-features is performed incrementally by obseyvi
Conditioning removes the predicate from the MLN by creatintipe messages in BP that are identical to each other.
MLNs corresponding to each possible assignment to tHafted Sampling-based Inference In sampling-based infer-
predicate. Clearly, if a predicaR hasd ground atoms, the ence methods we draw samples from the target distribution,
total number of possible assignments to the ground atorRs oind compute inference queries as statistics on the drawn
is equal to . However, in some cases, it is possible to grospmples. Note that in the case of MLNs, sampling worlds
the set of assignments such that in any group, all the MLM#rectly from the MLN distribution is hard, since the par-
that are generated by the assignments in a group are equivaligion function is intractable to compute. In IS, we perform
to each other, i.e., they have the same partition function. Fapproximate inference by sampling worlds from an easier-to
example, consider the MLN Snokes x  Fri ends X, sampleproposal distribution However, to compensate for the
Ast hma x . Here, conditioning oisnokes x implicitly fact that we sampled from the approximate distribution, we
conditions on 4 different assignments to the groundingsveigh each sample, and compute statistics over the weighted
of Snokes x . However, it turns out that, in this case, wesamples. The quality of estimates from IS depends upon
can form A + groups, where any assignment within dow close the proposal distribution is to the true distiout
group yields the same partition function after conditi@nin Gogate et al. [28] proposed a lifted Importance Sampling
The grouping can be performed based on the number of atofhkS) algorithm, where the main idea is to exploit symmetrie
among theA that are set to true in an assignment. We cao create a more-informed proposal distribution. Spedifica
then choose one representative from each group, conditiontbey grouped together symmetric worlds, and sampled aesing|
it, and multiply the partition function of the conditioned.™ world from each group, which consequently increases the
by group-size. Note that, in general, this rule can only leffective sample-size, and yields lower-variance estsatf
applied to singleton atoms, namely, atoms whose arity isleqthe computed inference queries. In order to create a prbposa
to 1. distribution which is tractable to sample from, Gogate et al
In practice, apart from the two lifting rules, PTP leveragelied on lifting rules of PTP [22]. Specifically, in PTP, the
advanced SAT techniques such as unit propagation and cpcHifiing rules are applicable only for specific MLN structsre
to greatly improve the performance of lifted inference. Fdn LIS, the pre-conditions for applying the lifting rulesear
more details on these extensions, refer to [22]. relaxed, and thus, the lifting rules are applied approxétyat
to non-liftable MLN structures. Samples from the propossd d
tribution are generated by sampling from a symbolic executi
trace of PTP. Further, the proposal distribution is adaptiv
Exact lifted inference is highly scalable when the MLNmproved based on prior samples such that the distribution
structure has symmetries that can be exploited by algosithmoves closer to the true MLN distribution.
such as PTP. However, as shown in [18], [19], a very restdcti An alternative approach to IS, is to construct a Markov
set of MLNs exhibit such symmetries. Specifically, accogdinChain whose stationary distribution is equivalent to theNwL
to current complexity results, MLNs are liftable only if éac true distribution. We can then sample from this chain, and
formula has a maximum of two variables. Therefore, faanswer inference queries based on statistics obtained from
most practical MLNs, exact inference is unlikely to scale ughe samples. A lifted MCMC method can be visualized as
Thus, several well-known propositional approximate iafere  one that works in difted state-spaceThat is, we construct a
algorithms have been lifted to the first-order level. Nexgé wstate-space of the sampler that does not explicitly enumera
will review a few notable ones. every possible state but instead groups these states based
Lifted Belief Propagation. Singla and Domingos [26] lifted on symmetries. For instance, a propositional sampler on a
belief propagation[27] in MLNs to the first-order level. 8ffe MLN with n atoms works in a state-space states, while
ically, in loopy belief propagation, the MLN is encoded as a lifted state-space can have far fewer number of states. A
factor-graph, where the atoms are the variables, and theagro Markov chain defined on the lifted states can typically make
formulas are the factors. The sum-product algorithm comgputiarger jumps as compared to Markov chains defined on a
the marginals of all variables in the factor graphs by pagsipropositional space, and in many cases larger jumps cad avoi
messages between the nodes/variables and featuresfdabr being struck in regions of local optima. Niepert [29] propds
relate the nodes. The message from nodes to features ia hfted MCMC method by grouping together states based
product of all incoming messages from other features that tn symmetries detected from automorphism groups comput-
node is connected to, with the variable corresponding to ted from the MLN’'s graph structure. Venugopal et al. [30]
summed-out from the product. Similarly, the message frolifted the blocked Gibbs sampling algorithm [31], which is
a feature to a node is a product of all the messages comany advanced variant of the Gibbs sampling [32] algorithm,
into a feature from nodes connected to the feature. In Lifteghich is arguably one of the most popular MCMC methods.
Belief Propagation, the main idea is to identify messagas th.ifted Blocked Gibbs (LBG) partitions the atoms in the MLN
are identical, and send a single aggregate message insiatm domain-liftable blocks, i.e., exact lifted inferencaust
of individual messages. To do this, Singla and Domingd®e tractable within each block. Further, the LBG sampler
proposed the creation of super-nodes and super-featunes) w maintains a lifted state-space within each block, where the
correspond to groups of nodes and features that emit comnamsignments to all ground atoms within a block are not stored
messages. The grouping of nodes into super-nodes anddeatbut sufficient statistics related to these assignmentstareds

