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Abstract—The drive towards greater penetration of machine
learning in healthcare is being accompanied by increased calls
for machine learning and AI based systems to be regulated and
held accountable in healthcare. Interpretable machine learning
models can be instrumental in holding machine learning systems
accountable. Healthcare offers unique challenges for machine
learning where the demands for explainability, model fidelity
and performance in general are much higher as compared to
most other domains. In this paper we review the notion of
interpretability within the context of healthcare, the various
nuances associated with it, challenges related to interpretability
which are unique to healthcare and the future of interpretability
in healthcare.

Index Terms—Interpretable Machine Learning, Machine
Learning in Healthcare, Health Informatics

I. INTRODUCTION

WHILE the use of machine learning and artificial intelli-
gence in medicine has its roots in the earliest days

of the field [1], it is only in recent years that there has
been a push towards the recognition of the need to have
healthcare solutions powered by machine learning. This has
led researchers to suggest that it is only a matter of time
before machine learning will be ubiquitous in healthcare [22].
Despite the recognition of the value of machine learning
(ML) in healthcare, impediments to further adoption remain.
One pivotal impediment relates to the black box nature, or
opacity, of many machine learning algorithms. Especially in
critical use cases that include clinical decision making, there
is some hesitation in the deployment of such models because
the cost of model misclassification is potentially high [21].
Healthcare abounds with possible ”high stakes” applications of
ML algorithms: predicting patient risk of sepsis (a potentially
life threatening response to infection), predicting a patient’s
likelihood of readmission to the hospital, and predicting the
need for end of life care, just to name a few. Interpretable
ML thus allows the end user to interrogate, understand, debug
and even improve the machine learning system. There is much
opportunity and demand for interpretable ML models in such
situations. Interpretable ML models allow end users to evaluate
the model, ideally before an action is taken by the end user,
such as the clinician. By explaining the reasoning behind
predictions, interpretable machine learning systems give users
reasons to accept or reject predictions and recommendations.

Audits of machine learning systems in domains like health-
care and the criminal justice system reveal that the decisions
and recommendations of machine learning systems may be
biased [4]. Thus, interpretability is needed to ensure that such
systems are free from bias and fair in scoring different ethnic
and social groups [12]. Lastly, machine learning systems are
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already making decisions and recommendations for tens of
millions of people around the world (i.e. Netflix, Alibaba,
Amazon). These predictive algorithms are having disruptive ef-
fects on society [32] and resulting in unforeseen consequences
[12] like deskilling of physicians. While the application of
machine learning methods to healthcare problems is inevitable
given that complexity of analyzing massive amounts of data,
the need to standardize the expectation for interpretable ML
in this domain is critical.

Historically, there has been a trade-off between interpretable
machine learning models and performance (precision, recall,
F-Score, AUC, etc.) of the prediction models [8]. That is, more
interpretable models like regression models and decision trees
often perform less well on many prediction tasks compared to
less interpretable models like gradient boosting, deep learning
models, and others. Researchers and scientists have had to
balance the desire for the most highly performing model
to that which is adequately interpretable. In the last few
years, researchers have proposed new models which exhibit
high performance as well as interpretability e.g., GA2M [5],
rule-based models like SLIM[30], falling rule lists[31], and
model distillation [27]. However, the utility of these models
in healthcare has not been convincingly demonstrated due to
the rarity of their application.

The lack of interpretability in ML models can potentially
have adverse or even life threatening consequences. Consider
a scenario where the insights from a black box models are
used for operationalizating without the recognition that the
predictive model is not prescriptive in nature. As an example,
consider Caruana et al. [5] work on building classifiers for
labeling pneumonia patients as high or low risk for in-
hospital mortality. A neural network, essentially a black box
in terms of interpretability, proved to be the best classifier
for this problem. Investigation of this problem with regression
models revealed that one of the top predictors was patient
history of asthma, a chronic pulmonary disease. The model
was predicting that given asthma, a patient had a lower risk
of in-hospital death when admitted for pneumonia. In fact,
the opposite is true - patients with asthma are at higher
risk for serious complications and sequelae, including death,
from an infectious pulmonary disease like pneumonia. The
asthma patients were, in fact, provided more timely care of a
higher acuity than their counterparts without asthma, thereby
incurring a survival advantage. Similarly leakage from data
can misinform models or artificially inflate performance during
testing [14], however explanations can be used to interrogate
and rectify models when such problems surface.

