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Multi-agent research in Transportation Domain
DIM DEPARTMENT (DECISION, INTERACTION AND MOBILITY)
LAMIH UMR CNRS 8201, UNIV. DE VALENCIENNES, FRANCE

I. CONTEXT

The LAMIH1 laboratory, at the U-
niversity of Valenciennes is organized
into different departments (essentially,
Automation, Mechanics, and Computer
Science). The Computer Science depart-
ment, named Decision, Interaction and
Mobility (DIM), has two teams: opera-
tional research and distributed and em-
bedded systems (OptiMob), and interac-
tions and agents (InterA). InterA stud-
ies Human-Machine interaction and Dis-
tributed Artificial Intelligence / Multi-
Agent Systems, (DAI / MAS).

Transportation, and more precisely
road traffic simulation, is considered as
one of the complex applications where
MAS models open new research per-
spectives. Agent-centered, aka. micro-
scopic, approaches are thus introduced
to compete against previous macroscopic
approaches. MAS tools take into account
a larger variety of behaviors and rich-
er environments, such as geographical
databases and ontologies.

InterA investigated in the early 2000s
application domains bound to the urban
contexts: bus regulation and road traf-
fic simulation. The animation of virtual
pedestrians in an urban context con-
tributed to the modeling of realistic envi-
ronments for traffic simulations in town-
s.

II. DESCRIPTION

A. Bus traffic regulation

InterA aims to improve the quality of
bus transportation by supplying a deci-
sion support system (DSS). Buses are
modeled with a multi-agent approach. To
respect precisely the theoretical sched-
ules announced to the customers / user-
s, it is necessary for the designer to
propose a real time regulation. To take
into account the incidents (which cause

delays), the DSS allows for evaluating
alternatives based on different possibles
actions (e.g., modifying arrival times).
These actions are often realized by a
human operator because the process of
regulation is not formalized. To meet
the needs of the regulator and the sat-
isfaction of the users, InterA designed a
tool where agents (buses) change their
actions (e.g., respecting the possibility
for users to take another bus at a bus
stop, in spite of the delays).

B. Behavioral animation of virtual
pedestrians

A model of actions based on a vote
mechanisms was applied for virtual a-
gents (pedestrians). An educational sim-
ulator was designed for allowing the
placing of a child-player in situations
produced by interactions between pedes-
trians and vehicles. InterA contributed
to the design and behavioral animation
of virtual pedestrians. The actions mod-
eled by these agents correspond to pos-
sible movements. A hybrid architecture
was proposed, embedding cognitive and
reactive properties. The cognitive rea-
soning searches a path following the
adoption of a new goal. The reactive
reasoning is happens during simulation.
It enables reacting in a appropriate way
at every step of the simulation, in a com-
plex environment. The proposed model
was also adapted to model the behavior
of drivers.

C. Platform based on information
spreading in a road traffic

A tool for road traffic simulation was
developed to study the implementation
of services within the mobility and inter-
modality contexts. This is part of the
Platform of simulation dedicated to the
mobility services project (PLAiiMOB)
of the International Campus on Safe-
ty and Intermodality in Transportation
(CISIT). Data exchanged between agents
may help reacting to unexpected events
(e.g., accidents) by reproducing a global
behavior.

To facilitate supporting cartographic
data from OpenStreetMap2, an extension
was implemented for an interactive table
with tangible objects (TangiSense) based
on RFID. Support was added for inter-
actions between human users [4].

D. Road traffic simulation

InterA worked with Renault on the
platform Scaner II for insertion problems
on a road. A collaboration with IFST-
TAR3 on the ArchiSim simulation plat-
form addresses traffic in urban contexts.

1french acronym for Laboratoire d’Automatique, de Mécanique et d’Informatique, industrielles et Humaines
2http://www.openstreetmap.org/
3french acronym for “Institut franais des sciences et technologies des transport, de l’amnagement et des rseaux”.
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In this context, a human agent is
located into an environment simulating
interactions with software agents and
other humans. Models for critical situ-
ations (e.g., crossroads) were compared
with measures of real traffic. Two studies
addressed crossroads:

(i) The first one concerns the inter-
actions between vehicles (agents) based
on game matrices [5]. Each agent player
chooses and selects its actions according
to its potential payoff and the gain of
other players.

(ii) The second study concerns the
environment perceived by each agent as
a set of constraints (CSPs) [1], [2]. Every
agent tries to anticipate the behavior of
the other agents and to detect situations
of blocking by detection of incoherence
of the network of constraints. This work
highlighted the importance of the notion
of non-normative agents in a global traf-
fic. In this context, agents will not neces-
sarily respect the traffic rules, considered
until now a inviolable norm.

Motorbikes or emergency vehicles
build virtual lanes (different physical
lanes), and their actions based on their
reasoning model are not easily de-
scribed. Our model is based on the no-
tion of affordance. The approach consid-
ers the properties of objects of the envi-
ronment, the different possible actions,
and also individual agent characteristic-
s [3].

The process of perception of its en-
vironment by the driver is a prelimi-
nary process in decision-making. Inter-
A’s model takes into account the per-
ceptive and attentional constraints of the
driver. The model includes a double
activity for the perception (passive and
active), coupled with a quantitative lim-
itation of percepts (due to court-term
memorization).
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Abstract—For fifty years, computer science was focused on 

making computers useful.  The emphasis was on algorithms, 

programming languages, and operating systems.  Today the focus 

has changed to applications.  Some of the drivers are the amount 

of computing power available, the quantities of data, and the 

internet.  The impact on computer science created an interest in 

applications and interdisciplinary research.  In this article we will 

review some of the recent work in clustering in social networks, 

learning theory, the size of data, and the digitalization of records 

and the need for privacy in computer systems. 

 
Index Terms—Community clustering, deep neural networks,  

large graph, privacy and security 

 

I. CLUSTERING 

ARLY work in the area of clustering was involved in 

partitioning vertices of social networks into disjoint 

clusters. This work evolved into finding overlapping 

communities.  More recently there have been two major 

advances.  One is as the size of social networks increased to 

billions of vertices, global clustering was replaced by local 

clustering.  In global clustering if one partitions a billion vertex 

graph into ten or so clusters, the clusters would have hundreds 

of millions of vertices. With recursive partitioning one may 

find clusters of size a hundred, but the process is inefficient. 

Overlapping community detection is also more costly and hard 

to scale to large networks. Instead one might want local clusters 

for the seed members of interest.  Say a cluster of fifty friends 

of three or so designated individuals.  One method for doing 

this is to use spectral clustering.  In spectral clustering one 

creates a matrix whose columns are the first few spectral 

vectors of the adjacency matrix of the network and then finds 

the minimum one norm vector in the space spanned by the 

columns [1, 2].   

Instead of finding the minimum one norm vector in the space 

spanned by the singular vectors one might start random walks 

from a few vertices in the local community, but halt the process 

when the walks have converged to the stationary probabilities 

for the vertices in the community but not for the whole graph.  

The minimum one norm vector in the space spanned by these 

unconverged vectors will give the local community. 

 
This work was supported by US Army Research Office 

(W911NF-14-1-0477), and National Natural Science Foundation of China 

(61772219). 

John E. Hopcroft is with the Department of Computer Science, Cornell 
University, Ithaca, NY 14853, USA  (e-mail: jeh@cs.cornell.edu).  

Kun He, is with the Department of Computer Science, Huazhong University 

of Science and Technology, Wuhan 430074, China (e-mail: 
brooklet60@hust.edu.cn). 

Another direction in clustering is finding hidden structure [3, 

4]. Suppose one had images of a number of letters and the 

letters were in several shades of gray and different type fonts.  

If you were asked to cluster the images you would probably 

cluster them by letter.  However, one could cluster them by 

color or by type font.  The letter is the dominant structure. The 

type font and color of letters are the hidden structures, which 

are weaker and incoherent with the dominant clustering. Real 

networks have both dominant and several levels of hidden 

structure. How do you find the hidden structure in a social 

network? 

Select your favorite clustering algorithm and find the 

dominant structure.  Then weaken the dominant structure in the 

graph by randomly removing edges in the clusters.  The again 

apply your clustering algorithm to the graph and it will find the 

hidden structure.  If you go back to the original graph and now 

weaken the hidden structure and again find the dominant 

structure you will probably improve the clustering algorithms.  

If you alternately weaken the dominant and then the hidden 

structure you will converge to good clusterings of both the 

dominant and the hidden structure.  Some real world networks 

have several levels of hidden structure that can be retrieved. 

Applying this technique to the Facebook data of Rice 

University students [5] one gets a dominant structure and three 

levels of hidden structure.  The dominant structure is the dorm 

the student lives in and one of the hidden levels is the year of 

the student, freshman, sophomore, junior, or senior.  The other 

two levels have high modularity and are incoherent with earlier 

levels but we were unable to identify what they corresponded 

to; maybe sports or other interests. 

II. DEEP LEARNING 

Machine learning has been extremely valuable for a number 

of years. Its major tool was the support vector machine.  

However, in 2012 advances in deep learning changed the field.  

Until 2012 reducing the classification error in the ImageNet 

ILSVRC competition [6,7] was very small.  ImageNet has 1.2 

million images classified in 1,000 categories.   

The task is to train a network on a training set of the images 

and see how well it generalizes to a test set.  Prior to 2012 the 

error rate was approximately 25%. Then in 2012, AlexNet 

dropped the error rate to 15%, a truly major improvement.  Two 

years later GoogleNet reduced the error rate to 6.7% and in 

2015 ResNet reduced it further to 3.6%.  The human error rate 

with training is about 5%. These deep networks outperform 

humans.  Since 2012 deep networks have been applied in many 

applications and they have performed exceptionally well 

although little is known as to why they work so well.   

Computer Science in the Information Age  

John  E. Hopcroft, Life Fellow, IEEE, Kun He, Member, IEEE 
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One of the issues with supervised learning is the lack of 

sufficiently large labeled data sets.  Recently there has been 

progress in unsupervised learning.  Instead of training a deep 

network to classify images one can train the network to 

reproduce the image. This results in good internal 

representations of images and raises the question of what 

internal gates learn. This has significantly increased the 

research on unsupervised learning. 

There are many research problems that might shed some 

insight into deep learning.  Do some gates learn the same thing 

as other gates?  If we train a network twice from different 

random starting positions do the gates learn the same things or 

does the network develop entirely different way to classify 

images [8]? What determines what a gate learns.  How does 

what a gate learns evolve over time.  Do gates in the first or 

second convolution levels learn features of images independent 

of what the images are?  In training a deep network one 

encounters many local minima with the same error rate.  Which 

local minima will generalize better? Experimentally broader 

local minima seem to generalize better.  This may be because 

the error function for the training set is very close to the true 

error function and a small shift will not disturb a broad local 

minimum as much as it will on a sharp local minimum.  

Generative adversarial networks [9] have become very 

popular.  If one wants to generate realistic looking images one 

might train an adversarial network to distinguish between real 

images and generated images. Then they could feed the 

adversarial component the output of the generative component 

and train the generative component until the adversarial 

component could not distinguish between the generated image 

and a real image. At that point one trains the adversarial 

component to do better.  By interacting with the two units one 

can generate good images. 

Another application might be language translation.  In the 

past one used pieces of text where one had the same text in both 

languages to train a network. But if one does not have sufficient 

samples in both languages they could use an adversarial 

network as follows. To create a translator from English to 

German one first build a translator that will take an English 

sentence and output German words. The one build an 

adversarial network that distinguishes between German words 

and German sentences.  Finally, one takes the output of the first 

devices that outputs German words and builds a device that 

creates English sentences and compares the sentences 

generated to the original sentence.  Training the three networks 

forces the output of the first device to be a German sentence 

rather than just German words. And training the last device 

forces the German sentence to be a true translation. 

There are many other problems researchers are exploring.  

An interesting one is how one can fool a deep network by 

making changes to an image that are so small a human cannot 

detect the changes, but cause the deep network to change the 

classification of the image [10].  All of a sudden what appears 

to be an image of a cat is classified as a car. The reason this is 

possible is that the set of images of a cat map into a manifold of 

dimension much smaller that the dimension of the activation 

space.  Thus if one moves in activation space perpendicular to 

the surface of the manifold one is likely to change the 

classification.  

AI programs do not extract the essence of an object and 

understanding its function or other important aspects.  It may be 

another 40 years before we have another information revolution 

where function or other property is extracted.  This will lead to 

an enormous range of intellectual ability. 

III. SIZE OF GRAPHS 

In early research in the 1960's, graphs had ten to fifteen 

vertices. When the computer came graph size increased to 

1,000 vertices, with faster computers 10
6
 vertices.  Then sparse 

graph such as the world wide web came with billions of 

vertices.  Today we compute with 10100  graphs with 10100 

vertices.  Remember the number of atoms in the visible 

universe is only 1070.  How do we store a graph with 10100 

vertices in the computer? We don’t.  One can do a random walk 

on a graph without storing it in the computer.  All they need is 

an algorithm which given a vertex will identify the adjacent 

vertices.  All we need to keep is the current vertex the random 

walk is at.  However, how long does it take for a random walk 

to converge to its stationary probability?  It turns out that if the 

graph is an expander, the random walk will converge to its 

stationary probability in logarithmic number of steps.  For the 

10100vertex graph this means some number of step within 100 

times some constant.  Problems in of this size occurring in 

many applications are handled every day. 

Given the size of data and graphs that are dealt with 

frequently requires that we randomly sample the data.  This 

might require a random sequence which is a sequence with no 

short description.  How can you store such a sequence?  You 

don’t.  Instead you use a pseudo random sequence.  This raises 

the question of how much randomness do you need.  Usually 

one only needs two-way randomness.  A sequence of zeros and 

ones is two-way pseudo random if each element is equally 

likely to be a zero or a one and given the value of one element in 

the sequence it does not give any information about any other 

element. If I give you two elements, I may be giving you 

information about all elements in the sequence. 

An example where one uses randomness is in determining 

the number of distinct elements in a sequence.  Suppose you 

work for a major chain store such as Walmart and want to know 

how many customers you have.  You have access to a data 

stream of every purchase world-wide along with a credit card 

number associated with the purchase.  You wish to count the 

number of card numbers.  Each number is 16 digits long.  You 

could set up a Boolean vector of length 10
16

, or you could keep 

a linked list of numbers, or you could use a hash table or some 

other technique. However, if you are happy with a good 

estimate you can do this with only one word of storage.  Keep 

track of the minimum credit card number.  If you lay out a 

sequence of integers from one to 1016and mark every number 

you see, the expected distance between elements will be the 

1016divided by the number of distinct elements.  Hence the 

minimum is approximately 1016 divided by the number of 
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distinct elements.  Thus a good approximation for the number 

of distinct elements is 1016 divided by the minimum number 

seen. 

One problem is that algorithm assumes the elements are 

random. This is not likely to be so since the credit card numbers 

might not be issued randomly. Thus you want to use a hash 

function to make the data statistically independent.  We cannot 

store a hash function that will give full independence.  

However, only two-way independence is needed. 

 

IV. DIGITALIZATION OF MEDICAL RECORDS 

As we digitize medical records the need for privacy and 

security becomes critically important.  For example, if my 

entire medical history was digitized and I became ill 

somewhere in the world, I would like my doctor to be able to 

see my entire medical history to give me the best possible 

treatment.  However, I do not want my insurance company to 

see my entire medical history. In fact, the insurance company 

does not need to see my medical record at all.  All they need is a 

rigorous proof that they owe a doctor a certain amount of 

money.  Medical researchers would like to access every one’s 

medical record to improve medical techniques.  How do we 

allow them to access statistical information without letting 

them have access to any individual information? Two 

techniques are emerging to help with this issue: zero knowledge 

proofs [11] and differential privacy [12].  

A. Zero Knowledge Proof 

A zero knowledge proof of a statement is a proof that the 

statement is true without providing any other information. To 

illustrate a zero knowledge proof, consider the game Sudoku.  I 

can prove that I know how to fill in a Sudoku board without 

giving you any information on how to do it.  I will take pieces 

of cardboard and write the appropriate number on each piece 

and place the card board pieces down over the appropriate 

squares so the numbers are not visible.  Now you want to check 

that I have correctly filled in the first row.  I pick up the 

cardboard pieces from the first row and shuffle them and show 

you that I have the correct numbers for the row.  You check 

every row, column and three by three square and see that I have 

correctly filled in each.  Actually this is not quite sufficient to 

prove that I have a correct solution since you don’t know that I 

put the card pieces back in the same order each time.  However, 

if I do not have a solution you will detect it with some 

probability and as you ask about more rows, columns and three 

by three squares with repetitions, you can drive the probability 

that I do not have a solution to zero. 

A similar technique can be applied to three coloring a graph 

so that no two adjacent vertices have the same coloring.  This is 

an NP-complete problem and there is no known polynomial 

time algorithm for the three coloring problem.  Suppose you 

have a graph with a million vertices that you want to color and I 

have a business where I provide colorings.  However, we 

cannot do business since we don’t trust one another and you do 

not want to pay me until you know I actually have a coloring for 

your graph and I do not want to show you the coloring until you 

pay me.  The solution is to give you a proof that I have a 

coloring without giving you any information as to the coloring.  

Again we use a zero knowledge proof.   

For each vertex I place the appropriate color in an envelope 

and seal it.  You ask to see the color of two adjacent vertices 

and I allow you to open the two appropriate envelops.  This 

gives you no information about a coloring since one could 

permute the colors of the vertices to achieve the two colors of 

these two vertices.  However, if I allow you to see another 

vertex, I have given you some information.  So instead I destroy 

all the envelopes, permute the colors on the graph and recreate 

envelops with the appropriate color for each vertex.  This sound 

like a lot of work.  However, we don’t use physical envelops, 

instead we agree on a digital encoding.  When you want to see 

two vertices I give you the key to decode those two vertices.  

Since this is all done electronically it takes only a few minutes 

to convince you I indeed have a coloring and we can do 

business. 

These toy problems are just examples of zero knowledge 

proofs. 

B. Differential Privacy 

Privacy is needed in many business applications involving 

car guidance, supply chains, and transportations systems.  For 

example, the route guidance system in your car does not give 

you the best route guidance since it does not know the 

conditions of back roads and thus it keeps you on main roads.  If 

the guidance system could improve routing and reduce mileage 

by a few percent, it would be a savings in millions of dollars of 

gasoline.   

The route guidance system may record your GPS coordinates 

for the last month.  If when you take your car in for service the 

GPS coordinates were down loaded, the route guidance system 

could improve its guidance by making use of the knowledge of 

local drivers.  However, one may not want the GPS coordinates 

down loaded since one could determine the car owner by where 

the car was parked at night, where one works, shops, etc.  

However, if we could provide the condition of back roads 

without reveling any individual information it would be a 

success.  Many systems that will be created in the future will 

face such problems of privacy. 

V. CONCLUSION 

The availability of large amounts of data, enormous 

computing power, the internet, and advances in AI are driving 

an information revolution.  Intellectual tasks will be automated, 

changing the nature of work.  In this paper we discussed some 

of the applications and advances that will influence our 

future.  Those individuals, institutions, and nations that position 

themselves for the future will benefit enormously. 

 

REFERENCES 

[1] Kun He, Yiwei Sun, David Bindel, John E. Hopcroft and Yixuan Li, 
“Detecting overlapping communities from local spectral subspaces,” in 



6                                                                                                                Feature Article: Computer Science in the Information Age 

December 2017  Vol.18 No.2                                                                  IEEE Intelligent Informatics Bulletin 

 

 

15th IEEE International Conference on Data Mining (ICDM), Atlantic 
City, USA, 2015, pp. 769-774. 