IV. APPROXIMATE LIFTED INFERENCE
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This improves the convergence of the sampler, as well as thanmetries. For example, if we consider the evidences on
estimates derived from the sampler. a predicateLi nked, asLi nked P,P , Linked P,P ,
Lifted MAP Inference. MAP inference is an optimization Li nked P,P , Li nked P,P , the evidence o® andP
problem that can be solved using popular randomized loc&- not symmetrical. however, by removirlg nked P ,P
search solvers such as MaxWalkSAT [33]. These techniquasd addind.i nked P ,P , the evidence becomes more sym-
are propositional since they work on the Markov networketrical. Broeck and Darwiche modeled this as a factodpati
underlying the MLN. Sarkhel et al. [34] proposed an approagmoblem in a boolean matrix. Specifically, binary evidence
to lift such propositional MAP solvers by pre-processing this represented as a boolean matrix, and the idea is to come
MLN, and reducing the size of its underlying Markov networkup with a reduced-rank approximation of this matrix, which
Specifically, they considered a specific subset of MLNs dallén-turn yields more symmetric evidence that is better slite
non-sharedMLNs, where no variables are shared across atorfy lifted inference. However, changing the evidence would
in a formula, and showed that the MAP solution in these MLNshange the MLN distribution, and therefore, inference ltesu

is independent of the number of domain objects. For examptmmputed from this approximate distribution will not have
the MLN R x S isequivalentto R S, where,if strongguarantees associated with it. To obtain such gtemsn
the assignment tR (or S) in the MAP solution is 1 (or 0), then Niepert and Broeck [38] used the over-symmetric approxima-
all ground atoms oR x (or S x ) have an assignment equation to as a proposal distribution for MCMC algorithms irede

to 1 (or 0). Using this property, MAP inference on non-sharesf computing inference results directly from the approxiena
MLNSs can be reduced to propositional MAP inference, wheuistribution.

each first-order predicate is replaced by a single propositi Evidence-based Clustering The key idea here is to pre-
variable, since the MAP assignment to all groundings of thgrocess the MLN by reducing the number of objects, replacing
predicate are symmetric to each other. Other approaches deveral roughly symmetric objects by a single (meta) object
MAP inference have lifted Linear Programming solvers basafile then run lifted inference using these new, much smaller

on symmetries [35]. set of objects. A key challenge is how to find objects that are
similar to each other and thus partitioning the set of okject
V. EXPLOITING APPROXIMATE SYMMETRIES into symmetric subsets. To solve this problem, we defined a

One of the key problems with lifted inference methods thalistance (similarity) function that takes two objects aguin
exploit exact symmetries is that they are ineffective whemn t and outputs a number that describes how symmetric or similar
structure of the MLN is complex (e.g. transitive formula) othe two objects are (smaller the number, greater the chance
evidence is presented to the MLN, since evidence typicalliyat the two objects are similar). The problem is now reduced
breaks symmetries. For example, consider the toy MLt a standard clustering problem, and algorithms sucK-as
given in Figure 1(a). When no evidence is present, all grounteans can be used to solve it. Venugopal and Gogate [39]
atoms ofW ns x, have the same marginal probability (exacproposed a distance function which is based on common
symmetry). Given evidence (see Figure 1(b)), the margirnse knowledge that objects having similar neighborhood
probabilities are no longer the same as shown in Figueenstraints (Markov blanket) tend to be symmetric in the
1(c) and there are no exact symmetries. In such cases, lifsshse that the marginal probabilities of atoms contairtioge
inference algorithms will ground the MLN, and lifted infe@e objects will be roughly the same. Formally, the distance
is almost the same as propositional inference. More gdgerafunction developed by Venugopal and Gogate is given by:

Broeck and Darwiche [36] showed theoretical results that, X,X = U U whereX andX are constants (objects)
in the presence of evidence on binary or higher-arity atonthat belong to the same domain equivalence class (seersectio
MLNs are no longer domain-liftable. Similarly, Kersting e2) andU = ¢ ,...,cC andU = ¢ ,...,c are m-

al. [37] showed that as the amount symmetry-breaking dimensional vectors whena is the number of formulas and
evidence increases, the benefits of lifted inference dsh#s. ¢ is the number of groundings of the formulathat evaluate
Unfortunately, most real-world applications require nefiece to true in the MLN obtained from the original MLN
algorithms that can reason in the presence of evidence, drydgrounding all logical variables having the correspogdin
in such cases lifted inference is more or less equivalent abject type withX and instantiating evidence. One can think
propositional inference. This problem can be averted usio§ U as a feature vector describing the neighborhood of the
approximations which group together variables that ardaim object X in the MLN given evidence. Since computing the
but not identical. For example, from Figure 1(c), we can semimber of groundings is a #P-hard problem, the approach by
that the marginal probabilities of the first three atoms ardenugopal and Gogate proposed to approximate the counts
the last two atoms are roughly the same and they can lne decomposing large formulas into smaller ones. However,
treated as indistinguishable for all practical purposesio®, one of the major problems with using clustering methods
we highlight some specific approaches that are designedsteh asK-Means is that the optimal number of clusters is
scale up inference by exploiting approximate symmetriesrwhhard to compute. For instance, for some domains with greater
exact symmetries are absent. symmetry among objects, a small set of meta-objects may
Over-Symmetric Approximation. Broeck and Darwiche [36] suffice, while for other domains, we may require more meta-
proposed the idea admoothingthe evidence by introducing objects. Venugopal et al. [40] extended the aforementioned
more symmetries in the model. In this way, lifted inferapproach using a non-parametric clustering method calfed D
ence methods will have a better chance of finding theMeans [41], where they computed the optimal number of
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Wins(A,A) | 0.56
Wins(A,B) | 0.56
Wins(A,C') | 0.56
Wins(B,A) | 0.56
Wins(B,B) | 0.56 Strong(C) Wins(A,A) | 0.6
Wins(B,C) | 0.56 Wins(A,() Wins(A,B) | 0.6
Wins(C,A) | 0.56 Wins(B,B) Wins(B,A) | 0.63
Wins(C,B) | 0.56 Wins(B,(C) Wins(C,B) | 0.85
Wins(C,C) | 0.56 Wins(C,A) Wins(C,C) | 0.85

(a) Original Marginals (b) Evidence (c) New Marginals

Fig. 1. Effect of evidence on an MLN with one formula, Strong( ) W ns( , ). The marginal probabilities which were equal in (a) baeaunequal
in (c) due to evidence (b).

clusters for a given bound on the error in samples generatedcounting the satisfied groundings of a first-order forrfuyl
from the approximated MLN. given a worldw. This problem is known to be computationally
Apart from the above approaches, other methods have afsod [3], and inference algorithms need to solve this proble
been proposed for exploiting approximate symmetries in spgot just once but several times over thousands of iterations
cific inference tasks. Specifically, Sarkhel et al. [42] meed Venugopal et al. encoded the counting problem as a problem
a refinement approach for MAP inference by adding equalf computing the partition function of a graphical model.
ity constraints to the MLN when objects are approximatel$pecifically, given thatf has k variables, they encoded a
symmetric to each other. For the marginal inference problegraphical model withk nodes, and derived the factors in the
Singla et al. [43] considered approximately similar messaggraphical model fromw. Importantly, if thetree-widthof the
in belief propagation as equivalent messages, and cotstruencoded graphical model is small, then the counting can be
a lifted belief network that is much smaller than the liftegperformed exactly using methods such as junction-treek [47
network constructed from exactly symmetric messages. For larger treewidth models, off-the-shelf algorithmstsas
generalized belief propagation [27] to approximate thent®u