While there is a call to apply interpretable ML models
to a large number of domains, healthcare is particularly
challenging due to medicolegal and ethical requirements, laws,
and regulations, as well as the very real caution that must be
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employed when venturing into this domain. There are ethical,
legal and regulatory challenges that are unique to healthcare
given that healthcare decisions can have an immediate effect
on the wellbeing or even the life of a person. Regulations
like the European Union’s General Data Protection Regu-
lation (GDPR) require organizations which use patient data
for predictions and recommendations to provide on demand
explanations [28]. The inability to provide such explanations
on demand may result in large penalties for the organizations
involved. Thus, there are monetary as well as regulatory and
safety incentives associated with interpretable ML models.

Interpretability of ML models is applicable across all types
of ML: supervised learning [17], unsupervised learning [6]
and reinforcement learning [15]. In this paper, we limit the
scope of the discussion to interpretability in supervised learn-
ing models as this covers the majority of the ML systems
deployed in healthcare settings [18]. The remainder of the
paper is organized as follows: First, we define interpretability
in machine learning, we provide an overview of the need for
interpretability in machine learning models in healthcare, and
we discuss use cases where interpretability is less critical.
We conclude this paper with a brief survey of interpretable
ML models and challenges related to interpretability unique
to healthcare.

II. WHAT IS INTERPRETABILITY?

While there is general consensus regarding the need for
interpretability in machine learning models, there is much less
agreement about what constitutes interpretability [17]. To this
end, researchers have tried to elucidate the numerous notions
and definitions of interpretability [17],[8]. Interpretability has
been defined in terms of model transparency [17], model fideli-
ty [17], model trust [17], [8], [9], and model comprehension
[9], among other characteristics. Many of the notions of inter-
pretability have been developed in the context of computing
systems and mostly ignore the literature on interpretability that
comes from the social sciences or psychology [19]. Thus, one
common objection to these definitions of interpretability is that
it does not put enough emphasis on the user of interpretable
machine learning systems [16]. This results in a situation
where the models and explanations produced do not facilitate
the needs of the end users [19].

A primary sentiment of interpretability is the fidelity of the
model and its explanation i.e., the machine learning model
should give an explanation of why it is making a prediction
or giving a recommendation. This is often referred to as a
key component of “user trust” [25]. In some machine learning
models like decision trees [24], regression models [33], and
context explanation networks [3] the explanation itself is part
of the model. In contrast, for models such as neural networks,
support vector machines, and random forests that do not have
explanations as part of their predictions it is possible to extract
explanations from models that are applied post-hoc, such
as locally interpretable model explanations (LIME) [25] and
Shapley Values [26]. LIME constructs explanations by creating
a local model, like a regression model, for the instance for
which an explanation is required. The data for the local model

is generated by perturbing the instance of interest, observing
the change in labels and using it to train a new model.
Shapley values, on the other hand, take a game theoretical
perspective to determine the relative contribution of variables
to the predictions by considering all possible combinations of
variables as cooperating and competing coalitions to maximize
payoff, defined in terms of the prediction [26].