[2] Yixuan Li, Kun He, David Bindel and John E. Hopcroft.  “Uncovering the 
small community structure in large networks,” in 24th International 
Conference on World Wide Web (WWW),  Florence, Italy, 2015, pp. 
658-668. 

[3] Kun He, Sucheta Soundarajan, Xuezhi Cao, John E. Hopcroft and 
Menglong Huang, “Revealing multiple layers of hidden community 
structure in networks,” CoRR abs/1501.05700, 2015. 

[4] Kun He, Yingru Li, Sucheta Soundarajan and John E. Hopcroft, “Hidden 
community detection in social networks,” Information Sciences, vol. 425, 
pp. 92-106, Jan. 2018. 

[5] Alan Mislove, Bimal Viswanath, P. Krishna Gummadi, Peter Druschel, 
“You are who you know: inferring user profiles in online social 
networks,” in Proceedings of the 3rd International Conference on Web 
Search and Web Data Mining (WSDM), New York, NY, USA, 2010, pp. 
251-260. 

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev 
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, 
Michael Bernstein, Alexander C. Berg and Fei-Fei Li, “ImageNet Large 
Scale Visual Recognition Challenge,” International Journal of Computer 
Vision, vol. 115, no. 3, pp. 211-252, April 2015. 

[7] ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 
[Online]. Available: http://www.image-net.org/challenges/LSVRC/. 

[8] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E. 
Hopcroft, “Convergent learning: Do different neural networks learn the 
same representations? ”  in ICLR, 2016. 

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David 
Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio, 
“Generative adversarial networks,” in Advances in Neural Information 

Processing Systems(NIPS). Montreal, Quebec, Canada, 2014, pp. 
2672-2680. 

[10] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep neural networks are 
easily fooled: high confidence predictions for unrecognizable images,” in 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 
2015. 

[11] Blum, Manuel, Feldman, Paul; Micali, Silvio. “Non-interactive 
zero-knowledge and its applications,” in Proceedings of the twentieth 
annual ACM symposium on Theory of computing (STOC), Chicago, 
Illinois, USA, 1988, pp. 103–112. 

[12] Cynthia Dwork. “Differential Privacy, Automata, Languages and 
Programming,” in 33rd International Colloquium (ICALP), Venice, Italy, 
2006, pp. 1-12. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

https://www.sciencedirect.com/science/journal/00200255/425/supp/C


Feature Article: Esther Galbrun and Pauli Miettinen 7

Redescription Mining: An Overview
Esther Galbrun and Pauli Miettinen

Abstract—In many real-world data analysis tasks, we have
different types of data over the same objects or entities, perhaps
because the data originate from distinct sources or are based
on different terminologies. In order to understand such data, an
intuitive approach is to identify the correspondences that exist
between these different aspects. This is the motivating principle
behind redescription mining, a data analysis task that aims at
finding distinct common characterizations of the same objects.
This paper provides a short overview of redescription mining;
what it is and how it is connected to other data analysis methods;
the basic principles behind current algorithms for redescription
mining; and examples and applications of redescription mining
for real-world data analysis problems.

Index Terms—Redescription mining, alternative characteriza-
tions, visualizations, data mining.

I. INTRODUCTION

CONSIDER an ecologist who wants to understand the
bioclimatic conditions that define species’ habitats.1 She

has data on the regions where the species live and on the
bioclimatic conditions (e.g. monthly average temperatures and
precipitation) of those regions, and she would like to find
explanations such as the following.

The areas inhabited by either the Eurasian lynx or
the Canada lynx are approximately the same areas as
those where the maximum March temperature ranges
from −24.4 ◦C to 3.4 ◦C.

The above is an example of a redescription. It describes
regions of the earth in two different ways; on the one hand,
by the fact that certain species inhabit them, and on the other
hand, by the fact that they have a certain climate. We can see
the areas described above in Figure 1. The medium purple
colour denotes the areas where both of the above conditions
hold (inhabited by one of the lynx species and with maximum
March temperatures in the correct range), light red denotes the
areas inhabited by one of the lynx species but where March
temperatures are out of the range, and dark blue denotes the
areas where the maximum March temperature is in the correct
range but neither of the lynxes is found.

Informally, a redescription is a pair of descriptions, both de-
scribing roughly the same entities (here, geographical regions).
And, as we can see from this example, both the descriptions
and what they describe can be of interest. The ecologist is
interested in the descriptions in order to understand the model
of the niche and in the geographical areas in order to understand

E. Galbrun is with Aalto University, Finland. email: esther.galbrun@aalto.fi
P. Miettinen is with Max Planck Institute for Informatics, Germany. email:

pauli.miettinen@mpi-inf.mpg.de
This article is based on our recent tutorials called An Introduction to

Redescription Mining at ECMLPKDD ’16 and SDM ’17, and on our upcoming
book Redescription Mining [1].

1In ecology, the task is known as bioclimatic niche (or envelope) finding
[2, 3].

Figure 1. Map of a bioclimatic niche. The areas inhabited by either the
Eurasian lynx or the Canada lynx (light red and medium purple) and the areas
where the maximum March temperature is between −24.4 ◦C and 3.4 ◦C
(dark blue and medium purple).

where the niche is (or is not). While such redescriptions could
be constructed manually, the goal of redescription mining is to
find them automatically without any information other than the
raw data (and some user-provided constraints). For instance,
the ecologist should not have to define the species she is
interested in. Rather, the goal of redescription mining is to
find all redescriptions that characterize sufficiently similar sets
of entities and adhere to some simple constraints regarding,
for example, their type and complexity and how many entities
they cover.

In this article, we present a brief overview of redescription
mining. We start by giving the formal definition of the task in
the next section. In Section III, we explain the main algorithmic
ideas used in redescription mining, before discussing the
techniques for removing redundant redescriptions, in Section IV.
Sections V, VI, and VII contain, respectively, a brief study
of the existing redescription mining tools, an outline of some
example applications, and a summary of related methods. We
present some open problems and directions to future work in
the concluding Section VIII. We will not delve into the details
of the different algorithms, tools, or applications. Such details
can be found in the original publications, as well as in our
recent tutorials2 and book [1].

II. FORMALIZING THE TASK

Redescription mining can, of course, be applied to other
use cases than bioclimatic niche finding, but we will use that
example as our running example throughout this article. In this
section we provide the formal definition of redescription mining.
Our definition uses the so-called table-based model [1]; other,
more general, formulations exist (see [1]), but that generality
is unnecessary for the discussion in this article.

2Slides available at http://siren.mpi-inf.mpg.de/tutorial/

IEEE Intelligent Informatics Bulletin December 2017 Vol.18 No.2



Feature Article: Esther Galbrun and Pauli Miettinen 8

In the table-based model, the data are arranged as a table
(or tables; we will discuss that below). The rows of the table
D correspond to the entities in the data and the columns
correspond to the attributes; for example, in the bioclimatic
niche finding example, the geographical regions are the entities,
the table contains one row for each location where observations
have been recorded, and the species and bioclimatic variables
(that is, the observations) are the attributes. The value of
attribute j in entity i is denoted as dij . The attributes can be of
different types, such as binary, categorical, or numerical, and
some entity–attribute values might be missing. In our example,
the presence or absence of a species in a region constitutes
a binary attribute, whereas the bioclimatic variables, such
as temperatures or precipitations, are recorded as continuous
numerical attributes.

A redescription is a pair of descriptions, and we formalize
the descriptions as Boolean queries over the attributes. Each
predicate in the queries assigns a truth value to (observed)
entity–attribute pairs, that is, to the elements of a column of the
data table. The queries over the predicates and their negations –
together known as literals – in turn assign a truth value to each
entity. The query can, in principle, be an arbitrary Boolean
function of the literals, but it is common to restrict the queries
to some query language for the sake of interpretability and
efficiency of computation. Common query languages include
monotone conjunctive queries, linearly parsable queries (where
each variable can appear at most once and both conjunction
and disjunction operators have the same precedence), and tree-
shaped queries (a special case of disjunctive normal forms,
encoding the paths from the root to the leaves in a decision
tree).

Applying this formalism to our example niche redescription,
the query corresponding to ‘The areas inhabited by either
Eurasian lynx or Canada lynx’ could be written as

Eurasian lynx ∨ Canada lynx ,

and the query ‘maximum March temperature ranges from
−24.4 ◦C to 3.4 ◦C’ as

[−24.4 ≤ t+3 ≤ 3.4] .

To avoid tautological redescriptions (e.g. ‘Eurasian lynx lives
where Eurasian lynx lives’), we require that the queries do not
share any attributes. In many applications, the attributes have a
natural division into two disjoint sets. In our running example,
the species form one set of attributes and the bioclimatic
variables form the other set. In these cases, it is natural to
model the data, not as a one, but as two data tables; one table
for the species and one table for the bioclimatic variables, in
our example. In this setup, the queries of a redescription are
required to be over attributes from different tables.

The support of a query q, supp(q), is the set of entities
(rows) that satisfy the query.3 The support of the query
Eurasian lynx ∨ Canada lynx contains the regions depicted
in light red and in purple in Figure 1, while the support of

3Some sources call this set the support set and reserve the term support for
what we call the size of the support.

the query [−24.4 ≤ t+3 ≤ 3.4] contains the regions depicted in
dark blue and in purple.

To form a good redescription, the queries should explain
roughly the same entities, that is, their supports should be
similar. The most common choice for measuring the similarity
of the supports is the Jaccard (similarity) index J , defined as

J(p, q) = J(supp(p), supp(q)) =
|supp(p) ∩ supp(q)|
|supp(p) ∪ supp(q)|

.

The Jaccard index is by no means the only possible similarity
measure, but it is by far the most common one. Its use
can be motivated in many ways. For example, when using
algorithms based on decision-tree (see Section III), it has a
natural connection to the information gain splitting criteria [4].
On the other hand, if we consider redescription mining as
mining bi-directional association rules (see again Section III),
the Jaccard index of a redescription can be interpreted as the
lower bound on the confidence of the corresponding association
rules conf(p⇒ q) and conf(q ⇒ p).

How similar should their supports be for the pair (p, q) to
be considered a valid redescription is something the user must
decide, depending on the data and her needs. Therefore, we say
that the supports of p and q are similar enough if J(p, q) ≥ τ
for some user-specified constant τ ∈ [0, 1], and write p ∼ q.

We can now define what a redescription is. For data that
consist of two tables, D1 and D2, a redescription is a pair
of queries (p, q) expressed over attributes from D1 and D2,
respectively, such that p ∼ q. In addition, a redescription might
have to satisfy other constraints specified by the user, such as
limitations on the size of the support, the maximum p-value,
or the complexity of the queries (in terms of the number of
variables involved, for instance). Then, the goal of redescription
mining is to find all valid redescriptions pi ∼ qi that also satisfy
the other potential constraints.

III. ALGORITHMS

Readers familiar with classification and association rule
mining might have noticed similarities between redescription
mining and these two core data mining tasks. These two tasks
provide basic techniques that have been adapted to develop
algorithms for mining redescriptions.

Consider a case where one query is fixed and the goal is to
find a matching query to make a good redescription; taking
the support of the fixed query as the labels of the entities, the
problem becomes that of a binary classification problem (see,
e.g. [5, Ch. 10]). This fact has inspired a family of iterative
algorithms that alternate between the views to build the re-
descriptions. These algorithms derive target labels from a query
obtained at a previous iteration and use classification techniques,
typically decision tree induction, to build a matching query in
the next iteration. The first algorithm proposed for redescription
mining, the CARTwheels algorithm [4], is based on the idea
of alternatively growing decision trees over one data table
with only binary attributes. The decision-tree-based methods
for arbitrary data types introduced by Zinchenko et al. [6]
also belong to this family of redescription mining algorithms.
Predictive clustering trees were used in a similar manner for
mining redescriptions by Mihelčić et al. [7].
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On the other hand, association rule mining (see, e.g. [5,
Ch. 4]) can be seen as a precursor of redescription mining,
with the latter allowing for more complex descriptions and
focusing on equivalences instead of implications [4]. This
inspired algorithms that first mine queries separately from the
different views before combining the obtained queries across
the views into redescriptions. The method proposed by Zaki
and Hsiao [8] and the MID algorithm of Gallo et al. [9] both
belong to this second family of algorithms. Along similar lines,
Zaki and Ramakrishnan [10] studied exact and conditional
redescriptions over binary data, focusing on conjunctive queries,
while Parida and Ramakrishnan [11] studied the theory of exact
redescriptions over binary attributes, where the queries are pure
conjunctions, whether in monotone conjunctive normal form
or monotone disjunctive normal form.

A third approach for mining redescriptions consists in
growing them greedily. Such a strategy of progressively
extending the descriptions by appending new literals to either
query, always trying to improve the quality of the redescription,
was first introduced as the Greedy algorithm of Gallo et al.
[9]. Building upon this work, the ReReMi algorithm Galbrun
and Miettinen [12] extended the approach to handle categorical
and numerical attributes along with binary ones and use a beam
search to keep the current top candidates at each step instead
of focusing on the single best improvement.

The proposed algorithms can also be divided between exhaus-
tive and heuristic strategies. Mine-and-pair algorithms based
on association rule mining techniques are typically exhaustive.
Alternating algorithms based on decision tree induction and
algorithms that grow the queries greedily typically rely on
heuristics.

While the first algorithms only considered binary attributes,
more recent ones also allow to handle numerical and categorical
attributes, possibly including missing entries. In this latter case,
when calculating the supports of the queries and the similarity
of the supports, a choice needs to be made about how to
handle the entities for which the status of the queries cannot
be determined due to missing values. Potential approaches
include – but are not limited to – assuming that the queries
always evaluate false on such entities [7] or assuming that they
evaluate true or false depending on what is the most or the least
favorable in terms of support similarity [12]. In fact, evaluating
whether there is a way the query can evaluate true is NP-hard
in general, though this is not the case with any of the query
languages that are used with the existing algorithms. Of course,
the actual mining algorithm also has to support missing values.
For example, in algorithms using decision tree induction, the
induction procedure must be able to handle missing values.

IV. SETS OF REDESCRIPTIONS

Redescription mining, as defined above, is an exhaustive
enumeration task, the goal being to output all valid re-
descriptions that satisfy the constraints. This is a common
approach in data mining (cf. frequent pattern mining), but it
can yield many redundant redescriptions. Filtering away the
redundant redescriptions, however, requires us to define what
redescriptions are redundant.

Perhaps the simplest approach is to consider the supports of
the queries. We can order all (valid) redescriptions descending
in their similarity, take the topmost redescription, move it to
the list of non-redundant redescriptions, and mark the entities
in its support ‘used’. We can then re-evaluate the remaining
redescriptions while only taking into account the non-used
entities. All redescriptions that are deemed invalid (e.g. their
support becomes too small or their Jaccard index too low) are
considered redundant and removed. We repeat the process with
the remaining redescriptions and entities until either the list of
redescriptions or the set of entities becomes empty.

This simple approach can filter out too many redescriptions,
as it only considers their support and not the attributes that
appear in the descriptions. Kalofolias et al. [13, 14] presented
another approach for defining redundant redescriptions based
on maximum-entropy distributions and the subjective interest-
ingness approach of De Bie [15]. They model the data using
a maximum-entropy distribution that is constrained so that the
already-observed redescriptions have a high probability (or
are certain) to occur. The other redescriptions are then ranked
based on their likelihood of being true in a data following this
model. The redescription that is the least-likely (i.e. the most
surprising) is added as a constraint, the model is re-learned,
and the remaining redescriptions are re-evaluated.

V. TOOLS

The Siren tool was developed for mining, visualizing, and
interacting with redescriptions [16–18]. It provides a complete
environment for redescription mining, from loading the data
to finally exporting the results into various formats, through
mining, visualizing, and editing the redescriptions.

Having good visualizations is crucial, of course, when
designing a tool for visual data analysis. Indeed, visualization
is the key to understanding the results of the mining process
and we designed several visualizations for redescriptions. Maps,
like the one presented in Figure 1, are a great way to understand
where the queries hold (and do not hold), but require, naturally,
that the entities are associated with geographical locations.
Parallel coordinates plots are especially useful to understand the
conditions appearing in the queries, as they allow to visualize
the range of values selected by the predicates. Our example
redescription depicted in a parallel coordinates plot is shown
in Figure 2.

For redescriptions using decision tree induction and for tree-
shaped queries more generally, tree diagrams reveal the tree
structure underlying the queries, facilitating the interpretation
of descriptions that can otherwise appear rather convoluted. A
tree-shaped equivalent of our example redescription depicted
in a tree diagram is shown in Figure 3.

Visualizations in Siren are linked, so that the user can
highlight an entity across different visualizations of the same
redescription, or interactively adjust the thresholds in the
queries through the parallel coordinate plot, for instance. In
addition, the tool allows to use different levels of automation
when mining redescriptions, from letting the algorithm run fully
automatically given a set of parameters, to letting the user edit
the results fully manually, through partial automation where
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Figure 2. Parallel coordinates plot of our example redescription. Every line
corresponds to one geographical location (entity) and the colours of the lines
are as in Figure 1, except that grey correspond to locations where neither of
the queries hold. The plot has three vertical axes corresponding to the three
attributes in the redescriptions. The grey boxes in these axes correspond to the
range of the values of the corresponding variable in the query; if a line passes
through a gray box, the predicate corresponding to the attribute evaluates true
for this entity.

Figure 3. Tree diagram of a tree-shaped equivalent of our example redescription.
Solid leaf nodes correspond to paths in the tree where the queries evaluate
true, while empty leaves correspond to paths where the queries evaluate false.
Lines between the two trees are as in Figure 2.

the algorithm extends and optimizes candidate redescriptions
provided by the user.
Siren also allows to perfom support-based filtering on a set

of redescriptions as explained in Section IV: the redescriptions
are reranked and the redundant ones are marked.

Recently, Mihelčić and Šmuc [19] proposed a tool called
InterSet for visualizing and working with sets of redescrip-
tions. The tool allows to cluster redescriptions based on their
shared attributes and shared entities. The user can also visualize
the statistics of a set of redescriptions, such as the distribution
of their Jaccard indices or of their pairwise support overlap,
and filter the redescriptions based on those statistics.

VI. APPLICATIONS

Redescription mining has been applied in various domains.
Here, we present three examples from ecology, from biology
and from social and policital sciences, respectively.

Instead of modelling the distributions of species directly,
as in the niche finding example presented earlier, one might
look at the distributions of functional traits of species. Galbrun
et al. [20] consider dental traits of large plant eating mammals
and bioclimatic variables (derived from temperature and
precipitation records) from around the globe, looking for
associations between teeth features and climate. The teeth
of plant-eating mammals constitute an interface between the
animal and the plant food available in its environment. Hence,
teeth are expected to match the types of plant food present in
the environment, and dental traits are thus expected to carry a
signal of environmental conditions. In this study, three global
zones are identified, namely a boreal-temperate moist zone,
a tropical moist zone, and a tropical-subtropical dry zone,
each associated to particular teeth characteristics and a specific
climate.