VI. EXPLOITING MLN STRUCTURE in a scalable manner.

Since MLNs are deined as logical formulas, propositional
inference algorithms can use approaches that exploit MLN VII. JOINT INFERENCEAPPLICATIONS
structure to avoid constructing the ground Markov network MLNs have been used extensively to model joint inference
during inference. Along these lines, Shavlik and Nataréasks in complex problems. As compared to Integer Linear
jan [44] proposed an approach calleBOG (Fast Reduction Of Prgramming (ILP) formulations which were previously used
Grounded networks). The idea was to pre-process the MLid,model joint inference [48], the first-order structure of N
and reduce the size of the ground network by efficiently corhelps us model joint dependencies more compactly. Singla
puting formulas that are satisfied due to the logical stmectu and Domingos [49] developed one of the earliest MLN-based
For example, iR x, S ,z Tzx, if we know that joint inference models for the entity resolution task on the
majority of the groundings oR x, are false, then majority cora and bibserv citation datasets. Poon and Domingos [8]
of the formula groundings are true irrespective of the stafe developed an MLN model for information extraction utiliz-
the groundings o5 ,z andT ,z. FROG maintains a rep- ing entity resolution within the model, to jointly segment
resentation of these non-satisfied formula groundingsjustd citation fields in the cora and bibserv datasets. Poon and
stores statistics on the satisfied groundings, which iscseiffi Domingos [50] also developed an unsupervised model for
for performing inference. Similarly, Poon and Domingos][450int coreference resolution, where they used a prediaate t
developed an approach to perfotazy groundingin MLNs. specify clustering of mentions that correspond to a common
Here, only a subset of variables and ground formulas agatity. Poon and Vanderwende [51] developed a joint model
kept in memory, and as inference proceeds, groundingf@® Biomedical event extraction on the Genia dataset, where
performed as-needed. The main idea behind this approachhiey detected triggers and arguments jointly. Venugopal et
that, many propositional inference algorithms work on ore. [52] further improved the performance of MLNs on the
variable of the MLN at a time, and updates to the variabEame event extraction task by leveraging linguistic fezgur
depends upon a small subset of other variables and formul8pecifically, encoding such features directly as MLN forasul
More recently, Venugopal et al. [46] proposed an approaatekes learning and inference infeasible due to their high-
to scale up local-search algorithms such as MaxWalkSAT addnensionality, which results in a large number of ground
sampling-based inference algorithms such as Gibbs sagnplformulas. To add such features to the MLN, Venugopal et al.
using efficient counting algorithms. Specifically, a congti used the output of SVMs learned from the high-dimensional
problem that MaxWalkSAT or Gibbs Sampling needs to solvieatures to generate priors for the MLN distribution. Lu et
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al. [53] designed an MLN for event coreference resolutiat th11]
jointly performs four tasks in the pipeline: trigger idditation

and subtyping, argument identification and role deternonat
entity coreference resolution and event coreferenceutisol [12]
Similar to Venugopal et al.’s strategy, Lu et al. used an SVM
to incorporate high-dimensional features into their MLN. 13,

VIIl. D1scussioON ANDCONCLUSION »

Though plenty of progress has been made in MLNs over the
last several years, there is quite a lot of work that need®to 3ol
done to make MLNs a “black-box” for application designerssg;
The blow-up in the size of the probabilistic model, with
increased data-size makes inference and learning very hard
and therefore application designers find it hard to use MLNs
using existing open-source systems MLNs as-is. Partigylanl7]
if MLNs are to work with big-data problems inference
algorithms need to become far more scalable than currep
state-of-the-art. Further, explaining the results of iefee is
an area that requires active future research in MLNs. Due o]
their basis in first-order logic, MLNs seem to be a promising
candidate to develop interpretable Machine learning nsodeRo]
Integrating MLNs with other models such as deep-models fﬂ]
order to facilitate relational deep learning is also an avkare
future research seems to be headed.

In this paper, we provided a brief overview of MLNs an
major advances in MLN inference methods. Particularly, the
idea of lifted inference has received a lot of interest from
the research community, where symmetries (both exact dhd
approximate) in the MLN distribution are exploited to peno
scalable inference. As MLNs continue to be applied in varidé?
domains, advances in this area should be of interest to the
field of Statistical Relational Al, and the Intelligent Sgsts [25]
community in general.
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