Many definitions of interpretability include transparency of
the components and algorithms, the use of comprehensible
features in model building, and intelligible applications of
parameters and hyperparameters. Based on the work of Lipton
et al. [17], interpretability can be described in terms of
transparency of the machine learning system i.e., the algo-
rithm, features, parameters and the resultant model should
be comprehensible by the end user. At the feature level, the
semantics of the features should be understandable. Thus, a
patient’s age is readily interpretable as compared to a highly
engineered feature (the third derivative of a function that
incorporates age, social status and gender, for example). At
the model level, a deep learning model is less interpretable
compared to a logistic regression model. An exception to
this rule is when the deep learning model utilizes intuitive
features as inputs and the regression model utilizes highly
engineered features, then the deep learning model may in fact
be more interpretable. Lastly, we consider interpretability in
terms of the model parameters and hyperparameters. From this
perspective, the number of nodes and the depth of the neural
network is not interpretable but the number of support vectors
for a linear kernel is much more interpretable [17].

Interpretability may also mean different things for different
people and in different use cases. Consider regression models.
For a statistician or a machine learning expert the following
equation for linear regression is quite interpretable:

yi = β0 + β1xi + εi, i = 1, 2, ..., n (1)

Those familiar with the field, can easily identify the relative
weights of the parameter coefficients and abstract meaning
from the derived equation. However, most non statisticians,
including some clinicians, may not be able to interpret the
meaning of this equation. For others, merely describing a
model as ”linear” may be sufficient. Conversely, a more
advanced audience, knowing the error surface of the model
may be needed to consider the model fully “interpretable”.

For some predictive algorithms, however, the lack of in-
terpretability may go deeper. Thus consider the following
equation for updating weights in a deep learning network.

alj = σ
(∑

k

wl
jka

l−1
k + blj

)
(2)

While the math is clear and interpretable, the equation does not
help anyone understand how deep learning networks actually
learn and generalize.

Finally, interpretability of machine learning models in
healthcare is always context dependent, even to the level of
the user role. The same machine learning model may require
generating different explanations for different end users e.g.,
an explanation model for a risk of readmission prediction
model to be consumed by a hospital discharge planner vs.
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a physician may necessitate different explanations for the
same risk score. This component of interpretability parallels
the thought processes and available interventions of different
personas in healthcare. For example, a discharge planner will
often evaluate a patient’s risk of readmission based on the com-
ponents of that patient’s situation that are under her purview
- perhaps related to the patient’s living situation, unreliable
transportation, or need for a primary care physician. While the
treating physician will need to be aware of these associated
characteristics, she may be more likely to focus on the patient’s
cardiac risk and history of low compliance with medications
that are associated with the patient’s high risk of readmission.
Context is critical when considering interpretability.

III. INTERPRETABILITY VS. RISK

While there are a number of reasons why interpretability
of ML models is important, not all prediction problems in
supervised machine learning predictions require explanations.
Alternatives to explanations include domains where the system
may have theoretical guarantees to always work or empirical
guarantees of performance when the system has historically
shown to have great performance e.g., deep learning ap-
plications radiology with superhuman performance[20]; or
in work pioneered by Gulshan et al, the developed deep
learning algorithm was able to detect diabetic retinopathy from
retinal fundal photographs with extremely high sensitivity and
specificity [10]. The exceptional performance supports the fact
that this prediction does not require an explanation. However,
findings such as this are quite rare. Another example where
interpretability may not be prioritized is in the setting of
emergency department (ED) crowding. For a hospital’s ED,
the number of patients expected to arrive at the ED in the
next several hours can be a helpful prediction to anticipate
ED staffing. In general, the nursing supervisor is not concerned
with the reasons why they are seeing the expected number of
patients (of course, there are exceptions) but only interested
in the number of expected patients and the accuracy of the
prediction. On the other hand, consider the case of predicting
risk of mortality for patients. In this scenario, the imperative
for supporting explanations for predictions may be great - as
the risk score may drive critical care decisions. What these
examples demonstrate is that the clinical context (also, how
”close” the algorithm is to the patient) associated with the
application determines the need for explanation. The fidelity
of the interpretable models also plays a role in determining
the need for explanations. Models like LIME [25] produce
explanations which may not correspond to how the predictive
model actually works. LIME models are post-hoc explanations
of model output, and in some ways, likely mimics the manner
in which human beings explain their own decision making
processes [17], this may be an admissible explanation where
explanations are needed but the cost for the occasional false
positives is not very high.