Mihelčić et al. [21] use redescription mining to relate clinical
and biological characteristics of cognitively impaired patients,
with the aim of improving the early diagnosis of Alzheimer’s
disease. In this study, one data table consists of biological
attributes derived from neuroimaging, from blood tests, and
from genetic markers, for instance, while the other data table
contains clinical attributes that record patients’ answers to
several questionnaires, observations by physicians, and results
of cognition tests. The results obtained largely confirmed the
findings of previous studies. In addition, they highlighted
some additional biological factors whose relationships with the
disease require further investigation, such as the pregnancy-
associated plasma protein-A (PAPP-A), which they found to
be highly associated with cognitive impairment in Alzheimer’s
disease.

Galbrun and Miettinen [22] applied redescription mining
to analysing political opinion polls. Specifically, they used
data from Finnish on-line voting advice applications, where
candidates in the Finnish parliamentary elections have answered
to a number of questions regarding their opinions on political
matters, and had also provided socio-economical background
data. Galbrun and Miettinen [22] analysed, first, the correlations
between the socio-economical status and the political opinions
of candidates, and, second, compared the answers of candidates
who run for both 2011 and 2015 elections between these years.
Their findings partially followed the party platforms, but they
also found unsuspected connections; for example, candidates
who were over 37 years old or who had children were not
strongly supporting legalizing euthanasia, and vice versa.

VII. RELATED METHODS

As we have seen, the work on redescription mining has
significantly expanded and diversified since the task was first
formalized by Ramakrishnan et al. [4]. Problem variants have
also been introduced: storytelling aims at building a chain of
redescriptions linking given objects or queries while relational
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redescription mining aims to find redescriptions in heterogenous
networks.

Beside classification and association rule mining (see Sec-
tion III), the task also has connections with subgroup discovery,
clustering and multi-view approaches, in particular.

In subgroup discovery [23], the input contains features and a
target variable over observations, and the goal is to find queries
that describe groups that have an ‘interesting’ behaviour in the
target variable, that is, groups of entities that have different
statistical properties (e.g. average) in the target variable when
compared to the rest of the observations.

Clustering is a classical unsupervised data analysis method
with the goal of grouping the entities in such a way that entities
in the same group are as similar to each other as possible,
and the objects in different groups are as dissimilar from each
other as possible. A query can be interpreted as selecting a
subset of the attributes and a group of entities that are in some
sense ‘similar’ to each other, although not in the classical sense
(e.g. of having short Euclidean distance). Among clustering
techniques, redescription mining is most related to subspace
clustering [24] and biclustering [25].

An important feature of redescriptions is their ability to
describe data from different points of view, i.e. their ‘multi-
view’ aspect. Other examples of multi-view data mining
methods include multi-view clustering [26], where the attributes
are divided into two views and the clustering is done separately
over each view; multi-view subgroup discovery [27], where the
subgroup discovery is done over multiple views; and various
multi-view matrix and tensor factorization [28–30], which use
(partially) the same factors to decompose multiple matrices or
tensors.

VIII. CONCLUSION AND FUTURE WORK

Redescription mining is a powerful data analysis technique
that is gathering wider interest, among data analysis researchers
and practitioners alike. The availability of efficient algorithms
that can handle heterogeneous data types has undoubtably
contributed to the increasing adoption. Yet, redescription
mining is, in many ways, in its infancy, and there are still
many interesting open questions to be addressed. Developing
redescription mining methods that work over time series data
is one important future direction. Another interesting direction
is to add predicates that are functions of the attributes, such
as square roots, logarithms, squares, and so on, and perhaps
also multivariate composite attributes. This would naturally
allow the query to capture more complex structures, but the
exact functions would have to be application-dependant. Finally,
redescription mining could also be extended to more complex
data (relational redescription mining [31] can be seen as one
step in that direction), such as graphs and multimodal (e.g.
tensor) data.
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and T. Šmuc, “Using redescription mining to relate clinical
and biological characteristics of cognitively impaired and
Alzheimer’s disease patients,” PLOS ONE, vol. 12, no. 10, pp.
1–35, 2017.

IEEE Intelligent Informatics Bulletin December 2017 Vol.18 No.2



Feature Article: Esther Galbrun and Pauli Miettinen 12

[22] E. Galbrun and P. Miettinen, “Analysing political opinions using
redescription mining,” in IEEE International Conference on Data
Mining Workshops, 2016, pp. 422–427.

[23] S. Wrobel, “An algorithm for multi-relational discovery of
subgroups,” in Proceedings of the First European Symposium on
Principles of Data Mining and Knowledge Discovery (PKDD’97),
vol. 1263, 1997, pp. 78–87.
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Advances in Inference Methods for Markov Logic
Networks
Deepak Venugopal

Abstract—Markov Logic Networks (MLNs) are expressive
models that can be used to specify complex and uncertain
background knowledge in the form of weighted first-order logic
formulas. However, inference in MLNs is highly challenging
since the underlying probabilistic model can be very large even
for simple MLN structures. Lifted inference has emerged as
dominant approach for probabilistic inference in MLNs, where
the idea is to exploit symmetries in the MLN for scalable
inference. In this paper, we provide an overview of MLNs, and
major advances in inference techniques for MLNs over the last
several years.

Index Terms—Markov Logic Networks, Statistical Relational
Learning, Probabilistic Graphical Models, Probabilistic Infer-
ence.

I. I NTRODUCTION

STATISTICAL Relational AI [1] unifies two corner-stones
of Artificial Intelligence, namely, first-order logic and

probabilities, to represent relational knowledge in the pres-
ence of uncertainty. Several notable SRL models have been
proposed over the last several years including Markov Logic
Networks (MLNs) [2], [3], Bayesian Logic (BLOG) [4], prob-
abilistic soft logic (PSL) [5] and ProbLog [6]. MLNs are ar-
guably one of the most popular models for SRL, and combine
first-order logic with undirected probabilistic graphicalmodels
also known as Markov networks [7]. Specifically, an MLN is
a set of first-order logic formulas with real-valued weights
attached to each formula. The first-order formulas encode
knowledge corresponding to an application domain, while the
weights represent uncertainty associated with that knowledge.
The larger the weight of a formula, greater is our belief in that
formula, and vice-versa. Thus, MLNs soften the semantics
of first-order logic (where formulas are either true/false).
More specifically, MLNs are essentially template models that
can encode different probability distributions based on the
instantiations of its first-order formulas. Given the constants in
a domain-of-interest, the probability distribution in an MLN
is represented in factored form as a Markov network. Note
that by combining the compactness of first-order logic and
Markov networks, MLNs are capable of representing large,
complex, uncertain relational knowledge in a succinct manner.
Therefore, they have been used in diverse areas including
NLP [8], computer vision [9], intelligent tutoring systems[10]
and health informatics [11].

However, the expressiveness of MLNs comes at the cost
of increased complexity of probabilistic inference, and conse-
quently learning, which typically uses inference as a sub-step.

Deepak Venugopal is with the Department of Computer Science, University
of Memphis, TN, 38152 USA e-mail: (dvngopal@memphis.edu).

Specifically, with just a few compact formulas, MLNs are able
to represent extremely large Markov networks containing thou-
sands of variables and factors. For instance, consider a simple
MLN that models the transitive relationshipFriends x,
Friends , z Friends z, x with weight . Every

possible instantiation orgroundingof the MLN formula for
a given domain, represents a factor in the Markov network.
That is, suppose we consider 1000 people in our domain,
the Markov network underlying our example MLN has 1
billion factors and 1 million variables. Performing inference on
MLNs is infeasible using traditional inference algorithmsfor
graphical models, which we refer to aspropositionalmethods,
since they work on the Markov network representation of the
first-order MLN. Thus, the challenge is to perform inference
by taking advantage of thelifted representation in MLNs.

An interesting aspect about the MLN representation is
that the number of weights in the MLN is typically much
smaller than the number of factors in the underlying Markov
network. In other words, all instantiations of a formulashare
the same weight. This induces symmetries in the probability
distributions encoded by an MLN. Therefore, a significant
amount of research in MLNs has aimed towards exploit-
ing these symmetries to improve scalability. In particular,
starting with the pioneering work by Poole [12], the pre-
dominant method for inference is the idea oflifted inference,
which performs reasoning over groups of indistinguishable
variables in the model. For example, ifFriends Alice, Bob
and Friends Bob,Carl have the same distributions, then
inference results forFriends Alice, Bob can be re-used
for Friends Bob,Carl . The main challenge in developing
efficient lifted inference algorithms is to efficiently compute
groups of symmetric variables at a first-order level, without
explicitly grounding the MLN, which could potentially create
an extremely large Markov network.

The aim of this paper is to provide readers an overview
of MLNs in general, and in particular, to summarize major
advances in inference over the last few years. Fast and scalable
inference algorithms are critical to the success of not only
MLNs, but the general field of Statistical Relational AI.
With a growing interest in Statistical Relational AI due to
the expressiveness, and explainability of its models [13],we
believe that developments in this area should be of interestto
the intelligent systems community in general.

II. BACKGROUND

A. First-order Logic

The language of first-order logic (cf. [14]) consists of
quantifiers ( and ), logical variables, constants, predicates,
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and logical connectives ( , , , , and ). A predicate
is a relation that takes a specific number of arguments as
input and outputs eitherTRUE (synonymous with ) orFALSE

(synonymous with ). The arity of a predicate is the number
of its arguments. A first-order formula connects various predi-
cates through the logical connectives. A first-order knowledge
base (KB) is a set of first-order formulas. We denote logical
variables in a KB by lower case letters (e.g.,x, , z) and
constants, which model objects in the real-world domain, by
strings that begin with an uppercase letter (e.g.,A, Ana, Bob).

B. Markov Logic Networks (MLNs)

One of the problems with first-order logic is that it cannot
represent uncertainty, i.e., formulas are either true or false.
MLNs soften the constraints expressed by each formula, by
attaching a weight to it. Higher the weight, higher is our belief
of the formula being satisfied, all other things being equal.
In MLNs, we assume a restricted version of first-order logic
with Herbrand semantics. Specifically, we assume that each
argument of each predicate is typed and can only be assigned
to a finite set of constants. By extension, each logical variable
in each formula is also typed. Given a domain of constants, a
groundatom is obtained by substituting all the variables in a
predicate by constants. Similarly, a ground formula is obtained
by replacing all variables in the formula with constants. A
possible world, denoted byω, is a truth assignment to all
ground atoms in the MLN.

MLNs can also be seen as a first-order template for gener-
ating large Markov networks[15], [7], which is an undirected
probabilistic graphical model. To illustrate MLNs, we consider
the prototypical “friends-smokers” social network domain.
We can represent common-sense knowledge that “smoking
causes cancer” and “smokers tend to have similar smoking
habits” using the following weighted formulas: (i) x
Smokes x Cancer x ; and (ii) x, Smokes x
Friends x, Smokes where and are the
weights. Weights lie between and+ and reflect the
strength of the constraint. Positive (negative) weights represent
that the worlds satisfying the formula have higher (lower)
probability than worlds not satisfying the formula. MLNs
generalize first-order logic in the sense that weights that are
equal to infinity represent hard constraints.

Given a set of constants that represent objects in the domain
(e.g. people in the social-network), the Markov network has
one random variable for each grounding of each predicate
(one for each instantiation of each logical variable in the
predicate by a constant) and one feature for each possible
grounding of each first-order formula. The weight attached
to the feature is the weight attached to the corresponding
first-order formula. For instance, given two constantsAna
and Bob, the first first-order formula in the friends-smokers
MLN yields the following two ground formulas having the
same weight : (i)Smokes Ana Cancer Ana ; and
(ii) Smokes Bob Cancer Bob . . Similarly, the second
first-order formula with the same constants will yield four
ground formulas. Formally, given a set of weighted first-
order formulas f , and a set of constants, the proba-
bility of a world ω, which is a truth-assignment to all the

ground atoms, is given by the following log-linear expression:
ω = Z N ω where N ω is the number of

groundings of f that are true inω and Z is a normalization
constant, also called the partition function.

Important inference queries in MLNs are computing the
partition function, finding the marginal probability of an atom
given evidence (an assignment to a subset of variables) and
finding the most probable assignment to all atoms given
evidence (MAP inference). All these problems are computa-
tionally intractable. Therefore, typically approximate inference
algorithms are used to solve these problems in practical MLNs.
In a typical use case of MLNs, the application designer writes
first-order logic formulas that encode prior knowledge about
the domain, and then relies on domain independent techniques
implemented in software packages such as Alchemy [16] and
Tuffy [17] to solve two key tasks:probabilistic inference
– answering queries (making predictions) given the learned
MLN and observations (evidence), andweight learning –
learning the weights attached to the formulas from data.
Weight learning internally uses inference within each sub-step,
and therefore developing efficient inference methods is oneof
the key problems in MLNs.

III. E XACT L IFTED INFERENCE

Lifted inference in MLNs can be viewed as the probabilistic
equivalent of reasoning in first-order logic, i.e., theoremprov-
ing. Specifically, just as theorem proving does not convert first-
order formulas in a knowledge base to propositional formulas
but instead reasons directly on the first-order representation,
lifted inference aims to perform probabilistic reasoning with-
out creating the full Markov network from the ground for-
mulas. The concept ofdomain liftableMLNs was introduced
in [18], [19], which refers to MLN structures on which the
complexity of exact inference is polynomial in the number
of domain objects. Notable lifted inference algorithms that
peform domain-lifted exact inference, include lifted factor-
graphs [12], First-order Variable Elimination (FOVE) [20],
Weighted First-Order Model Counting (WFOMC) [21] and
Probabilistic theorem Proving (PTP) [22]. Next, we will briefly
review PTP which is one of the most popular exact lifted
inference methods for MLNs.

PTP lifts weighted model counting[23] to the first-order.
It turns out that the weighted model counting problem is
equivalent to computing the partition function of the MLN
(cf. [22], [23]). PTP computes the partition functions using
two lifting rules, namely, lifted decomposition and lifted
conditioning. Just like the well-known DPLL algorithm [24]
for SAT solving, PTP recursively applies the lifting rules on
the input MLN. Below, we give a informal summary of each
lifting rule, and refer the reader to [22], [25] for details.
Lifted Decomposition identifies identical and independent
components in the underlying Markov network by only look-
ing at the first-order structure. We illustrate this with a simple
example. Consider the MLN , Strong(x) Wins(x).
Given the domain,∆ = X , X , the Markov network
defined overStrong(X ) Wins(X ) is identical and inde-
pendent of the Markov network defined overStrong(X )

Wins(X ). Thus,Z = Z Z = Z .
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Lifted Conditioning conditions on a first-order predicate.
Conditioning removes the predicate from the MLN by creating
MLNs corresponding to each possible assignment to that
predicate. Clearly, if a predicateR hasd ground atoms, the
total number of possible assignments to the ground atoms ofR
is equal to . However, in some cases, it is possible to group
the set of assignments such that in any group, all the MLNs
that are generated by the assignments in a group are equivalent
to each other, i.e., they have the same partition function. For
example, consider the MLN Smokes x Friends x,

Asthma x . Here, conditioning onSmokes x implicitly
conditions on ∆ different assignments to the groundings
of Smokes x . However, it turns out that, in this case, we
can form ∆ + groups, where any assignment within a
group yields the same partition function after conditioning.
The grouping can be performed based on the number of atoms
among the∆ that are set to true in an assignment. We can
then choose one representative from each group, condition on
it, and multiply the partition function of the conditioned MLN
by group-size. Note that, in general, this rule can only be
applied to singleton atoms, namely, atoms whose arity is equal
to 1.

In practice, apart from the two lifting rules, PTP leverages
advanced SAT techniques such as unit propagation and caching
to greatly improve the performance of lifted inference. For
more details on these extensions, refer to [22].

IV. A PPROXIMATE L IFTED INFERENCE

Exact lifted inference is highly scalable when the MLN
structure has symmetries that can be exploited by algorithms
such as PTP. However, as shown in [18], [19], a very restrictive
set of MLNs exhibit such symmetries. Specifically, according
to current complexity results, MLNs are liftable only if each
formula has a maximum of two variables. Therefore, for
most practical MLNs, exact inference is unlikely to scale up.
Thus, several well-known propositional approximate inference
algorithms have been lifted to the first-order level. Next, we
will review a few notable ones.
Lifted Belief Propagation. Singla and Domingos [26] lifted
belief propagation[27] in MLNs to the first-order level. Specif-
ically, in loopy belief propagation, the MLN is encoded as a
factor-graph, where the atoms are the variables, and the ground
formulas are the factors. The sum-product algorithm computes
the marginals of all variables in the factor graphs by passing
messages between the nodes/variables and features/factors that
relate the nodes. The message from nodes to features is a
product of all incoming messages from other features that the
node is connected to, with the variable corresponding to the
summed-out from the product. Similarly, the message from
a feature to a node is a product of all the messages coming
into a feature from nodes connected to the feature. In Lifted
Belief Propagation, the main idea is to identify messages that
are identical, and send a single aggregate message instead
of individual messages. To do this, Singla and Domingos
proposed the creation of super-nodes and super-features, which
correspond to groups of nodes and features that emit common
messages. The grouping of nodes into super-nodes and features

into super-features is performed incrementally by observing
the messages in BP that are identical to each other.
Lifted Sampling-based Inference. In sampling-based infer-
ence methods we draw samples from the target distribution,
and compute inference queries as statistics on the drawn
samples. Note that in the case of MLNs, sampling worlds
directly from the MLN distribution is hard, since the par-
tition function is intractable to compute. In IS, we perform
approximate inference by sampling worlds from an easier-to-
sampleproposal distribution. However, to compensate for the
fact that we sampled from the approximate distribution, we
weigh each sample, and compute statistics over the weighted
samples. The quality of estimates from IS depends upon
how close the proposal distribution is to the true distribution.
Gogate et al. [28] proposed a lifted Importance Sampling
(LIS) algorithm, where the main idea is to exploit symmetries
to create a more-informed proposal distribution. Specifically,
they grouped together symmetric worlds, and sampled a single
world from each group, which consequently increases the
effective sample-size, and yields lower-variance estimates of
the computed inference queries. In order to create a proposal
distribution which is tractable to sample from, Gogate et al.
relied on lifting rules of PTP [22]. Specifically, in PTP, the
lifting rules are applicable only for specific MLN structures.
In LIS, the pre-conditions for applying the lifting rules are
relaxed, and thus, the lifting rules are applied approximately
to non-liftable MLN structures. Samples from the proposal dis-
tribution are generated by sampling from a symbolic execution
trace of PTP. Further, the proposal distribution is adaptively
improved based on prior samples such that the distribution
moves closer to the true MLN distribution.

An alternative approach to IS, is to construct a Markov
Chain whose stationary distribution is equivalent to the MLN’s
true distribution. We can then sample from this chain, and
answer inference queries based on statistics obtained from
the samples. A lifted MCMC method can be visualized as
one that works in alifted state-space. That is, we construct a
state-space of the sampler that does not explicitly enumerate
every possible state but instead groups these states based
on symmetries. For instance, a propositional sampler on a
MLN with n atoms works in a state-space states, while
a lifted state-space can have far fewer number of states. A
Markov chain defined on the lifted states can typically make
larger jumps as compared to Markov chains defined on a
propositional space, and in many cases larger jumps can avoid
being struck in regions of local optima. Niepert [29] proposed
a lifted MCMC method by grouping together states based
on symmetries detected from automorphism groups comput-
ed from the MLN’s graph structure. Venugopal et al. [30]
lifted the blocked Gibbs sampling algorithm [31], which is
an advanced variant of the Gibbs sampling [32] algorithm,
which is arguably one of the most popular MCMC methods.
Lifted Blocked Gibbs (LBG) partitions the atoms in the MLN
into domain-liftable blocks, i.e., exact lifted inferencemust
be tractable within each block. Further, the LBG sampler
maintains a lifted state-space within each block, where the
assignments to all ground atoms within a block are not stored,
but sufficient statistics related to these assignments are stored.
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This improves the convergence of the sampler, as well as the
estimates derived from the sampler.
Lifted MAP Inference . MAP inference is an optimization
problem that can be solved using popular randomized local-
search solvers such as MaxWalkSAT [33]. These techniques
are propositional since they work on the Markov network
underlying the MLN. Sarkhel et al. [34] proposed an approach
to lift such propositional MAP solvers by pre-processing the
MLN, and reducing the size of its underlying Markov network.
Specifically, they considered a specific subset of MLNs called
non-sharedMLNs, where no variables are shared across atoms
in a formula, and showed that the MAP solution in these MLNs
is independent of the number of domain objects. For example,
the MLN R x S is equivalent to R S, where, if
the assignment toR (orS) in the MAP solution is 1 (or 0), then
all ground atoms ofR x (or S x ) have an assignment equal
to 1 (or 0). Using this property, MAP inference on non-shared
MLNs can be reduced to propositional MAP inference, where
each first-order predicate is replaced by a single propositional
variable, since the MAP assignment to all groundings of the
predicate are symmetric to each other. Other approaches for
MAP inference have lifted Linear Programming solvers based
on symmetries [35].

V. EXPLOITING APPROXIMATE SYMMETRIES

One of the key problems with lifted inference methods that
exploit exact symmetries is that they are ineffective when the
structure of the MLN is complex (e.g. transitive formula) or
evidence is presented to the MLN, since evidence typically
breaks symmetries. For example, consider the toy MLN
given in Figure 1(a). When no evidence is present, all ground
atoms ofWins x, have the same marginal probability (exact
symmetry). Given evidence (see Figure 1(b)), the marginal
probabilities are no longer the same as shown in Figure
1(c) and there are no exact symmetries. In such cases, lifted
inference algorithms will ground the MLN, and lifted inference
is almost the same as propositional inference. More generally,
Broeck and Darwiche [36] showed theoretical results that,
in the presence of evidence on binary or higher-arity atoms,
MLNs are no longer domain-liftable. Similarly, Kersting et
al. [37] showed that as the amount ofsymmetry-breaking
evidence increases, the benefits of lifted inference diminishes.
Unfortunately, most real-world applications require inference
algorithms that can reason in the presence of evidence, and
in such cases lifted inference is more or less equivalent to
propositional inference. This problem can be averted using
approximations which group together variables that are similar,
but not identical. For example, from Figure 1(c), we can see
that the marginal probabilities of the first three atoms and
the last two atoms are roughly the same and they can be
treated as indistinguishable for all practical purposes. Below,
we highlight some specific approaches that are designed to
scale up inference by exploiting approximate symmetries when
exact symmetries are absent.
Over-Symmetric Approximation . Broeck and Darwiche [36]
proposed the idea ofsmoothingthe evidence by introducing
more symmetries in the model. In this way, lifted infer-
ence methods will have a better chance of finding these

symmetries. For example, if we consider the evidences on
a predicateLinked, as Linked P , P , Linked P ,P ,
Linked P , P , Linked P ,P , the evidence onP andP
is not symmetrical. however, by removingLinked P ,P
and addingLinked P ,P , the evidence becomes more sym-
metrical. Broeck and Darwiche modeled this as a factorization
problem in a boolean matrix. Specifically, binary evidence
is represented as a boolean matrix, and the idea is to come
up with a reduced-rank approximation of this matrix, which
in-turn yields more symmetric evidence that is better suited
for lifted inference. However, changing the evidence would
change the MLN distribution, and therefore, inference results
computed from this approximate distribution will not have
strong guarantees associated with it. To obtain such guarantees,
Niepert and Broeck [38] used the over-symmetric approxima-
tion to as a proposal distribution for MCMC algorithms instead
of computing inference results directly from the approximate
distribution.
Evidence-based Clustering. The key idea here is to pre-
process the MLN by reducing the number of objects, replacing
several roughly symmetric objects by a single (meta) object.
We then run lifted inference using these new, much smaller
set of objects. A key challenge is how to find objects that are
similar to each other and thus partitioning the set of objects
into symmetric subsets. To solve this problem, we defined a
distance (similarity) function that takes two objects as input
and outputs a number that describes how symmetric or similar
the two objects are (smaller the number, greater the chance
that the two objects are similar). The problem is now reduced
to a standard clustering problem, and algorithms such asK-
means can be used to solve it. Venugopal and Gogate [39]
proposed a distance function which is based on common
sense knowledge that objects having similar neighborhood
constraints (Markov blanket) tend to be symmetric in the
sense that the marginal probabilities of atoms containing those
objects will be roughly the same. Formally, the distance
function developed by Venugopal and Gogate is given by:
d X , X = U U whereX andX are constants (objects)
that belong to the same domain equivalence class (see section
2) andU = c , . . . , c and U = c , . . . , c are m-
dimensional vectors wherem is the number of formulas and
c is the number of groundings of the formulaf that evaluate
to true in the MLN obtained from the original MLN
by grounding all logical variables having the corresponding
object type withX and instantiating evidence. One can think
of U as a feature vector describing the neighborhood of the
object X in the MLN given evidence. Since computing the
number of groundings is a #P-hard problem, the approach by
Venugopal and Gogate proposed to approximate the counts
by decomposing large formulas into smaller ones. However,
one of the major problems with using clustering methods
such asK-Means is that the optimal number of clusters is
hard to compute. For instance, for some domains with greater
symmetry among objects, a small set of meta-objects may
suffice, while for other domains, we may require more meta-
objects. Venugopal et al. [40] extended the aforementioned
approach using a non-parametric clustering method called DP-
Means [41], where they computed the optimal number of

December 2017 Vol.18 No.2 IEEE Intelligent Informatics Bulletin



Feature Article: Deepak Venugopal 17

Wins(A,A) 0.56

Wins(A,B) 0.56

Wins(A,C) 0.56

Wins(B,A) 0.56

Wins(B,B) 0.56

Wins(B,C) 0.56

Wins(C,A) 0.56

Wins(C,B) 0.56

Wins(C,C) 0.56

(a) Original Marginals

Strong(C)

Wins(A,C)

Wins(B,B)

Wins(B,C)

Wins(C,A)

(b) Evidence

Wins(A,A) 0.6

Wins(A,B) 0.6

Wins(B,A) 0.63

Wins(C,B) 0.85

Wins(C,C) 0.85

(c) New Marginals

Fig. 1. Effect of evidence on an MLN with one formula, Strong( ) Wins( , ). The marginal probabilities which were equal in (a) become unequal
in (c) due to evidence (b).

clusters for a given bound on the error in samples generated
from the approximated MLN.

Apart from the above approaches, other methods have also
been proposed for exploiting approximate symmetries in spe-
cific inference tasks. Specifically, Sarkhel et al. [42] proposed
a refinement approach for MAP inference by adding equal-
ity constraints to the MLN when objects are approximately
symmetric to each other. For the marginal inference problem,
Singla et al. [43] considered approximately similar messages
in belief propagation as equivalent messages, and constructed
a lifted belief network that is much smaller than the lifted
network constructed from exactly symmetric messages.

VI. EXPLOITING MLN STRUCTURE

Since MLNs are deined as logical formulas, propositional
inference algorithms can use approaches that exploit MLN
structure to avoid constructing the ground Markov network
during inference. Along these lines, Shavlik and Natara-
jan [44] proposed an approach calledFROG (Fast Reduction Of
Grounded networks). The idea was to pre-process the MLN,
and reduce the size of the ground network by efficiently com-
puting formulas that are satisfied due to the logical structure.
For example, inR x, S , z T z, x , if we know that
majority of the groundings ofR x, are false, then majority
of the formula groundings are true irrespective of the states of
the groundings ofS , z andT , z . FROG maintains a rep-
resentation of these non-satisfied formula groundings, andjust
stores statistics on the satisfied groundings, which is sufficient
for performing inference. Similarly, Poon and Domingos [45]
developed an approach to performlazy groundingin MLNs.
Here, only a subset of variables and ground formulas are
kept in memory, and as inference proceeds, grounding is
performed as-needed. The main idea behind this approach is
that, many propositional inference algorithms work on one
variable of the MLN at a time, and updates to the variable
depends upon a small subset of other variables and formulas.
More recently, Venugopal et al. [46] proposed an approach
to scale up local-search algorithms such as MaxWalkSAT and
sampling-based inference algorithms such as Gibbs sampling
using efficient counting algorithms. Specifically, a counting
problem that MaxWalkSAT or Gibbs Sampling needs to solve

is, counting the satisfied groundings of a first-order formula f ,
given a worldω. This problem is known to be computationally
hard [3], and inference algorithms need to solve this problem
not just once but several times over thousands of iterations.
Venugopal et al. encoded the counting problem as a problem
of computing the partition function of a graphical model.
Specifically, given thatf has k variables, they encoded a
graphical model withk nodes, and derived the factors in the
graphical model fromω. Importantly, if thetree-widthof the
encoded graphical model is small, then the counting can be
performed exactly using methods such as junction-trees [47].
For larger treewidth models, off-the-shelf algorithms such as
generalized belief propagation [27] to approximate the counts
in a scalable manner.

VII. JOINT INFERENCEAPPLICATIONS

MLNs have been used extensively to model joint inference
tasks in complex problems. As compared to Integer Linear
Prgramming (ILP) formulations which were previously used
to model joint inference [48], the first-order structure of MLNs
helps us model joint dependencies more compactly. Singla
and Domingos [49] developed one of the earliest MLN-based
joint inference models for the entity resolution task on the
cora and bibserv citation datasets. Poon and Domingos [8]
developed an MLN model for information extraction utiliz-
ing entity resolution within the model, to jointly segment
citation fields in the cora and bibserv datasets. Poon and
Domingos [50] also developed an unsupervised model for
joint coreference resolution, where they used a predicate to
specify clustering of mentions that correspond to a common
entity. Poon and Vanderwende [51] developed a joint model
for Biomedical event extraction on the Genia dataset, where
they detected triggers and arguments jointly. Venugopal et
al. [52] further improved the performance of MLNs on the
same event extraction task by leveraging linguistic features.
Specifically, encoding such features directly as MLN formulas
makes learning and inference infeasible due to their high-
dimensionality, which results in a large number of ground
formulas. To add such features to the MLN, Venugopal et al.
used the output of SVMs learned from the high-dimensional
features to generate priors for the MLN distribution. Lu et
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al. [53] designed an MLN for event coreference resolution that
jointly performs four tasks in the pipeline: trigger identification
and subtyping, argument identification and role determination,
entity coreference resolution and event coreference resolution.
Similar to Venugopal et al.’s strategy, Lu et al. used an SVM
to incorporate high-dimensional features into their MLN.

VIII. D ISCUSSION ANDCONCLUSION

Though plenty of progress has been made in MLNs over the
last several years, there is quite a lot of work that needs to be
done to make MLNs a “black-box” for application designers.
The blow-up in the size of the probabilistic model, with
increased data-size makes inference and learning very hard,
and therefore application designers find it hard to use MLNs
using existing open-source systems MLNs as-is. Particularly,
if MLNs are to work with big-data problems, inference
algorithms need to become far more scalable than current
state-of-the-art. Further, explaining the results of inference is
an area that requires active future research in MLNs. Due to
their basis in first-order logic, MLNs seem to be a promising
candidate to develop interpretable Machine learning models.
Integrating MLNs with other models such as deep-models in
order to facilitate relational deep learning is also an areawhere
future research seems to be headed.

In this paper, we provided a brief overview of MLNs and
major advances in MLN inference methods. Particularly, the
idea of lifted inference has received a lot of interest from
the research community, where symmetries (both exact and
approximate) in the MLN distribution are exploited to perform
scalable inference. As MLNs continue to be applied in varied
domains, advances in this area should be of interest to the
field of Statistical Relational AI, and the Intelligent Systems
community in general.
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Strategic Voting
Reshef Meir

I. INTRODUCTION

In a typical voting scenario, a group of voters with diverse
preferences need to collectively choose one out of several alter-
natives. Examples include a committee that selects a candidate
for a faculty position or an award, countries in an international
forum voting on the adoption of a new environmental treaty,
or even automated agents that vote on the preferred meeting
time on behalf of their users.

As the satisfaction of each voter is determined by the
selected alternative, which is in turn affected by the actions
(namely, the ballots) of others, casting a vote is in fact playing
a strategic game.

The study of strategic voting is an effort to utilize game
theory, which merits to model and predict rational behavior in
a wide range of economic and social interactions, to explain
and even direct the strategic decisions of voters.

This review paper is a hyper-condensed version of a book
on strategic voting that is forthcoming this year. 1 The main
purpose of the book is to overview the main approaches
to strategic voting, in a way that makes these approaches
comparable across fields and disciplines. In this paper I will
mention the main directions and lines of work, but almost
without going into the technical details.

Our starting point will be the seminal Gibbard-Satterthwaite
theorem, which states that under a set of natural requirements,
one cannot hope to construct a voting rule that is immune to
strategic manipulations by the voters. This mean that there
will always be situations where some voters have an incentive
to misreport their true preferences. From this strong negative
result emerged two lines of research. One continues to shape
the boundaries and limitations of truthful voting mechanisms,
by relaxing some of the assumptions that lead to the G-S
impossibility result. The other line forgoes the attempt to elicit
truthful votes, and instead applies game theory and equilibrium
analysis to understand how strategic voters would vote in
existing mechanisms.

II. BASIC NOTATIONS

We denote sets by upper case letters (e.g., A =
{a1, a2, . . .}) and vectors by bold letters (e.g., a =
(a1, a2, . . .)).

For a finite set X , we denote by L(X) the set of all linear
(strict) orders over X .

a) Social choice: A voting scenario is defined by a set
of candidates, or alternatives, A, a set of voters N , and a
preference profile L = (L1, . . . , Ln), where each Li ∈ L(A).

Reshef Meir is with the faculty of Industrial Engineering and Management,
Technion-Israel Institute of Technology, e-mail: (reshefm@ie.technion.ac.il).

1Stategic Voting, Reshef Meir, Synthesis Lectures on AI and Machine
Learning, Morgan-Claypool, forthcoming.

For a, b ∈ A, i ∈ N , candidate a precedes b in Li (denoted
a �i b) if voter i prefers candidate a over candidate b. We can
also think about more general preferences, such as cardinal
utilities that we denote by Ui : A→ R.

Definition 1 (Social choice correspondence). A social choice
correspondence (SCC) is a function F : L(A)n → 2A \ ∅.

Definition 2 (Social choice function). An SCC F is resolute
if |F (L)| = 1 for all L. Resolute SCCs are also called Social
choice functions (SCF). We typically denote SCFs by a lower
case letter f .

We will reserve the term voting rule for a SCF (i.e., a rule
with a single winner) unless stated otherwise.

Some common voting rules that are mentioned in the paper
are based on computing some score s(c,L) for every candidate
c ∈ A, and selecting the candidate with the highest score
(employing some tie breaking policy if needed). For example,
in Plurality s(c,L) is the number of voters who ranked c
in the first place. More generally, a positional scoring rule
(PSR) sets s(c,L) =

∑
i∈N αL−1

i (c) where α is some non-
decreasing vector. The Borda rule is an example of a PSR
where α = (m− 1,m− 2, . . . , 2, 1).

b) Game theory:

Definition 3 (Game). A (finite, n-person, non-cooperative)
game is a tuple 〈N,A,u〉, where:
• N is a finite set of n players, indexed by i;
• A = A1 × · · · × An, where Ai is a finite set of actions

available to player i. Each vector a = (a1, . . . , an) ∈ A
is called an action profile;

• u = (u1, . . . , un) where ui : A → R is a real-valued
utility (or payoff) function for player i.

A game form is similar to a game, except the utilities remain
unspecified. Rather, for each combination of actions, we have
an abstract “outcome” from some set A. Any game form g :
A → A together with cardinal utility functions for each player
i, induce a unique game denoted by 〈g,U〉. This is simply the
normal form game 〈N,A,u〉, where ui(a) , Ui(g(a)) for all
i ∈ N and a ∈ A. We can similarly combine g with an ordinal
preference profile L to get an ordinal game.

For example, consider the game form on Fig. 1 (right). The
set of players is N = {1, 2}, where 1 selects a row and 2
selects a column; A1 = A2 = {C,D} (which stand for the
actions “Cooperate” and “Defect”). The game on the left (the
famous prisoner’s dilemma) is obtained by setting a cardinal
utility of U1(a) = 3, U2(a) = 3, U1(b) = 0 and so on.

A (pure) Nash equilibrium (NE) in game 〈N,A, u〉 is
an action profile a ∈ A such that ∀i ∈ N∀a′i ∈ Ai,
ui(a) ≥ ui(a−i, a′i). That is, every player weakly preferences
her current action over any other action assuming others do
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C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C a b
D c d

Figure 1. On the left - one variation of the prisoner’s dilemma game. On
the right, a 2× 2 game form.

not change their own action. For example, the profile (D,D)
is the unique NE in the prisoner’s dilemma above.

A profile a is Pareto efficient if there is no other profile
that is weakly better for all agents, and strictly better for at
least one. For example, in the prisoner’s dilemma, all profiles
excepts (D,D) are Pareto efficient.

c) Game Forms are Voting Rules: Note that by taking
any voting rule (=game form) f , and add a specific preference
profile L, we get the ordinal game 〈f,L〉 as explained above,
and we can go ahead and analyze its equilibria. However,
for most common voting rules, this approach is not very
informative. Consider Plurality voting with n ≥ 3 voters. It
is easy to see that any profile in which all voters vote for the
same candidate is a Nash equilibrium. This is true even if this
candidate is ranked last by all voters in L, since no single
voter can change the outcome. In Section VI we return to
the notion of equilibrium in voting, and consider refinements
and variations that are more reasonable and more useful as a
solution concept.

III. STRATEGYPROOFNESS AND THE
GIBBARD-SATTERTHWAITE THEOREM

d) Example of a manipulation: Consider an election
using the Borda voting rule with the following preference
profile L:

L1 L2 L3

b b a
a a b
c c c
d d d

Candidate b is the winner, beating candidate a 8 points to
7. However, if voter 3 lies about his preferences and ranks
candidate b last (after a, c and d), b’s score goes down to
6, and a (voter 3’s favorite candidate) wins! This is called a
manipulation.

A natural question is whether there are voting rules where
such manipulations are impossible. That is, where a voter can
never gain from lying about her preferences.

Definition 4 (Strategyproofness). A voting rule f is strate-
gyproof if no single voter can ever benefit from lying about
her preferences:

∀L ∈ L(A)n ∀i ∈ N ∀L′i ∈ L(A)
f(L′i,L−i) �i f(L).

For example, Plurality is strategyproof when |A| = 2.
A voting rule f is dictatorial if there is an individual

(the dictator) such that i’s most preferred candidate is always
chosen:

∃i ∈ N ∀L ∈ L(A)n : f(L) = top(Li).

A voting rule f is a duple if there are only two possible
winners.

Theorem 1 (Gibbard [22],Satterthwaite [61]). A deterministic
and onto voting rule is strategyproof if and only if it is
dictatorial or a duple.