Consider Figure 1 which shows a continuum of potential
risk predictions related to patient care. The arrow represents
the increasing need for explanations along the continuum.
Consider a model for cost prediction for a patient, the accura-
cy of the prediction may take precedence over explanation

Fig. 1: Prediction Use Cases vs. Need for Interpretability
(LWBS: left without being seen)

depending on the user role. However, as we move up the
continuum to Length of hospital stay explanations may be
helpful in decision making while tolerating a slight decrement
in model performance. Thus, the specific use case is very
important when considering which predictive and explanation
models to choose. Certain use cases and domains require us to
sacrifice performance for interpretability while in other cases,
predictive performance may be the priority.

IV. THE CHALLENGE OF INTERPRETABILITY IN
HEALTHCARE

The motivation for model explanations in healthcare is clear
- in many cases both the end users and the critical nature of
the prediction demand a certain transparency - both for user
engagement and for patient safety. However, merely providing
an explanation for an algorithm’s prediction is insufficient.
The manner in which interpretations are shared with the end
users, incorporated into user workflows, and utilized must be
carefully considered.

Healthcare workers are generally overwhelmed - by the
number of patients they are required to see in a shift, by
the amount of data generated by such patients, and the
associated tasks required of them (data entry, electronic health
record system requirements, as well as providing clinical care).
Machine learning algorithms and their associated explanations,
if not delivered correctly, will merely be one additional piece
of data delivered to a harried healthcare professional. In order
to be truly considered, ML output should be comprehensible to
the intended user from a domain perspective and be applicable
with respect to the intended use case.

A. User Centric Explanations

The participation of end users in the design of clinical
machine learning tools is imperative - to better understand
how the end users will utilize the output components - and
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Fig. 2: Global vs. Local Models for Predicting Diabetes

also to educate end users to the nature of the prediction
and explanation. According to Jeffrey et al. [13], even
seasoned clinicians have difficulty interpreting risk scores
and probability based estimates and end user input in the
design of the expected output can drive participation. Moreso,
understanding how end users interpret explanations, derived
from the machine learning models, is imperative. Consider
for example, the following output:

Patient risk of Readmission: 62, HIGH
Top Factors: Low albumin

Elevated heart rate in emergency department
History of heart failure

How will a healthcare provider interpret this resulting risk
score and the associated explanation? Does the fact that the
provider knows that these attributes are ”true” for this patient
allow user trust in the model? Does the physician consider
that by addressing these top factors - such as the patient’s
low albumin- that the patient’s risk of readmission will be
mitigated? It is important that the concepts of causality and
association are emphasized and differentiated. Lipton [17]
addresses the issue of algorithm explanation and the tendency
to attribute causality to an explanation. He cautions against the
conflation of these concepts but does remind us that the results
of the explanation can instead inform future formal studies to
investigate causal associations between the associated factor
and the end point, i.e. readmission.

B. Performance vs. Transparency Trade-off

Earlier in this paper we described the trade-off between
model performance and model transparency in healthcare
algorithms. How is this trade-off determined? and by whom?
Others have described the need to optimize models towards
different performance metrics, and that AUC may not always
be the metric to optimize. For example, when predicting
end of life to determine when to refer patients to hospice,
physicians may prefer to optimize for model precision, that
is, to maximize the number of individuals who are correctly
classified as likely to die by the algorithm. Similarly, the
trade-off between performance and interpretability requires
discussions with end users to understand the clinical and

human risk associated with misclassification or with model
opacity.