It is easy to see that a dictatorial rule is SP, since the dictator
is always best off reporting the truth and all other voters have
no power; if we allow duples, we can arbitrarily select two
candidates a, b and hold a majority vote between them. There
are many different proofs of the Gibbard-Satterthwaite (G-S)
theorem. Several simple proofs can be found in [66].

The G-S theorem is considered as a strong negative result:
Both dictatorial rules and duples have significant shortcomings
as voting rules. A dictatorship ignores the will of all voters
but one, and a duple may fail to select a candidate even if
there is a unanimous agreement among voters that it is best.

e) Extensions: The negative result implied by the the-
orem is quite robust. Several recent papers show that the
number of different profiles in which there is a manipulation
is relatively large (a polynomial fraction of all profiles), unless
the voting rule is very close to being dictatorial [21], [42].

When also considering manipulations by coalitions the
situation becomes even worse. For a wide class of voting
rules known as “generalized scoring rules,” and which contains
most common voting rules, Xia and Conitzer [71] showed that
“large coalitions” (with substantially more than

√
n voters) can

decide the identity of the winner in almost every profile. These
results were later extended by Mossel et al. [41].

Another result demonstrating the robustness of the G-S
theorem is by Slinko and White [65], who showed that even
if we restrict manipulations by voters to be “safe” (informally,
such that any number of like-minded followers will not hurt
the manipulator), this does not expand the set of strategyproof
voting rules.

IV. REGAINING TRUTHFULNESS IN VOTING

We will focus on four approaches, each of which attains
truthfulness by relaxing some assumption underlying the G-
S theorem. Other approaches that involve monetary payments
are discussed in Section V.

A. Domain restriction

Suppose voters are voting on where to place a public library
along a street. Naturally, each voter prefers the library to be
located as close as possible to her house (whose location is
private information). Note that not every preference profile is
possible under this assumption.

More formally, a preference profile L is single peaked
w.r.t. a linear order O over A, if each voter has some “peak
candidate” a∗i s.t. if x is between a∗i and y then i prefers x
over i. See Fig. 2 for an example.

Consider a linear order O over alternatives A, and a prefer-
ence profile L that is single-peaked on O. The Median voting
rule considers the peak locations of all voters, and return their
median as the winner. Consider the example in Fig. 2. The
median of the five numbers {l1, l2, l3, l4, l5} = {1, 2, 4, 5, 4}
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L1 A � E � C � D � B
L2 E � A � C � D � B
L3 D � B � C � E � A
L4 B � D � C � E � A
L5 D � C � E � B � A
L6 D � C � B � A � E

L5

L1 L2 L3 L4

A E C D B
1 2 3 4 5

Figure 2. The preferences of the first five voters are single peaked w.r.t. the
order O = A � E � C � D � B. The right figure shows the position of
each of the first five voters w.r.t. the order O. For example, l4 = O(B) = 5
The sixth voter L6 is not single peaked w.r.t. O.

is 4. Thus either voter 3 or voter 5 can be the median voter.
In either case, the outcome is top(L3) = top(L5) = D, which
is the median candidate.

Theorem 2 (Black [6]). The Median Voter rule is strate-
gyproof.

A natural question is what other restrictions on preferences
give rise to “median-like” mechanisms that are strategyproof.
This question has been studied thoroughly [43], [27], [2], [46].

B. Complexity barriers

Even though the G-S theorem states that manipulations exist
under any voting rule, a voter trying to manipulate might find
it difficult to know how to manipulate. This observation led to
the idea that some voting rules might be truthful in practice,
assuming that voters have limited computational resources.

Bartholdi, Tovey, and Trick, formalized the following com-
putational problem, which can be applied to any voting rule
f .

MANIPULATIONf : given a set of candidates A, a
group of voters N , a manipulator i ∈ N , a preference profile of
all voters except i L−i = (L1, . . . , Li−1, Li+1, . . . , Ln), and
a specific candidate p ∈ A: Answer whether the manipulator
can provide a preference L∗i such that f(L−i, L∗i ) = p.

Then, they asked whether there is a voting rule f such
that computing the outcome f(L) is easy, but the problem
MANIPULATIONf is NP-hard. Note that since the num-
ber of possible reports is m!, a brute-force search is typically
infeasible.

At least for some voting rules, it is easy to tell whether a
manipulation exists or not. E.g. in Plurality it is sufficient to
let i rank p at the top of L′i, followed by all other candidates
in an arbitrary order. A manipulation exists if and only if
f(L−i, L

′
i) = p. Thus MANIPULATIONPlurality is in

P .

Theorem 3 ([4]). There is a voting rule f such
that: I) f(L) can be computed in polynomial time; II)
MANIPULATIONf is an NP-Complete problem.2

The original proof in [4] used a variation of Copeland, and
similar hardness results hold for common voting rules such
as STV [3]. Note that for a fixed number of candidates m,
there is a trivial polynomial-time algorithm for computing a

2 We do not formally define here what is an NP-hard problem, and refer the
reader to standard textbooks (e.g., [69]) for definitions and further discussion.

manipulation: simply try all m! possible ballots, which is also
a fixed number.

A recent survey of which common voting rules are hard
to manipulate by individual or by a coalition appears in [8],
Section 6.4.

C. Randomized voting rules

It is easy to see that by allowing randomization, we
can find strategyproof voting rules that violate the Gibbard-
Satterthwaite conditions. For example, we can think of a rule
that return any candidate with equal probability, regardless of
the profile. The following theorem by Gibbard characterizes
exactly the set of randomized strategyproof voting rules.

Theorem 4 ([23]). A (randomized) voting rule f is strat-
egyproof, if and only if it is a lottery over duples and
strategyproof unilateral rules.

A unilateral rule is a rule that depends on the report of
a single voter (e.g., a dictatorial rule). It should be noted
that in order to extend the notion of manipulation and strat-
egyproofness to randomized outcomes, Gibbard assumes that
each voter has a cardinal utility function Ui over alternatives,
and a manipulation means that a voter gains in expectation.

Some recent work used Gibbard’s characterization to derive
strategyproof voting mechanisms with some desired proper-
ties. For example, Procaccia [55] proved that for any PSR
g there is a strategyproof voting rule (i.e., a mixture of
strategyproof unilateral rules and duples) fg that outputs a
candidate with expected score close to the winner of g.

f) Approximate strategyproofness: We get more flexi-
bility if on top of randomization we slightly relax the s-
trategyproofness requirement. Two such approximations were
independently suggested by Núnez and Pivato [48] and by
Birrell and Pass [5]. Both solutions consider a “target rule”
g, and then mix it with some carefully designed noise to
obtain a randomized rule fg that is “close” to g and “almost
strategproof,” where the formal meaning of these notions
differ between the models. The Núnez and Pivato model
makes explicit assumptions on the distribution of preferences,
whereas the one by Birrell and Pass uses tools from differential
privacy.

V. VOTING AND MECHANISM DESIGN

In contrast to the common abstract model of voting, in
many specific situations agents have well-defined cardinal
utilities for each alternative, and there is a clear social goal.
For example - to maximize the sum of utilities. Denote the
“optimal” candidate by a∗ = argmaxa∈A

∑
i∈N Ui(a). A

natural question is then whether we can design a strategyproof
mechanism that obtains or at least approximates the maximal
social welfare.

A. Payments

Adding payments allows us to transfer utility between
agents with much flexibility, thereby aligning their incentives.

Suppose that each voter has cardinal utilities Ui over can-
didates. The Vickrey-Clarke-Groves (VCG) mechanism [70],
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[9], [25] collect all utility functions. Then it computes the
optimal outcome a∗, and charges each agent i the “damage”
that this agent inflicts upon the other agents. That is, the
difference between the maximal social welfare in a world
where i does not exist, and the maximal social welfare (of
all except i) in the current world. For a thorough exposition
of VCG and a range of applications see [47].

The VCG mechanism is truthful (it is a dominant strategy
for each voter to report her true utilities), and by definition
it maximizes the social welfare. Both properties rely heavily
on the assumption that voters’ utilities are quasi-linear. Re-
laxing the assumption of quasi-linear utilities even slightly,
leads to an impossibility result in the spirit of the Gibbard-
Satterthwaite theorem [31].

B. Range Voting

Range Voting allows voters to express their cardinal prefer-
ences over candidates (normalized such that mina∈A Ui(a) =
0 and maxa∈A Ui(a) = 1), and selects the one maximizing
the sum of utilities. I.e. it always returns a∗.

Even without the Gibbard-Sattethwaite theorem, it is obvi-
ous that Range Voting is not truthful, as voters can always gain
by reporting more extreme preferences. The G-S theorem an an
even more negative implication, namely that no deterministic
strategyproof mechanism can approximate the optimal social
welfare by a factor that is sublinear in n.

Filos-Rastikas and Miltersen [20] suggested to find among
the class of randomized strategyproof rules (see Sec. IV-C), the
ones that give the best possible approximation for the social
welfare. Their main result is a tight-to-a-constant approxima-
tion bound, that does not depend on n at all, and decreases
sub-linearly with m.

C. Facility location

Facility location can be thought of as a special case of
voting, where the alternatives A are possible locations for a
facility in some metric space 〈X , d〉 where d is a metric over
the set X . Each agent is assumed to prefer the facility to be
as close as possible to her location, thus instead of reporting
her entire utility function Ui, she only needs to report her
location (say, some point xi ∈ Rk or some vertex of a graph
G). The cost (negative utility) of every alternative a ∈ A ⊆ X
is exactly the distance d(xi, a).

The optimal location a∗ ∈ A is the one minimizing the
social cost SC(a,x) =

∑
i∈N d(xi, a).

A facility location mechanism is a function g : Xn → A,
mapping the positions of all n agents to a single winning
position. The special case where A = X is called the
unconstrained case, as the facility can be placed anywhere,
and in particular wherever an agent can be placed. Thus
the contrained case is more difficult in general. The cost
approximation ratio of g is the smallest γ s.t. for any input x,
E[SC(g(x),x)] ≤ γ · SC(a∗,x).

Without any restriction on the possible locations of the
agents, the impossibility results of general voting rules [22],
[61], [23] apply for the constrained facility location problem,
which only allows for dictatorial or similar mechanisms.

The welfare approximation ratio of such mechanisms can be
analyzed, and shown to be 2n−1 and 3− 2

n in the deterministic
and randomized cases, respectively [38].

Several papers examine variations of the problem, and in
particular consider metric spaces X of specific shapes such
as a line or a circle [62], [56], [15], [18]. For example,
the Median mechanism we saw in Section IV-A provides an
optimal solution for the unconstrained problem on a line, as
agents’ utilities are single-peaked.

VI. RATIONAL EQUILIBRIUM

Once we accept that voters are going to behave strategically,
and think of voting rules (with preferences) as games, we can
analyze them with game theoretic tools like any other game.
I will next mention several such models, which differ in their
modeling assumptions.

A. Implementation

Consider any (non-resolute) SCC F , i.e. a function that
maps strict preference profiles to a possibly empty set of out-
comes. In what follows, F (L) ⊆ A can be thought of as some
set of socially desirable alternatives under preference profile
L. Some examples of SCCs we might want to implement are:
all Pareto optimal alternatives in L; all Borda winners of L
(before tie-breaking); all Condorcet winners of L (which may
be empty); and so on.

Implementation of F by a mechanism g means that given
any (strict) profile L, a candidate c ∈ A is in F (L) if an only
if voters with preferences L elect c in some equilibrium of g.

A most natural question is which voting rules implement
themselves under some behavior, and if such rules even
exist. This question can be extended by allowing arbitrary
mechanisms that are not necessarily voting rules, and ask if a
voting rule f can be implemented by some mechanism gf
using some notion of equilibrium. For example, a truthful
voting rule implements itself in dominant strategy equilibrium.

We provide two examples of results in implementation
theory that use Nash equilibrium and strong equilibrium.
There are many other notions of equilibrium used in the
implementation literature. Some such notions are implemen-
tation in undominated strategies [7], [26], undominated Nash
equilibria [54], [64], and mixed Nash equilibria [26], [40].

g) NE implementation: Denote by NEg(L) ⊆ A the set
of all candidates that win in some Nash equilibrium of g for
preferences L. A mechanism g implements a SCC F in NE,
if NEg(L) = F (L) for all L ∈ L(A)n.

Theorem 5 (Maskin [32]). No voting rule except dictatorships
and duples can be implemented in NE by any mechanism.

Maskin further showed that if we want to implement SCCs
rather than SCFs (i.e. rules that allow for more than one
winner) then results are more positive, and characterized such
SCCs. A trivial example is the SCC F (L) = A, which can
clearly be implemented (e.g. by Plurality with n ≥ 3 voters). A
less trivial example is F (L) which returns all Pareto-optimal
outcomes of L.
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h) SE implementation: Let SEg(L) ⊆ A be all candi-
dates that win in some strong equilibrium of mechanism g.
Recall that an equilibrium is strong if there is no subset of
voters that can all gain by deviating. Formally, a mechanism
g implements a mapping G : L(A)n → 2A in SE, if
SEg(L) = G(L) for all L.

Note that we do not require that G is a valid SCC, as it
may return the empty subset. An example of such a mapping
is GCON , which returns the (possibly empty) set of Condorcet
winners of profile L.

Theorem 6 (Sertel and Sanver [63]). The Plurality voting rule
implements GCON in SE, for all odd n.

B. Bayesian uncertainty in Voting

We have seen that when voters know exactly how others
are going to vote, they rarely influence the outcome. Yet it
is known that people often do vote strategically, or at least
trying to [57]. One possible explanation for this discrepancy is
uncertainty: since voters do not know exactly the preferences
and actions of others, they know they might be pivotal, and
hence some actions may be better than others in expectation.

The classic game-theoretic approach for games with par-
tial information, assumes that each player’s type (prefer-
ences/utilities) is sampled from some distribution and this
distribution is common knowledge. Thus each player knows
her own type, and some distribution on the other players’
types. In equilibrium, each player is playing a mixed strategy
contingent on her type, that is a best response to the (mixed)
joined strategy of all other players.

Such models have been applied in a series of papers
to Plurality, mainly in an attempt to explain the Duverger
Law, which observes that in equilibrium typically only two
candidates get almost all votes [60], [11], [12], [52], [19]. A
general version of the model that applies for all scoring rules
was suggested by Myerson and Weber [45].

An equilibrium in these models for a particular population (a
distribution pu over utility profiles) is composed of “strategies”
(a mapping v from types to ballots) and “outcomes” (a
distribution ps on candidates scores), with the following self-
sustaining properties: sampling a profile from pu and apply
voters’ strategies v results in scores distributing according to
ps; and given ps, voters of each type are maximizing their
expected utility by voting according to v.

Other models assume voters have (uncertain) information
not about other voters’ preferences, but about their actions.
Thus a voting profile is stable if every voter would choose
to keep her vote assuming the outcome will be according to
current profile with some “noise.” This approach is highly
related to election polls. Some representatives of this approach
are robust equilibrium [39] that assumes a small probability
that voters fail to cast their vote; expectationally stable equi-
librium [53] that assumes the actual outcome an be anywhere
within some small distance from the expected outcome; and
sampling equilibrium [51] that assumes each voter is exposed
to a small random sample of the other voters.

C. Other Equilibrium Models

There are many more equilibrium models, which typically
focus on a specific voting rule or a class of voting rules, and
make different assumptions on voters’ behavior.

Some such model attribute some small positive cost to
casting a ballot (“lazy bias”) [13] or to casting a manipulative
ballot (“truth bias”) [67], [50]. This cost is sufficient to elim-
inate many of the unreasonable Nash equilibria of common
voting rules. Another approach assumes that voters rule out
dominated strategies in an iterative way until no strategy can
be eliminated. While Moulin [44] showed that dominance
solvable voting rules could be designed, in common rules such
as Plurality, dominance leads to a unique outcome only in a
small class of preferences [14].

Other models assume backward induction reasoning and
analyze subgame perfect equilibria. This can apply when
voters sequentially vote on parts of the decision [17], [33],
[72], or when they have repeated opportunities to offer new
candidates that will compete with the current winner [1].

VII. ITERATIVE VOTING AND HEURSITICS

In the iterative voting model [37], [36], voters have fixed
preferences and start from some announcement (e.g., sincerely
report their preferences). Votes are aggregated via some pre-
defined rule (e.g. Plurality), but can change their votes after
observing the current announcements and outcome. The game
proceeds in turns, where a single voter changes his vote at
each turn, until no voter has objections and the final outcome
is announced. This process is similar to online polls via Doodle
or Facebook, where users can log-in at any time and change
their vote. Similarly, in offline committees the participants
can sometimes ask to change their vote, seeing the current
outcome.

Major questions regarding iterative voting are whether it
converges, and how good is the outcome to the society. For
Plurality, Meir at al. [37] showed that if each voter in turn
plays a best-response to the current votes of others, the game
will always converge to a Nash equilibrium. This question was
later studied in other voting rules, from which only Veto seems
to have similar properties [59], [30], [28].

Interestingly, simulations show that in practice all common
voting rules almost always converge. Further, the equilibrium
result is often better for the society than the truthful out-
come [35], [28].

A. Heursitics

Many of the objections raised in the previous sections
regarding Nash equilibria, equally apply to any model based on
best response, as each particular voter is unlikely to be pivotal.
Things become more complicated when voters are assumed to
employ more flexible heuristics. Such heuristics may be used
either if voters only know part of the current state, or are
uncertain how well it will reflect the final votes.

Some heuristics are based on common sense reasoning
like focusing on the few candidates with highest current
scores [58], [24], [49]. Simulations show that these heuristics
almost always lead to convergence when applied in an iterative
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voting setting [24], [49]. Some heuristics are tailored for
a specific voting rule, such are Laslier’s Leader Rule for
Approval [29], where a voter approves all candidates strictly
preferred to the leader, and approves the leader if it is preferred
to the runnerup.

Another approach is to generate heuristics based on domi-
nance relations, by explicitly defining the information sets of
the voters under uncertainty [10], [68], [35], [16]. One specific
model is local dominance [35], [34], where the voter assumes
that the actual candidate scores are within certain distance
from the poll or current scores. In an iterative Plurality voting,
this provably leads to convergence.

Extensive simulations of Plurality voting with Local Dom-
inance heuristics show that a moderate level of uncertainty
leads to the highest amount of strategic behavior, in particular
when the population is diverse [35]. Further, more strategic
behavior in turn leads to higher social welfare.

VIII. SUMMARY: TOWARDS A COMPLETE THEORY OF
STRATEGIC VOTING

Social choice is perhaps the oldest topic that received
formal game-theoretic analysis, much before the term game
theory was coined. Yet while economists, political scientists,
mathematicians (and now computer scientists) all agree that
Nash equilibrium is not an appropriate solution concept for
voting, there does not seem to be a single acceptable theory
for strategic voting.

This might be due to the fact that, as in other cases that
concern with human behavior, strategic voting involves many
factors. Some of these factors may be domain specific and/or
depend on complex cognitive and social processes that some
models ignore or capture in different ways. Meir et al. [35]
suggested a desiderata which is intended to provide a way to
compare the strengths and weaknesses of the many different
theories: some make implausible informational or cognitive
assumptions, some predict behavior that is contrary to empir-
ical evidence, some are prohibitively difficult to analyze, and
some are wonderful but restricted to very specific scenarios.

I sincerely hope that familiarity with the classical and recent
approaches to strategic voting will encourage researchers to
develop new and better models that with improve our under-
standing. This, in turn, may lead to the design of improved
aggregation mechanisms that lead the society to outcomes that
are better for every one.
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Procaccia, editors. Handbook of Computational Social Choice. Cam-
bridge University Press, 2016.

[9] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–
33, 1971.

[10] Vincent Conitzer, Toby Walsh, and Lirong Xia. Dominating manipula-
tions in voting with partial information. In Proceedings of 25th AAAI,
2011.

[11] Gary W Cox. Duverger’s law and strategic voting. unpublished paper,
Department of Government, University of Texas, Austin, 1987.

[12] Gary W Cox. Strategic voting equilibria under the single nontransferable
vote. American Political Science Review, 88(3):608–621, 1994.

[13] Yvo Desmedt and Edith Elkind. Equilibria of plurality voting with
abstentions. In Proceedings of 11th ACM-EC, pages 347–356, 2010.

[14] Amrita Dhillon and Ben Lockwood. When are plurality rule voting
games dominance-solvable? Games and Economic Behavior, 46(1):55–
75, 2004.

[15] Elad Dokow, Michal Feldman, Reshef Meir, and Ilan Nehama. Mecha-
nism design on discrete lines and cycles. In Proceedings of 13th ACM-
EC, pages 423–440, 2012.

[16] Ulle Endriss, Svetlana Obraztsova, Maria Polukarov, and Jeffrey S.
Rosenschein. Strategic voting with incomplete information. In Pro-
ceedings of 25th IJCAI, 2016.

[17] Robin Farquharson. Theory of Voting. Yale Uni. Press, 1969.
[18] Michal Feldman, Amos Fiat, and Iddan Golomb. On voting and facility

location. In Proceedings of the 2016 ACM Conference on Economics
and Computation, pages 269–286. ACM, 2016.

[19] Mark Fey. Stability and coordination in duverger’s law: A formal model
of preelection polls and strategic voting. American Political Science
Review, 91(1):135–147, 1997.

[20] Aris Filos-Ratsikas and Peter Bro Miltersen. Truthful approximations
to range voting. In International Conference on Web and Internet
Economics, pages 175–188. Springer, 2014.

[21] Ehud Friedgut, Gil Kalai, and Noam Nisan. Elections can be manipu-
lated often. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 243–249. IEEE, 2008.

[22] A. Gibbard. Manipulation of voting schemes: A general result. Econo-
metrica, 41:587–601, 1973.

[23] A. Gibbard. Manipulation of schemes that mix voting with chance.
Econometrica, 45:665–681, 1977.

[24] Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent
Venable, and Toby Walsh. Restricted manipulation in iterative voting:
Condorcet efficiency and Borda score. In Proceedings of 3rd ADT, pages
181–192, 2013.

[25] Theodore Groves. Incentives in teams. Econometrica, pages 617–631,
1973.

[26] Matthew O Jackson. Implementation in undominated strategies: A look
at bounded mechanisms. The Review of Economic Studies, 59(4):757–
775, 1992.

[27] E. Kalai and E. Muller. Characterization of domains admitting nondic-
tatorial social welfare functions and nonmanipulable voting procedures.
Journal of Economic Theory, 16:457–469, 1977.

[28] Aaron Koolyk, Tyrone Strangway, Omer Lev, and Jeffrey S. Rosen-
schein. Convergence and quality of iterative voting under non-scoring
rules. In Proceedings of 26th IJCAI, 2017. to appear.

[29] Jean-François Laslier. The leader rule: A model of strategic approval
voting in a large electorate. Journal of Theoretical Politics, 21(1):113–
136, 2009.

[30] Omer Lev and Jeffrey S Rosenschein. Convergence of iterative scoring
rules. Journal of Artificial Intelligence Research, 57:573–591, 2016.

[31] Hongyao Ma, Reshef Meir, and David C Parkes. Social choice for agents
with general utilities. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, pages 345–351. AAAI Press,
2016.

[32] Eric Maskin. Nash equilibrium and welfare optimality. The Review of
Economic Studies, 66(1):23–38, 1999.

[33] Richard D McKelvey and Richard G Niemi. A multistage game
representation of sophisticated voting for binary procedures. Journal
of Economic Theory, 18(1):1–22, 1978.

[34] Reshef Meir. Plurality voting under uncertainty. In Proceedings of
29th AAAI, pages 2103–2109, 2015.

[35] Reshef Meir, Omer Lev, and Jeffrey S. Rosenschein. A local-dominance
theory of voting equilibria. In Proceedings of 15th ACM-EC, 2014.

[36] Reshef Meir, Maria Polukarov, Jeffrey S Rosenschein, and Nicholas R
Jennings. Iterative voting and acyclic games. Artificial Intelligence,
252:100–122, 2017.

IEEE Intelligent Informatics Bulletin December 2017 Vol.18 No.2



26 Feature Article: Strategic Voting

[37] Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nick Jen-
nings. Convergence to equilibria of plurality voting. In Proceedings of
24th AAAI, pages 823–828, 2010.

[38] Reshef Meir, Ariel D Procaccia, and Jeffrey S Rosenschein. Algorithms
for strategyproof classification. Artificial Intelligence, 186:123–156,
2012.

[39] Matthias Messner and Mattias Polborn. Robust political equilibria under
plurality and runoff rule. IGIER Working Paper, 2005.

[40] Claudio Mezzetti and Ludovic Renou. Implementation in mixed nash
equilibrium. Journal of Economic Theory, 147(6):2357–2375, 2012.

[41] Elchanan Mossel, Ariel D Procaccia, and Miklós Z Rácz. A smooth
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 

Abstract— Predictive analytics over structured time-series data 

has always been an active area of research. With plentitude of 

textual information generating across different sources on the 

web, researchers have started combining relevant structured and 

unstructured data to improve predictions. In this paper, we have 

present a generic deep learning framework for predictive 

analytics utilizing both structured and unstructured data. We 

also present a case-study to validate the functionality and 

applicability of the proposed framework where we use LSTM for 

prediction of structured data movement direction using events 

extracted from news articles. Experimental results shows that the 

proposed model outperforms existing baseline.  

 
Index Terms— Predictive analytics, deep neural networks, 

text-driven analytics  

I. INTRODUCTION 

USINESS Intelligence (BI) refers to a collection of 

technologies that help organizations analyze data to 

derive actionable intelligence. Traditionally, application of BI 

technologies has been restricted to structured, numerical 

business data like those reporting sales figures, customer 

acquisition figures etc. With the advances in unstructured data 

analytics techniques over the last one and half decade, 

businesses have also started looking at unstructured data like 

customer feedback, social media content, organizational 

communications etc. to gather intelligence around consumer 

sentiments, competition landscape etc. However, what is still 

missing is a common framework that can pull and analyze a 

multitude of heterogeneous data of both structured and 

unstructured types, to provide a richer set of insights. 

The advantages of linking data from a multitude of sources 

are many. First of all, while business figures can clearly 

indicate how the business performed, they can hardly explain 

why it performed so. Often times, the attributable causes can 

be known from sources extraneous to the enterprise. For 

example, possible reasons for the dip in sales for a newly 

launched car may be learnt from social media. Further, the 

causal events themselves may be extraneous to the 

organization. For example, the actual reason for a dip in sales 

may be due to a higher interest rate levied on automobile 
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loans. Similarly, for certain periods, the reasons for a bad 

market may be attributed to socio-political disturbances over a 

region, rather than anything to do with the product or the 

organization itself. 

While Business Analysts do use this kind of information, 

there exists no formal framework where structured and 

unstructured information can be simultaneously used for 

gathering business insights to make informed decisions. One 

of the key challenges was to learn these models from large 

volumes of historical data due to the computational 

complexities of text processing, both from quantitative and 

qualitative perspectives. Any kind of text processing requires 

handling of high volumes of data due to the potentially large 

vocabulary size in any natural language document collection. 

Further complexities are introduced due to issues like 

synonyms, lack of fixed structure, spelling errors, ever-

changing vocabulary etc. 

Deep learning based text-processing methods have provided 

an alternative way to represent words and text documents as 

vectors of numbers in a fixed dimensional space. It has been 

shown that these representations are capable of preserving and 

detecting semantic similarities without the use of additional 

linguistic resources. Deep neural networks have been 

employed to learn predictive models from large volumes of 

text data. Among these, the particularly interesting variants are 

those of Long Short-Term Memory (LSTM) networks [27], 

which exploit the sequential nature of words in a text for text 

classification. Obviously, LSTMs are not restricted to be used 

only for text classification, rather can be utilized for any kind 

of sequence-based prediction tasks. 

In this paper, we propose the use of deep neural networks to 

build predictive models using both structured and unstructured 

data. The text data is first classified into pre-determined 

categories using supervised learning. Thereafter, 

quantification of the text data is done using volumes of 

category labels aggregated over pre-specified time units. An 

LSTM based network is thereafter employed to consume a 

multitude of time-series and predict the future events. We 

have presented the feasibility and effectiveness of the 

approach by predicting stock-market movements using both 

historic stock data and News data. We show that the combined 

model can predict stock movements more accurately than 

traditional predictive methods, which uses the time series for 

Predictive Analytics with Structured and 

Unstructured data - A Deep Learning based 
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stock values only. 

The model can be applied towards predicting any business 

data like sales, market-share etc. However, availability of 

large volumes of relevant historical text data is not easily 

available for most organizations. Typically, the kind of data 

that would be useful for such tasks would be customer 

communications, product- or service-related complaints, 

company policy-related documents etc. 

II. PREDICTIVE ANALYTICS – A BRIEF OVERVIEW OF 

TECHNIQUES USED BY BUSINESS ANALYSTS  

For ages, business analysts have relied on predictive analytics 

models to identify risks and opportunities. These models learn 

relationships among many factors that are likely to affect 

business performance. These models are then employed to 

predict future outcomes depending on current factors, thus 

allowing analysts to obtain an assessment of risks or 

opportunities for a particular situation. Analysts also usually 

run “what if” simulations, wherein they experiment with 

various values of current factors for potential assessment of 

risks associated with different situations. Predictive analytics 

thus enables guided decision making. 

Predictive analytics has a wide-range of applications in 

business. The predictive models provide a probability score 

for measurable business data elements. It may provide the 

probability of a customer churning or buying a product or 

service in the near future. It may provide an estimate of the 

number of vehicles or insurance policies likely to be sold in 

the next three months. It may also provide the likelihood of a 

customer defaulting on a loan based on his or her personal 

history or characteristics. In yet another set of applications, 

predictive analytics may be applied to determine whether a 

transaction is fraudulent or not, based on certain patterns 

learnt from the past. Applying predictive analytics for 

predicting stock data movement is an age-old statistical 

problem. Statistical models are also available for predicting 

the actual stock price or stock volume of a commodity. 

In this section, we will try to provide a very brief overview 

of various classes of predictive techniques, which will just 

help understand the different classes of models. Providing in-

depth knowledge about any specific technique is beyond the 

scope of the paper. 

As seen from the examples, the context of applying 

predictive analytics can be quite diverse. The outcomes 

expected can also vary from simple binary values like YES / 

NO or TRUE /FALSE for churn or fraud prediction to 

predicting actual numerical values for stocks or sales. 

Consequently, the types of methods applied for the tasks are 

also quite diverse. 

Predictive analytics techniques can be broadly grouped into 

regression techniques and machine learning techniques. 

A. Regression Techniques 

Regression analysis is a predictive modelling technique 

which explores the dependence relationship of a target 

variable, like sales trends, churn possibility or possibility of a 

transaction to be fraudulent etc. on predictor variables. 

Regression techniques focus on finding a mathematical 

equation that can capture the interactions between the different 

variables in consideration, typically trying to minimize the 

overall error between the model-predicted values and the real 

values. 

Linear regression models learn to predict the response 

variable as a linear function of the parameters. These 

parameters are learnt or adjusted so that a measure of fit like 

the sum of squared residuals is minimized. 

Logistic regression models [2] on the other hand assign 

probabilities to possible outcomes. A binary outcome variable 

is transformed to an unbounded continuous variable, and a 

regular multivariate model is estimated. 

Time series models are used for forecasting future 

behaviour of variables when the past data points exhibit 

internal structures like autocorrelation, trends or seasonal 

variations. Stock or sales data are perfect examples of such 

data. Standard regression techniques cannot model these 

internal structures. Time series models are capable of 

decomposing these trends and seasonal components and 

thereby produce better models. Popular time series models are 

autoregressive model (AR), moving average (MA), a 

combination of the two called auto-regressive moving average 

(ARMA) and auto-regressive integrated moving average 

(ARIMA) [1].  

Classification and regression trees are non-parametric 

decision tree learning methods that produce classification or 

regression trees depending on whether the dependent variable 

is categorical or numeric. These are based on hierarchical 

optimal discriminant analysis that are generalizations of 

optimal discriminant analysis. Decision trees [3] are a 

collection of rules based on variables in the modelling data set, 

where the rules are deduced to obtain the best split to 

differentiate observations belonging to different target classes. 

Decision tree rules are explanatory and are often preferred by 

analysts. For example, to decide whether a new loan applicant 

is likely to default or not, a decision tree based model not only 

predicts the decision but also provides the rule that was 

applied to come to the decision thereby helping the analyst 

understand the reasons for it. 

B. Machine Learning Techniques 

Machine learning based models are also applied for 

predictive analytics in applications like medical condition 

diagnostics, fraud detection etc. However, unlike regression or 

classification trees, the model here remains a black-box 

without explicit insight into the underlying relationships 

among the predictor variables, which can be terribly complex, 

and it is deemed sufficient to predict the dependent variable 

only.  

Among the various machine learning models, the artificial 

neural networks [4, 5] that were introduced in the sixties, 

inspired by the human nervous system have gained a huge 

surge in popularity in recent times, due to their capability to 

learn very complex relationships among large numbers of 

predictor variables. There are a wide variety of neural network 

architectures that are useful for different types of classification 
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tasks. While earlier, neural networks were restricted to using 

three layers of neurons, the input layer, a hidden layer and an 

output layer, deep neural networks [6,7], with more than one 

hidden layers have gained popularity. A large number of 

neurons and their interconnections are capable of modelling 

highly non-linear relationships between input and output 

variables. These architectures are also found to extract useful 

features by themselves from large volumes of training samples 

without explicit feature engineering.   

Below are some of the most commonly used networks that 

are suitable for prediction tasks: 

1) Multilayer Perceptron 

These networks use more than one hidden layer of neurons 

and are also known as deep feed-forward neural networks. 

 

2) Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) [8] are a class of 

neural networks which performs convolutions between the 

desired filter and the input data. These Networks are highly 

efficient in learning hierarchal features from the data by 

capturing neighbouring relationships among features. 

 

3) Recurrent Neural Network 

These are types of neural network in which hidden layer 

neurons have self-connections, thereby making it possible for 

a neuron to possess memory.  Recurrent neural networks [9] 

are very suitable for text processing tasks since the 

interpretation of a word in a text is dependent on its context or 

its neighbouring words. Thus, networks that can model these 

interrelationships of words by taking their sequence into 

account are better at text class prediction tasks than their 

counterparts, which treat a text as a bag of words. 

 

4) Long-Short Term Memory Network (LSTM) 

These are extensions of recurrent neural networks in which 

memory cell is incorporated inside each hidden layer neuron. 

LSTMs are good at modelling long-distance relationships also 

among variables like words within a text separated by many 

words in between. LSTMs are applicable for analyzing any 

kind of sequential data. 

III. USING UNSTRUCTURED DATA FOR PREDICTIVE ANALYTICS 

– RELATED WORK 

As discussed earlier, till very recently much of predictive 

analysis in business dealt with structured data alone. With the 

organizations opening up to the idea of using consumer-

generated unstructured text like complaints, service logs, 

social media data etc. several researchers are exploring the 

effect of these types of text data on business outcomes. One 

popular area of research has been to study the effects of online 

reviews on sales of products and services. Effects of online 

reviews on few areas like fashion and movies have been 

studied in depth. While most of these works study the impact 

of the reviews, few provide mechanisms for including the 

factors in a predictive model. 

In [11], authors have provided a detailed survey of various 

types of predictive techniques used for predicting the fashion 

market. The fashion market is affected by several factors like 

changing weather conditions, trans-continental production 

facilities, holidays, public events as well as economic 

situations etc. Along with these, lack of historical data for new 

kinds of fashion items motivated analysts working in this area 

to especially look for methods that can combine unstructured 

data into the predictive process to make better predictions. 

One stream of research in this area focuses on the 

integration of expert judgment and combining it with 

statistical forecasts, as [13] and [14] have shown that 

adjustments to the statistical models based on past knowledge 

of experts led to more accurate forecasts.  

However, a second stream of research focuses on the use of 

machine learning based models that could easily integrate 

unconventional factors like the ones stated above. Machine 

learning based models were found to produce much better 

results than traditional regression techniques for this domain.  

Sun et al. [15] proposed the use of extreme learning 

methods (ELM) for forecasting sales at item levels. In [16], 

Thomassey and Happiette propose the use of soft computing 

methods like fuzzy inference systems and neural networks to 

predict sales. Teucke et al. [17] proposed using a combination 

of decision trees to determine articles likely to be re-ordered 

and then support vector machines for the actual forecasts to 

obtain more accurate results. While several other variations of 

these models have been proposed by other researchers, as 

presented in [11], the point to be noted is that most of these 

works have used only numbers from the retail industry to 

build their models.  

In [10], Yu et al. analyzed large volumes of online movie 

reviews and showed that both the sentiments expressed in the 

reviews and quality of reviews have a significant impact on 

the future sales performance. Sentiments are detected using 

Probabilistic Latent Semantic analysis (PLSA). Based on the 

sentiments, they propose an autoregressive sentiment-aware 

model for sales prediction. This model is further improved by 

considering the quality factor of a review. 

An area where text inputs have been heavily used for 

prediction is that of News for predicting stock market data. 

Researchers in a number of studies have analyzed texts from 

social network services (SNS), blogs and news to analyze 

correlations between stock prices and public emotion as a 

reaction to social events and news [28-32]. In [33] Luss and 

Aspremont show that information extracted from news articles 

can be used to predict intraday price movements of financial 

assets using support vector machines. In [34], Verma et. al. 

presented results to show that stock trends can be better 

predicted by taking News events into consideration along with 

actual stock values.  

From the above discussion, we find that though machine-

learning based models are gaining traction with business 

analysts, using unstructured data for prediction is yet to pick 

up. We also see that though they have potential to handle large 

volumes of data, deep-learning based models have not gained 
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wide attention of researchers in this field. In the next few 

sections, we propose a deep-learning based model, which can 

effectively do this. 

IV.  DEEP LEARNING MODELS FOR PREDICTIVE ANALYTICS 

We choose deep learning architectures for predictive analytics 

since these models can learn from large volumes of sequential 

input data without explicit feature engineering. Additionally, 

the same architectures can easily handle both structured and 

unstructured sequential data. Before going into the details of 

the proposed model, we provide a brief introduction of word 

vectors and document vectors, which are used for predictions.   

Semantic vector space models of language represent each 

word as a real-valued vector. These vectors can be used as 

features in a variety of text-based applications, such as 

information retrieval, document classification, question 

answering, and named entity recognition. Bengio et al. [22] 

introduced a model that learns word vector representations as 

part of a simple neural network architecture for language 

modelling. 