C. Balancing Requirements of Interpretability

As there is not a single unified conception of interpretability,
there are multiple requirements for an ideal interpretable
machine learning system, some of which may be at odds.
Consider model soundness which refers to how close the
model explanation is to how the model actually works. It
may be the case that the model which results in the best
performance and interpretability is a decision trees with depth
8 and 50 nodes. While the decision tree model is interpretable,
the whole model is not comprehensible at the same time.
Simultability is a characteristic of a model when it can be
comprehensible in its entirety [17]. In this situation, it may
be possible to make the decision tree more interpretable by
pruning and then use that model for explanations. This may
result in a loss in performance and also a loss in soundness, as
the model now corresponds to a lesser degree regarding how
predictions are being made.

Certain healthcare applications such as predicting disease
progression may require explanations at the local, the cohort
and the global level. For such applications, local explanations
like LIME or Shapley Values may not suffice. One way
to address the requirements of explanation scope is to first
generate the local explanations first and to then generate
global level explanations by aggregating these. The main
drawback in such approaches is the large runtime required to
generate explanations for individual instances. Another way to
address this problem is to create distilled models like decision
trees for generating global explanations and local models for
explanations at the instance level.

Lastly, trust is one of the most important aspects of inter-
pretability. Consider the case of deep learning models that
have shown great predictive performance in a number of
healthcare applications [20]. While it is possible to extract
explanations from deep learning models, these explanations
cannot be proven to be sound or complete [23]. Often the
goal of explanations is to get parsimonious explanations which
cannot be stated to have the correct explanations. Additionally
always having parsimony as a goal may lead to incorrect
models [7].
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D. Assistive Intelligence

One common misconception about the application of ma-
chine learning in healthcare is that machine learning algo-
rithms are intended to replace human practitioners in health-
care and medicine [11]. Healthcare delivery is an extremely
complex, subtle, and intimate process that requires domain
knowledge and intervention in every step of care. We believe
that the human healthcare practitioner will remain integral to
their role and that machine learning algorithms can assist and
augment the provision of better care. Human performance
parity [17] is also considered to be an important aspect of
predictive systems that provide explanations i.e., the predictive
system should be at least as good as the humans in the domain
and at least make the same mistakes that the human is making.
In certain use cases the opposite requirement may hold i.e.,
one may not care about parity with cases when humans are
right but rather one cares more about cases where humans are
bad at prediction but the machine learning system has superior
performance. Such hybrid of human-machine learning systems
can lead to truly assistive machine Learning in healthcare.
Explanations from such systems could also be used to improve
human performance, extract insights, gain new knowledge
which may be used to generate hypothesis etc. The results
from hypothesis derived from the data driven paradigm could
in turn be used to push the frontiers of knowledge in healthcare
and medicine by guiding theory [2].

V. INTERPRETABLE MODELS IN HEALTHCARE

Depending upon the scope of the problem, explanations
from machine learning models can be divided into “global”,
“cohort-specific” and “local” explanations. Global explana-
tions refer to explanations that apply to the entire study
population e.g., in the case of decision trees and regression
models. Cohort-specific explanations are explanations that are
focal to population sub-groups. Local explanations refer to
explanations that are at the instance level i.e., explanations
that are generated for individuals. Consider Figure 2 which
illustrates the contrast between global vs. local models for
predicting diabetes. The global model is a decision tree model
that generalizes over the entire population, the cohort level
model can also be a decision tree model which captures certain
nuances of the sub-population of patients not captured by the
global model and lastly the local model gives explanations at
the level of instances. All three explanations may be equally
valid depending upon the use case and how much soundness
and generalizability is required by the application.

One way to distinguish models is by model composition.
The predictive model and the explanation of the model can
be the same as in the case of decision trees, GA2M etc.
Alternatively they can be different e.g., a Gradient Boosting
model is not really interpretable but it is possible to extract
explanations via models like LIME, Shapley values, Tree
Explainers etc. One scheme to create interpretable models
is via model distillation where the main idea is to create
interpretable models from non-interpretable models. Consider
a feature set X = x1, x2, x3, ...., xn with yi is the class
label being predicted. Suppose y′i is the label that is predicted

by a prediction model Mp which is non-interpretable e.g.,
Deep Learning etc. An interpretable model e.g., decision trees,
regression models etc. which is created by the feature set X
and the output y′i as the label is referred to as a student model.
While there are no theoretical guarantees for the performance
of the student model but in practice, many student models have
predictive power which is sufficiently high from an application
perspective.