Recently, Mikolov et al. [21] introduced a scheme for 

learning the representations using skip-grams. They also 

proposed a new evaluation scheme based on word analogies 

that probe the finer structure of the word vector space by 

examining not the scalar distance between word vectors, but 

rather their various dimensions of difference. For example, the 

analogy “king is to queen as man is to woman” should be 

encoded in the vector space by the vector equation king − 

queen = man − woman. Though this model does well on 

analogy tasks, they do not utilize the statistics of the corpus 

since they train on separate local context windows instead of 

on global co-occurrence counts, and hence perform poorly for 

most text-based applications. In 2014, Penington et al. [18] 

present a set of global vectors for words, called GloVe vectors 

which uses a specific weighted least squares model that trains 

on global word-word co-occurrence counts and thus makes 

efficient use of statistics. This model produces a word vector 

space with meaningful substructure that are found to be 

suitable for a large number of downstream text processing 

tasks. 

Vector-based representation for words can be further 

extended to a paragraph or whole document. Mikolov et. al. 

[23], proposed a scheme where along with learning word 

representation if explicit information about the paragraph or 

the document is given, it can effectively encode the whole 

document into fixed sized vectors. These representations are 

useful over word representations while processing long text. 

In the next section, we present the complete architecture for 

our proposed predictive systems. 

A. Text Classification for Business Data Prediction  

In order to effectively quantify without losing human 

understandability, unstructured business data needs to be 

assigned to pre-specified categories. One can treat these 

categories as event labels pertaining to different event type 

which are known and have defined explanation. One such set 

of business events is the PESTEL framework where PESTEL 

represents Political, Economic, Social, Technological, 

Environmental and Legal events. The set of PESTLE events 

[12] had been proposed for analyzing general environments of 

a business organization. These events represent six broad 

macro-economic factors that may have an impact on an 

organization. 

To evaluate the impact of PESTEL events (or any set of pre-

determined business events) on business outcomes, one can 

use Granger Causality test. The Granger causality test is a 

statistical hypothesis test for determining whether a time-

series X is useful in forecasting another time-series Y. Time-

series X is accepted as impacting Y, if and only if, prediction 

of future values of Y improves after taking values of X into 

consideration.  

In this case our null hypothesis is that ‘PESTEL factors 

reported in News do not Granger-cause changes in indices’. 

We apply Granger causality test using PESTEL event 

occurrence time-series and stock indices time-series. 

Figure 1 System Architecture 
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The first one tries to predict future values of Y from past 

values. The second model takes past values of both X and Y to 

predict future values of Y, where series X represents 

quantified PESTEL factors.  

V. SYSTEM ARCHITECTURE 

Figure 1 shows the complete generic system pipeline from 

information acquisition to final prediction for the proposed 

predictive system. The upper layer is dedicated for acquiring 

and processing unstructured text. Text documents are acquired 

from various sources like news websites, consumer forums, 

twitter as well as other social media sites, using dedicated 

crawlers, APIs or RSS feeds. This layer supports stream 

processing.  Structured information can be obtained from 

various business sources such as market capital, market share, 

stock etc. These can also be streaming in from different 

sources or read from internal databases. 

 All text content is subjected to classification. A multi-label 

classifier that can assign probabilities for each class to each 

document is designed for the purpose. 

  This is achieved through a two-step procedure. First, we use 

paragraph vector model [23] as stated earlier to represent the 

long text into a vector with fix dimension. Second, we map 

this fix dimension vector to our predefined classes using a 

softmax classifier which gives us the probability of each class 

in that document.  

  Paragraph vector model is an extension of learning 

distributed word representations using gradient descent 

method. While learning, for every window document ID is 

given to the model to learn the overall representation of that 

document. Window here is defined as the number of words 

model uses to predict the next word in the series. Paragraph 

vector D is learnt along with the word vectors W.  

 Since external world data like tweets, News or social media 

sentiments stream in continuously, but business data is only 

aggregated over fixed time-periods like days, weeks or 

months, an aggregator is introduced over the softmax outputs. 

The aggregator aggregates the classifier content over fixed 

time-periods for each class. This aggregation over temporal 

domain generates a time series from unstructured data. This is 

then combined with the structured data time-series in the 

LSTM network to provide the final prediction.   

A. LSTM 

LSTMs are a special case of RNNs where they tackle the 

classical problem of vanishing (or exploding) gradients. 

Information flow in LSTMs are controlled through three 

different gates, forget gate, output gate and input gate. Along 

with these gates, there is memory cell which is present, which 

helps in remembering long sequences. The whole process of 

learning can be formulated into information flow over a 

temporal domain. The function of input gate is to regulate new 

information flowing, output gate regulates the outward flow of 

information for that time step and forget gate regulates the 

amount of flow that should be discarded. Single cell of LSTM 

is shown in Figure 2. <> represents a vector, p denotes the 

number of hidden units in an LSTM cell. Input gate (denoted 

by i), Output gate (denoted by o), forget gate (denoted by f) 

and memory cell (denoted by c) govern the LSTM cell. t 

indicates the time-step or t
th

 time instance. LSTM follows 

following equations: 

 

 

 

 

 

 

 
Figure 2 LSTM Cell 

  Training procedure in LSTM are done through truncated 

Back Propagation through time (BPTT) [24], which applies 

backpropagation over time and make changes in the weights 

after the whole sequence has been passed through LSTM cell. 

The non-stationarity present in most of the time series can 

be modelled using LSTM, where it can store seasonality as 

well as the overall trend which effectively uses long term and 

short term dependencies. 
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VI. CASE STUDY 

Due to confidentiality issues associated to internal structured 

and unstructured business data, we are presenting results for 

publically available news and stock market data. There is also 

huge consensus in the business community on the importance 

of news articles over stock prices. Research results are also 

available for the same. Hence, we show results over this 

domain using the predictive analysis framework presented 

earlier. The accuracy of trend prediction is shown to better 

than other machine learning models.  

For this task, we have used News articles as the source of 

text information. News articles are pulled from the RSS feeds 

provided by a number of agencies and crawling news 

websites. Stock acquisition is done from the official website of 

National Stock Exchange of India 

(https://www.nseindia.com/). Next, we have used paragraph 

vector model with a window size of 8 and fix learning rate of 

0.25.  

 Next, vector representation of each news document is 

mapped to one the six PESTEL classes as described earlier.  

 We have used 5 different Indexes from the National Stock 

Exchange namely, NIFTY 50 (represents about 65% of free 

floating market capitalization), NIFTY Bank (consists of 12 

large Indian banking stocks), NIFTY Auto (15 stocks 

consisting of Automobile sector including cars & motorcycles, 

heavy vehicles, auto ancillaries, tires, etc.), NIFTY IT 

(Companies in this index are those that have more than 50% of 

their turnover from IT related activities), NIFTY Energy 

(Index includes companies belonging to Petroleum, Gas and 

Power sub sectors). 

 We have investigated the dependency through Granger 

causality between structured and unstructured time series. In 

addition to that, we use these PESTEL classes as input to 

LSTM model for predicting weather stock will rise or fall.  

A. Data Description  

Documents are collected as mentioned earlier from different 

sources. The collection contains over 258144 documents 

collected for the duration of Jan-2013 to Feb-2017. For 

training paragraph vector model we have used approximately 

1200 labelled document equally distributed for each PESTEL 

class. 

    Data aggregated over a day is then split into training and 

testing set. Data from 1
st
 Jan 2013 till 31

st
 Aug 2016 is used 

for training purpose while data from 1
st
 Sep 2016 till 31

st
 Jan 

2017 is used for testing set. Data corresponding to stock is not 

available for weekend and public holidays due to which total 

instances for prediction tasks are  912, out of which 820 are 

used for training and 92 for testing. 

B. Experiments and Results 

Table 1 shows the confusion matrix of classification over 

PESTEL classes using paragraph vector model. After 10 fold 

cross-validation of 70-30 train test split, we achieved 91.94% 

accuracy for PESTEL classes.  

Table 1 Confusion Matrix for PESTEL Classifier 

 Pol. Eco. Soc. Tech. Env. Leg. 
Political 187 0 0 0 0 13 
Economy 0 174 0 26 0 0 

Social 3 0 184 10 0 3 
Technology 0 0 3 190 0 7 
Environment 0 10 0 13 174 3 
Legal 0 0 0 3 0 197 

 

Table 2 shows results for Granger causality between different 

stock indices and the PESTEL classes aggregated over a day. 

Highlighted cells in the table indicate which PESTEL features 

have a high impact on indices. In addition to this following 

observations can be made: 

Table 2 Granger causality results 

 

1) NIFTY 50 and NIFTY Bank have a significant long-term 

impact on social and Technology features respectively. 

2) NIFTY Auto also get impacted from social class but from 

a short-term perspective. 

3) NIFTY Energy is affected by multiple PESTEL classes 

which include the short-term impact from technology and 

environment while technology and political also affect over 

two-day lag. 

Above observation shows that there is a significant impact 

of news events over stock value, and the introduction of these 

features leads to better prediction of stock indices. 

Table 2 Stock Index Prediction with PESTEL Events and previous 

Index Values 

  SVM LSTM 

Index 

No 

of 

Days 

Accuracy MCC Accuracy MCC 

India 

Volatility 

Index 

1 61.96 0.169 61.96 0.154 

2 56.52 0.071 67.39 0.304 

5 58.24 0.099 64.83 0.250 

NIFTY 

50 

1 53.26 0.014 58.69 0.163 

2 51.09 0.043 52.17 0.098 

5 52.75 0.035 54.95 0.113 

NIFTY 

Bank 

1 57.61 0.267 51.08 0.019 

2 51.09 0.01 55.43 0.114 

5 54.95 0.049 56.05 0.070 

NIFTY 

Auto 

1 53.26 0.063 50 0.103 

2 52.17 0.051 51.09 0.146 

5 58.24 0.165 51.65 0.105 

NIFTY 

IT 

1 55.43 0.097 56.52 0.118 

2 51.09 0.036 54.35 0.071 

https://www.nseindia.com/


Feature Article: Lipika Dey, Hardik Meisheri and Ishan Verma                       33 

 

 
 

IEEE Intelligent Informatics Bulletin                                    December 2017   Vol.18 No.2 

 

5 52.75 0.032 56.04 0.122 

NIFTY 

Energy 

1 51.09 0.188 58.69 0.118 

2 54.35 0.093 57.61 0.079 

5 59.35 0.133 58.24 0.083 

We have conducted experiments taking variable length 

sequences with sequence length been,1 day, 2 days and 1 

week (5 days since the weekend is not counted). We have 

considered state of the art SVM with Radial Basis kernel as 

the baseline for our experiments. It can be observed that 

LSTM outperforms the SVM in most of the cases. We have 

used accuracy and Matthews correlation coefficient (MCC) as 

evaluation metrics’. Prediction results are shown in Table 3. 

It is observed that in addition, looking at larger sequences 

improves the performance of LSTMs as compared to SVMs. It 

can be observed from Table 3 that for most of the indices 

LSTM predictions are outperforming SVMs by a margin of 2-

11% in terms of accuracy.  

VII. CONCLUSION 

In this paper, we have presented a generic deep learning 

framework for predictive analytics using both structured and 

unstructured data. It is notable that the same architecture can 

easily handle both structured and unstructured sequential data. 

We have presented a case study which demonstrate the 

capability of the proposed framework. 

We intend to extend this work in future to cover a wider 

range of factors along with a more fine-grained representation 

of generic events and also experiment with recent 

advancements in deep learning based prediction algorithms. 
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State-of-the-Art and Trends
in Nature-inspired Coordination Models
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Abstract—Mostly stemming from closed parallel systems, coor-
dination models and technologies gained in scope and expressive
power so as to deal with complex distributed systems. In
particular, in the last decade nature-inspired coordination (NIC)
models emerged as the most effective approaches to tackle the
complexity of pervasive, intelligent, and self-* systems. In this
review paper we discuss their evolution, by analysing the main
motivations behind the research effort on NIC, the foremost
features of the most successful models, and the key issues and
challenges they bring along.

Index Terms—Nature-inspired coordination, Coordination
models

I. INTRODUCTION: WHY NIC MATTERS

AN essential source of complexity for computational sys-
tems is interaction [1]. According to the early intuition

of Wegner [2], in fact (emphasis added):
“Interaction is a more powerful paradigm than rule-
based algorithms for computer-based solving, over-
tiring the prevailing view that all computing is
expressible as algorithms.”

Coordination, then, is [3]
“the glue that binds separate activities into an en-
semble.”

or, more operationally, a coordination model is [4]
“a framework in which the interaction of active and
independent entities called agents can be expressed.”

Tuple-based coordination, in particular, proved over the years
to be the most expressive approach to coordination, mostly
thanks to some peculiar traits emphasised by Gelernter in his
seminal work on the LINDA model [5]: generative communi-
cation, that is, the fact that information items (tuples) live
independently of their producer; associative access, which
means that information can be accessed by looking at their
content, with no need to know their name or location; sus-
pensive semantics, enabling synchronisation among conflicting
activities by suspending and resuming operations based upon
availability of data. Altogether, the above features lead to a
concise and effective model for space, time, and reference
uncoupled coordination in distributed systems of any sort.

Recognising interaction as an essential dimension of compu-
tation [2] impacts on the engineering of computational systems
at many different levels:

S. Mariani is with the Department of Sciences and Methods of Engineering,
University of Modena and Reggio Emilia, Italy.
E-mail: stefano.mariani@unimore.it

A. Omicini is with the Department of Computer Science and Engineering,
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• the need for brand new programming languages specif-
ically devoted to program the interaction space arises [3]

• interaction is recognised as an independent design di-
mension in software engineering [6], with its own
best practices and recurrent solutions—in the form of
coordination patterns [7]

• interaction quickly becomes a new source of artificial
intelligence [8]—for instance, of social intelligence [9]

Then, researchers observed that natural systems exhibit many
features – such as distribution, openness, situatedness, robust-
ness, adaptiveness – which are highly desirable for computa-
tional systems, too, and began to analyse them to understand
their basic mechanisms. Nature-inspired computing soon be-
came a hot research topic offering plenty of solutions to com-
plex problems—see [10] for a short summary. In particular,
the prominent role of interaction in the complexity of natural
systems – as in the case, e.g., of stigmergy [11] – made nature-
inspired coordination (NIC henceforth) a noteworthy subject
of research for the last decades.

In the following sections, we first review some of the main
proposals in the field from an historical perspective, discussing
how NIC evolved from early models to future generation ones
(Section II), then we look forward to the most recent research
trends in the field, highlighting the challenges yet to be faced
(Section III).

II. EVOLUTION OF NIC MODELS

Many different models have been proposed over time, draw-
ing inspiration from disparate natural system depending on
the desirable features to be extracted—i.e. chemistry, biology,
ecosystems, physics, etc. In this section we review the most
successful ones, highlighting their distinguishing features, and
discussing the main issues involved in their engineering and
deployment.

A. Early

The first NIC models to gain traction were stigmergy-based
and chemical-like: the former explicitly aimed at coordinating
an ensemble of autonomous agents, the latter originally aimed
at providing an alternative model of computation, but later
exploited and extended towards coordination needs.

1) Stigmergy: Most of NIC models are grounded in studies
on the behaviour of social insects, like ants or termites. In fact,
it was the zoologist Pierre-Paul Grassè to introduce the very
notion of stigmergy as the fundamental coordination mecha-
nism in termite societies [11]. There, termites release special
chemical markers in the environment – called pheromones – to
influence other termites activities: in this case, nest building.
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In this way, a form of indirect communication – called
environment-mediated communication – favours coordination
amongst distributed agents, and the coordination process itself
is influenced by the structural properties of the environment:
in fact, pheromones evaporates, is usually perceived locally –
within some range –, and accumulates—insects perceive their
“amount”.

Stigmergy-based coordination has been then proficiently
brought to the computational world by approaches such as dig-
ital phermonones [12], fostering digital “signs” (or markers)
deposited in a shared environment [13] able to steer interacting
agents activities—i.e. in the field of unmanned veichles.

2) Chemistry: Another early source of inspiration for NIC
has been chemistry. The intuition here is that complex physical
phenomena are driven by (relatively) simple chemical reac-
tions, which to some extent “coordinate” the behaviours of a
huge amount of components (molecules, for instance), as well
as the global system (a cell, an organism) evolution.

Gamma [14] and CHAM (CHemical Abstract Machine) [15]
are the earliest and most successful examples of this kind of
NIC: the former is a novel approach to computation fostering
multiset rewriting as the core processing mechanism, later
specifically tailored to coordination in shared spaces, whereas
the latter is an abstract computational model interpreting
processes execution as a chemical process.

The two aforementioned models provide the basis for many
later models and approaches to chemistry-inspired NIC, among
which biochemical tuple spaces (Subsection II-B1) and MOK
(Subsection III-B)

B. Modern

Based upon the early approaches just described, many
models have been conceived as an extension, refinement, or
combination of them, either as general-purpose coordination
approaches or tailored to specific application domains. Also,
thanks to the early success of the models described above,
research in NIC further expanded to more heterogeneous
sources of inspiration, there including, for instance, physics
and swarming.

1) Biochemistry: Chemical tuple spaces [16] developed
the Gamma and CHAM models to their full potential: data,
devices, and software agents are represented in terms of
chemical reactants, and system behaviour is expressed by
means of chemical-like coordination rules; these rules are
time-dependent and stochastic exactly as they are in natural
chemistry. Biochemical tuple spaces (BST) [17] add a notion
of topology and distribution to the picture, through the notion
of compartments and diffusion.

The effectiveness and appeal of (bio)chemical coordination
models is witnessed, for instance, by the SAPERE EU project
[18], fostering a fully decentralised approach to coordination
of pervasive systems deeply rooted in (and also hugely ex-
tending) the BTS model.

2) Field-based: Field-based coordination models like Co-
fields [19] are inspired by the way masses and particles move
and self-organise according to gravitational/electromagnetic
fields. There, computational force fields propagate across the

(computational) environment, and drive the actions and motion
of the interacting agents.

TOTA [20], for instance, is a coordination middleware based
on the co-fields model where interacting agents share tuples
embedding a rules to autonomously spread in a network so
as to create computational gradients used to coordinate agent
actions and steer their activities towards a collective goal.

3) Swarms: Swarm intelligence [21] has a long tradition
of models and algorithms drawing inspiration from ecological
systems – most notably ant colonies, birds flocks, schools of
fishes – to devise out efficient and fully decentralised coop-
eration/coordination mechanisms—mostly exploited in swarm
robotics [22]. Along this line, SwarmLinda [23] proposes a
tuple-based model for swarming-based coordination, where
tuples and tuple templates are interpreted as food and artificial
ants, respectively, and where the tuple-matching mechanism
and tuples distribution in the network of tuple spaces are
inspired to food harvesting and brood sorting, respectively.

Many applications in the general area of swarm robotics
[24] exploit similar ideas—such as, for instance, cooperative
transport [25].

C. Next Generation?

The more NIC becomes mature – and, with it, NIC models
gets refined and stable – the more is likely that the original
metaphor becomes less visible and somewhat mixed in with
other approaches, either nature inspired or not, in order to
optimise effectiveness and improve flexibility.

A notable and recent example is aggregate computing
[26], which promotes a paradigm shift from programming
devices to programming ensembles of devices, in a sort of
spatio-temporal continuum. The aim is to simplify the design,
creation, and maintenance of large-scale software systems [27]
such as IoT, cyber-physical systems, pervasive computing,
robotic swarms.

The roots of the model are in computational fields [19],
chemical coordination [16], as well as spatial computing
[28]—yet, all those sources of inspiration are blended together
to create a very unique and novel programming paradigm.

D. Issues

Despite their heterogeneity, both as regards their source of
inspiration and their actual design and implementation, all the
models described above share a few critical issues to be dealt
with so as to successfully and faithfully realise them:

• environment is essential in nature-inspired coordination
– it works as a mediator for agent interaction, through

which agents can communicate and coordinate indi-
rectly

– it is active, featuring autonomous dynamics, and
affecting agent coordination

– it has a structure, requiring a notion of locality, and
allowing agents of any sort to move in a topology

For the reasons above, careful environment engineering
[29] based on well-defined meta-models – such as the
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A&A meta-model [30] – inevitably becomes a fundamen-
tal step in the software engineering process of a system
exploiting NIC

• probability is a core mechanism for complex systems

– randomness without any well-defined probabilistic
model (distribution) is not expressive enough to
capture all the properties of complex systems such
as biochemical and social systems

– probabilistic mechanisms are thus required to enable
(possibly simple yet) stochastic behaviours

For the reasons above, NIC primitives should feature
some probabilistic semantics, as in the case of uniform
primitives [31]

It is worth emphasising here that the above mentioned features
are issues for NIC in that they represent crucial aspects that
requires proper consideration when designing NIC models,
but at the same time they are opportunities for NIC, as they
potentially enable further (and richer) forms of expressiveness.

III. OUTLOOK ON RESEARCH TRENDS

In the following section we discuss three research areas in
which NIC models either have already shown early promising
results, or they are currently under scrutiny by researchers as
a promising source of solutions.

A. Simulation

Simulation of complex systems is a multidisciplinary issue
ranging from physics to biology, from economics to social
sciences. Virtually, no complex system of any sort can be
studied nowadays without the support of suitable simulation
tools; and, experiments done in silico are at least as relevant
as those in vitro and in vivo. Given that interaction is one of
the foremost sources of complexity, simulation increasingly
amounts to simulating interactions. As a result, simulation
platforms and tools are devoting more and more attention and
resources to modelling and simulating the coordination rules
governing the interaction space of applications.

Therefore, a few research works started considering the
option of building simulation frameworks on top of coordi-
nation languages and infrastructures, so as to take advantage
of their ability to deal with complex interactions elegantly and
effectively. For instance, in [32] biochemical tuple spaces [17]
are exploited as the core abstraction upon which a simulation
tool for simulating intracellular signalling pathways is built
[33].

There, the extracellular milieu and intracellular compart-
ments are mapped onto special tuple spaces programmed so
as to work as chemical solutions simulators [34], signalling
components such as membrane receptors, proteins, enzymes,
and genes map to chemical reactions sets expressed as tuples,
signalling molecules, activation, and deactivation signals are
represented as reactants and concentrations recorded as tuples
in the tuple space.

B. Knowledge-oriented Coordination

Intelligent MAS in knowledge-intensive environments (KIE)
– as well as complex socio-technical systems, in general
– require automatic understanding of data and information
[35]. Knowledge-oriented coordination exploits coordination
abstractions enriched so as to allow for semantic interpretation
by intelligent agents [36], [37]. For instance, SAPERE [18]
coordination abstractions and semantic tuple centres [38] both
rely on the semantic interpretation of coordination items.

In KIE scenarios explicit search of information is going to
become ineffective while the amount of available knowledge
grows at incredible rates, thus knowledge should autonomous-
ly organise and flow from producers to consumers, in a
sort of knowledge self-organisation process. MOK (Molecules
Of Knowledge [39]) is a nature-inspired coordination mod-
el promoting knowledge self-organisation, where sources of
knowledge continuously produce and inject atoms of knowl-
edge in artificial biochemical compartments (analogously to
biochemical tuple spaces), knowledge atoms may aggregate
in molecules and diffuse, knowledge producers, managers,
and consumers are modelled as catalysts, whose workspaces
are biochemical compartments, and their knowledge-oriented
actions become enzymes influencing atoms aggregation and
molecules diffusion. All of this so as to make relevant
knowledge spontaneously aggregate and autonomously move
towards potentially interested knowledge workers.

C. Complex Systems

Simon argues that [40]
“by a complex system I mean one made up of a
large number of parts that interact in a non simple
way.”

Some “laws of complexity” exist that characterise any complex
system, independently of its specific nature [41]: however, the
precise source of what all complex systems share is still in
some way unknown in essence. We argue that interaction –
its nature, structure, dynamics – is the key to understand some
fundamental properties of complex systems of any kind.

The above considerations are apparent, i.e., in the field
of statistical mechanics, where introducing interaction among
particles structurally changes the macroscopic properties of the
system, along with the mathematical ones. In fact, interacting
systems in statistical mechanics are systems where particles
do not behave independently of each other, thus the proba-
bility distribution of an interacting system does not factorise
anymore.

In computer science terms, an interacting system is non-
compositional [2].

1) Sociotechnical Systems: Nowadays, a particularly-
relevant class of complex systems is represented by socio-
technical systems (STS) [42]. There, active components are
mainly represented by humans, yet interaction is almost-totally
regulated by the software infrastructure, where software agents
often play a key role. Examples of such a kind of systems are
social platforms such as Facebook [43] and LiquidFeedback
[44], but also urban transportation networks, the ICT infras-
tructure supporting rescue operations, e-government platforms
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enabling citizens to participate in local administrations’ deci-
sion making, and, essentially, any kind of CSCW system [45].

It has already been recognised that such a sort of systems
may look at nature seeking for solutions [46], mostly because
two foremost characteristics provide opportunities for suc-
cessfully applying NIC: unpredictability of human behaviour
should be accounted for, thus uncertainty of actions’ outcomes
and of decision making should be taken as the norm, not an
exceptional condition; the fact that an environment – either
computational such as in the case of CSCW platforms, or
physical, as for urban traffic management – exists not because
engineers designed it, but because it is an essential part of the
application domain. Accordingly, NIC already accounts for the
conceptual and technical tools to deal with both: probabilistic
coordination mechanisms and environment modelling.

2) Cyberphysical Systems: Cyberphysical systems (CPS)
integrate computing and communication technologies with
monitoring and control of physical devices [47]. Examples
of CPS include power grids, medical devices, manufacturing
control systems, etc.

The centrality of a suitable and effective approach to coor-
dination in such a sort of systems has been already recognised
[48], and mostly stems from the need to ensure some crucial
features in face of distribution and uncertainty of real-world
deployments: dependability, reliability, efficiency—to mention
a few. Also, the opportunity to resort to NIC has already been
considered [49], [50].

3) The Internet of Things: The Internet of Things (IoT)
vision lies somewhat at the crossroad between CPS and STS:
whereas is true that strictly speaking the IoT deals primarily
with interconnecting devices, it is also true that IoT platforms
are in their very essence CPS where the devices and the
software running in them are mostly indistinguishable, and
that IoT devices are to be used and monitored by human users,
exploiting them to augment their capabilities. It is thus possible
to apply in IoT scenarios the same approaches we mentioned
in the previous sections.

Nevertheless, the peculiarities of the IoT application domain
allows for developing ad-hoc models and for undertaking spe-
cific approaches to NIC. In [51], for instance, the authors take
inspiration from natural metaphors to propose a decentralised
service composition model based on artificial potential fields
(APFs). APFs are digital counterparts of gravitational and
magnetic potential fields which can be found in the physical
world, and are exploited to lead the service composition
process through the balance of forces applied between service
requests and service nodes. The applicability of the proposed
approach is discussed in the context of dynamic and person-
alised composition of an audio-visual virtual guide service in
an IoT network of a trade show venue.

D. Challenges

Many technical challenges are ahead for those who intend to
advance the state-of-art in NIC. Instead of just listing them all,
in the following we aim at discussing the two main conceptual
challenges that we believe are fundamental to drive research
on the topic in a focussed and pragmatic way:

• understanding the basic elements of expressiveness is
crucial to determine to what extent NIC can cope with
real-world problems, by understanding the minimal set
of coordination primitives required to design complex
stochastic behaviours. For instance, uniform coordination
primitives – that is, LINDA-like coordination primitives
returning tuples matching a template with a uniform
distribution [52] – seemingly capture the full-fledged
dynamics of real chemical and biological systems within
the coordination abstractions

• engineering unpredictable systems around predictable
abstractions is fundamental to ensure the predictability
of given MAS properties within generally-unpredictable
MAS. In fact, since coordination abstractions are often
at the core of complex MAS, making the coordinative
behaviour predictable makes it possible in principle to
make the overall system partially predictable.

We believe in fact that only through a deep understanding of
how the core mechanisms of NIC influence system evolution
research on NIC will enable engineers to consistently design
and build predictable yet stochastic systems.

IV. CONCLUSION

Gathering ideas and results from the many research fields
dealing with complexity emphasises the central role of in-
teraction. Since coordination models are meant to provide
the conceptual framework to express interaction in parallel,
concurrent, distributed systems, they are fundamental in order
to deal with complexity in computational systems.

In the last decades nature-inspired coordination models
worked as powerful sources of inspiration for abstractions and
mechanisms aimed at harnessing complexity in distributed,
pervasive, intelligent systems. In particular, nowadays appli-
cation scenarios – such as knowledge-intensive environments,
socio-technical systems, and the Internet of Things – are going
to propose novel noteworthy challenges that are likely to push
research on NIC models to its limits and beyond.
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[24] E. Şahin, “Swarm robotics: From sources of inspiration to domains
of application,” in Swarm Robotics, E. Şahin and W. M. Spears, Eds.
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WI 2018 

The 2018 IEEE/WIC/ACM International 

Conference on Web Intelligence 

Chile 

December, 2018 

 

After the successful conference in Leipzig, 

Germany this year, the 2018 IEEE/WIC/ACM 

International Conference on Web Intelligence 

will take place in Chile, the first week of 

December, 2018.  

 

Web Intelligence (WI) aims to achieve a 

multi-disciplinary balance between research 

advances in theories and methods usually 

associated with Collective Intelligence, Data 

Science, Human-Centric Computing, Knowledge 

Management, and Network Science. It is 

committed to addressing research that both 

deepen the understanding of computational, 

logical, cognitive, physical, and social 

foundations of the future Web, and enable the 

development and application of technologies 

based on Web intelligence. 

 

Web Intelligence focuses on scientific research 

and applications by jointly using Artificial 

Intelligence (AI) (e.g., knowledge representation, 

planning, knowledge discovery and data mining, 

intelligent agents, and social network 

intelligence) and advanced Information 

Technology (IT) (e.g., wireless networks, 

ubiquitous devices, social networks, semantic 

Web, wisdom Web, and data/knowledge grids) 

for the next generation of Web-empowered 

products, systems, services, and activities.  

 

WI’18 welcomes both research and application 

papers submissions. All submitted papers will be 

reviewed on the basis of technical quality, 

relevance, significance and clarity. Accepted full 

papers will be included in the proceedings 

published by the ACM Press. 

 

_____________________ 

 

ICDM 2018 

IEEE International Conference on Data 

Mining 

Singapore 

November 17-20, 2018 

http://icdm2018.org/ 

 

The IEEE International Conference on Data 

Mining series (ICDM) has established itself as 

the world’s premier research conference in data 

mining. It provides an international forum for 

presentation of original research results, as well 

as exchange and dissemination of innovative, 

practical development experiences. The 

conference covers all aspects of data mining, 

including algorithms, software and systems, and 

applications. ICDM draws researchers and 

application developers from a wide range of data 

mining related areas such as statistics, machine 

learning, pattern recognition, databases and data 

warehousing, data visualization, 

knowledge-based systems, and high performance 

computing. By promoting novel, high quality 

research findings, and innovative solutions to 

challenging data mining problems, the 

conference seeks to continuously advance the 

state-of-the-art in data mining. Besides the 

technical program, the conference features 

workshops, tutorials, panels. 

 

_____________________ 

 

ICHI 2018 

The Sixth IEEE International Conference on 

Healthcare Informatics 

New York, NY, USA 

June 4-7, 2018 

http://hpr.weill.cornell.edu/divisions/health_infor

matics/ieee_ichi.html 

 

The Sixth IEEE International Conference on 

Healthcare Informatics (ICHI’18) will take place 

in New York City from June 4th to June 7th, 

2018 at the Doubletree by Hilton Metropolitan - 

New York City. 

 

The ICHI series is the premier community forum 

concerned with the application of computer 

science principles, information science principles, 

information technology, and communication 

technology to address problems in healthcare, 

public health, and everyday wellness. The 

conference highlights the most novel technical 

contributions in computing-oriented health 

informatics and the related social and ethical 

implications. 

 

ICHI’18 serves as a venue for discussion of 

innovative technical and empirical contributions, 

highlighting end-to-end applications, systems, 

and technologies, even if available only in 

prototype form. ICHI’18 will feature keynotes, a 

multi-track technical program including papers, 

demonstrations, panels, workshop, tutorials, 

industrial tracks, and a doctoral consortium. 

 

_____________________ 

 

BigData 2018 

The IEEE 2018 7th International Congress on 

Big Data (BigData Congress 2018) 

San Francisco, USA 

July 2-7, 2018 

http://conferences.computer.org/bigdatacongress/

2018/ 

 

As cloud computing turning computing and 

software into commodity services, everything as 

a service in other words, it leads to not only a 

technology revolution but also a business 

revolution. Insights and impacts of various types 

of services (infrastructure as a service, platform 

as a service, software as a service, business 

process as a service) have to be re-examined. 

 

2018 International Congress on Big Data 

(BigData Congress 2018) aims to provide an 

international forum that formally explores 

various business insights of all kinds of 

value-added “services.” Big Data is a key 

enabler of exploring business insights and 

economics of services. 

 

BigData Congress 2018’s major topics include 

but not limited to: Big Data Architecture, Big 

Data Modeling, Big Data As A Service, Big Data 

for Vertical Industries (Government, Healthcare, 

etc.), Big Data Analytics, Big Data Toolkits, Big 

Data Open Platforms, Economic Analysis, Big 

Data for Enterprise Transformation, Big Data in 

Business Performance Management, Big Data 

for Business Model Innovations and Analytics, 

TCII Sponsored 

Conferences 
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Big Data in Enterprise Management Models and 

Practices, Big Data in Government Management 

Models and Practices, and Big Data in Smart 

Planet Solutions. 

 

 

 

 

AAMAS 2018 

The 17th International Conference on 

Autonomous Agents and Multi-Agent Systems 

Stockholm, Sweden 

 July 10-15, 2018 

http://aamas18.ifaamas.org 

 

AAMAS (International Conference on 

Autonomous Agents and Multiagent Systems) is 

the largest and most influential conference in the 

area of agents and multiagent systems. The aim 

of the conference is to bring together researchers 

and practitioners in all areas of agent technology 

and to provide a single, high-profile, 

internationally renowned forum for research in 

the theory and practice of autonomous agents 

and multiagent systems. AAMAS is the flagship 

conference of the non-profit International 

Foundation for Autonomous Agents and 

Multiagent Systems (IFAAMAS). 

 

AAMAS’18, the 17th edition of the conference, 

will be held on July 10-15, in Stockholm, 

Sweden and is part of the Federated AI Meeting 

(FAIM), with the other conferences being IJCAI, 

ICML, ICCBR and SoCS. Please see the 

preliminary schedule for more information. 

 

The AAMAS conference series was initiated in 

2002 in Bologna, Italy as a joint event 

comprising the 6th International Conference on 

Autonomous Agents (AA), the 5th International 

Conference on Multiagent Systems (ICMAS), 

and the 9th International Workshop on Agent 

Theories, Architectures, and Languages (ATAL). 

  

Subsequent AAMAS conferences have been held 

in Melbourne, Australia (July 2003), New York 

City, NY, USA (July 2004), Utrecht, The 

Netherlands (July 2005), Hakodate, Japan (May 

2006), Honolulu, Hawaii, USA (May 2007), 

Estoril, Portugal (May 2008), Budapest, Hungary 

(May 2009), Toronto, Canada (May 2010), 

Taipei, Taiwan (May 2011), Valencia, Spain 

(June 2012), Minnesota, USA (May 2013), Paris, 

France (May 2014), Istanbul, Turkey (May 

2015), Singapore (May 2016) and São Paulo 

(2017). 

 

___________________ 

 

AAAI 2018 

The 32th AAAI Conference on Artificial 

Intelligence 

New Orleans, Lousiana, USA  

 February 2–7, 2018 

https://aaai.org/Conferences/AAAI-18/ 

 

The Thirty-Second AAAI Conference on 

Artificial Intelligence (AAAI’18) will be held 

February 2–7, 2018 at the Hilton New Orleans 

Riverside, New Orleans, Lousiana, USA. The 

program chairs will be Sheila McIlraith, 

University of Toronto, Canada and Kilian 

Weinberger, Cornell University, USA. 

 

The purpose of the AAAI conference is to 

promote research in artificial intelligence (AI) 

and scientific exchange among AI researchers, 

practitioners, scientists, and engineers in 

affiliated disciplines. AAAI’18 will have a 

diverse technical track, student abstracts, poster 

sessions, invited speakers, tutorials, workshops, 

and exhibit and competition programs, all 

selected according to the highest reviewing 

standards. AAAI’18 welcomes submissions on 

mainstream AI topics as well as novel 

crosscutting work in related areas. 

 

___________________ 

 

SDM 2018 

The 2018 SIAM International Conference on 

Data Mining 

San Diego, California, USA 

May 3 - 5, 2018 

http://www.siam.org/meetings/sdm18/ 

 

Data mining is the computational process for 

discovering valuable knowledge from data – the 

core of modern Data Science. It has enormous 

applications in numerous fields, including 

science, engineering, healthcare, business, and 

medicine. Typical datasets in these fields are 

large, complex, and often noisy. Extracting 

knowledge from these datasets requires the use 

of sophisticated, high-performance, and 

principled analysis techniques and algorithms. 

These techniques in turn require 

implementations on high performance 

computational infrastructure that are carefully 

tuned for performance. Powerful visualization 

technologies along with effective user interfaces 

are also essential to make data mining tools 

appealing to researchers, analysts, data scientists 

and application developers from different 

disciplines, as well as usable by stakeholders. 

 

SDM has established itself as a leading 

conference in the field of data mining and 

provides a venue for researchers who are 

addressing these problems to present their work 

in a peer-reviewed forum. SDM emphasizes 

principled methods with solid mathematical 

foundation, is known for its high-quality and 

high-impact technical papers, and offers a strong 

workshop and tutorial program (which are 

included in the conference registration). The 

proceedings of the conference are published in 

archival form, and are also made available on the 

SIAM web site. 

 

_________________ 

 

 

IJCAI 2018 

The 27th International Joint Conference on 

Artificial Intelligence 

Stockholm, Sweden  

 July 13-19, 2018 

http://www.ijcai-18.org/ 

 

International Joint Conferences on Artificial 

Intelligence is a non-profit corporation founded 

in California, in 1969 for scientific and 

educational purposes, including dissemination of 

information on Artificial Intelligence at 

conferences in which cutting-edge scientific 

results are presented and through dissemination 

of materials presented at these meetings in form 

of Proceedings, books, video recordings, and 

other educational materials. IJCAI consists of 

two divisions: the Conference Division and the 

AI Journal Division. IJCAI conferences present 

premier international gatherings of AI 

researchers and practitioners and they were held 

biennially in odd-numbered years since 1969. 

 

IJCAI-ECAI’18 is part of the Federated AI 

Meeting (FAIM) that takes place in Stockholm 

July 9-19. The other conferences include 

AAMAS, ICML, ICCBR and SoCS. 

 

The IJCAI-ECAI’18 registration is expected to 

open in April 2018. 
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