VI. FUTURE OF INTERPRETABILITY IN HEALTHCARE

As machine learning increasingly penetrates healthcare,
issues around accountability, fairness and transparency of ma-
chine learning systems in healthcare will become paramount.
Most predictive machine learning systems in healthcare just
provide predictions but in practice many use cases do require
reasoning to convince medical practitioners to take feedback
from such models. Thus there is a need to integrate inter-
pretable models with predictions with the workflow of medical
facilities. Most predictive models are not prescriptive or causal
in nature. In many healthcare applications explanations are
not sufficient and prescriptions or actionability. We foresee
causal explanations to be the next frontier of machine learning
research.

It should also be noted that while interpretability is an
aspect of holding machine learning models accountable, it is
not the only way to do. Researchers have also suggested that
one way to audit machine learning systems it to analyze their
outputs given that some models may be too complex for human
comprehension [29] and auditing outputs for fairness and bias
may be a better option. Also, many problems in healthcare
are complex and simplifying them to point solutions with ac-
companying explanations may result in suboptimal outcomes.
Thus consider the problem of optimizing risk of readmission
to a hospital. Just optimizing predictions and actionability to
reducing risk of readmission may in fact increase the average
length of stay in hospitals for patients. This would be non-
optimal solution and not in the best interest of the patient
even though the original formulation of the machine learning
problem is defined as such. Thus problem formulations for
interpretable models should take such contexts and inter-
dependencies into account.

There is also some debate around the use of post-hoc vs.
ante-hoc models of prediction in the research community.
Since explanations from post-hoc models do not correspond to
how the model actually predicts, there is skepticism regarding
the use of these models in scenarios which may require critical
decision making. Current and future efforts in predictive
models should also focus on ante-hoc explanation models
like context explanation networks, falling rule lists, SLIM
etc. Scalability of interpretable machine learning models is
also an open area of research. Generating explanations for
models like LIME and Shapley values can be computationally
expensive. In case of LIME, a local model has to be created
for each instance for which an explanation is required. In a
scenario where there are hundreds of millions of instances for
which prediction and explanations are required then this can
be problematic from a scalability perspective. Shapley values
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computation requires computing the variable contribution by
considering all possible combinations of variables in the data.
For problems where the feature set has hundreds of variables,
such computations can be very expensive. The problem of
scalability thus exists with two of the most widely used
interpretable machine learning models.

Lastly, evaluation of explanation models is an area which
has not been explored in much detail. Consider the scenario
in which multiple models with the same generalization error
offer different explanations for the same instance or alter-
natively different model agnostic models are used to extract
explanations and these model offer different explanations. In
both these scenarios, the challenge is to figure out which
explanations are the best. We propose that the concordance
in explanations as well as how well the explanations align
with what is already known in the domain will determine
explanation model preference. However, the danger also exists
that novel but correct explanations may be weeded out if
concordance is the only criteria of choosing explanations.

VII. CONCLUSION

Applied Machine Learning in Healthcare is an active area of
research. The increasingly widespread applicability of machine
learning models necessitates the need for explanations to
hold machine learning models accountable. While there is not
much agreement on the meaning of interpretability in machine
learning, there are a number of characteristics of interpretable
models that researchers have discussed which can be used as a
guide to create the requirements of interpretable models. The
choice of interpretable models depends upon the application an
use case for which explanations are required. Thus a critical
application like prediction a patient’s end of life may have
much more stringent conditions for explanation fidelity as
compared to just predicting costs for a procedure where getting
the prediction right is much more important as compared
to providing explanations. There are still a large number of
questions that are unaddressed in the area of interpretable
models and we envision that it will be an active area of
research for the next few years.
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