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Abstract—Many novel applications, ranging from cryptocur-
rencies to food supply chain management, drive consumer
and industrial adoption of Blockchain technologies. As these
applications proliferate, so does the complexity and volume of
data stored by Blockchains. Analyzing this data has emerged as
an important research topic, already leading to methodological
advancements in the information sciences. In this invited paper,
we provide a brief overview of Blockchain Data Analytics,
focusing both on the emerging research challenges and on the
novel applications — from Bitcoin price prediction to e-crime
detection.

Index Terms—Blockchain, Bitcoin, Ethereum, Financial Ana-
lytics, Anomaly Detection, Time Series Analysis, Blockchain Data
Analytics.

I. INTRODUCTION

HIS decade has been marked with the rise of Blockchain

based technologies. At its core, Blockchain is a dis-
tributed public ledger that stores transactions between two
parties without requiring a trusted central authority. On a
Blockchain, two unacquainted parties can create an unmod-
ifiable transaction that is permanently recorded on the ledger
to be seen by the public. As legendary venture capitalist Marc
Andreessen states “the consequences of this breakthrough are
hard to overstate” [1].

The first application of Blockchain has been the Bitcoin [2]
cryptocurrency. Bitcoin’s success has ushered an age known
as the Blockchain 1.0 [3]. Currently there are more than 1000
Blockchain based cryptocurrencies, known as alt-coins. These
developments have ignited public interest in Blockchain tech-
nology. Some observers compare the inception of Blockchain
to the invention of double entry accounting that revolution-
ized the business world [4]. The emerging Blockchain based
applications include voting (FollowMyVote, Social Krona),
identity services (Bitnation, Hypr), provenance (Everledger,
Chronicled) and copyright management (LBRY, Blockphase).
Although it is hard to predict the future impact of Blockchain,
it is safe to say that it will enable many important and diverse
applications.

Private blockchains are created by industry/organizations
and only allow write and read access to the participants with
necessary permissions. In contrast, public blockchains, such as
Bitcoin, allow any node to join the network without permission
and all transactions can be observed by all the nodes that
are part of the Blockchain network. In this article we restrict
our attention to public blockchains, where data is publicly
accessible.

The authors are from University of Texas at Dallas Computer Science
and Mathematical Sciences departments and Illinois Institute of Tech-
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Each blockchain solution utilizes a chain structure, but may
also employ novel data structures. Clearly, this information
may be analyzed to provide novel insights about emerging
trends. This raises questions such as: 1) How to represent
and model the data stored on blockchains 2) What are the
novel analytical tools needed for analyzing Blockchain data?
3) What insights could be gleaned from the transactions stored
on public blockchains?

We address the above questions by offering a short in-
troduction to Blockchain analytics. We first provide a brief
history of public blockchains. Then we discuss the common
Blockchain data structure models and provide some insights
into several important analytical methods and tools. Finally,
we briefly discuss recent studies that use Blockchain data
analytics for cryptocurrency modeling, detection of e-crime,
human trafficking and illicit economic activity.

II. HISTORY

Blockchain was devised and outlined by Satoshi Nakamoto
in his “Bitcoin electronic cash system” [2] white paper in
2008.

Although Nakamoto mentioned “a chain of blocks” only,
the term Blockchain has become the name of the technology
underlying Bitcoin. The success of Bitcoin led to the creation
of hundreds of similar cash systems, which came to be known
as cryptocurrencies. These off-shoots differ from Bitcoin in a
few aspects. For example, Litecoin modified the block mining
algorithm for fairness in mining, and ZCash introduced a
shielded pool to hide transactions for better privacy.

Although their success is still a hotly debated topic, cryp-
tocurrencies paved the way for broad Blockchain adoption.
Since 2014, Blockchain 2.0 led to the creation of Blockchain
platforms where software code, called Smart Contracts, can be
stored and executed on a Blockchain publicly. These contracts
allow unstoppable, unmodifiable and publicly verifiable code
execution as transactions between online entities. Blockchain
3.0 is expected to further immerse the technology into our
daily lives with IoT integration [5].

Blockchain continues to evolve, but its applications have
already matured to rival, and already in some cases, replace
more traditional institutions as avenues of global activity. For
example, the Ethereum blockchain has become a major fund-
raising medium for tech start-ups; initial coin offerings (ICOs)
of Ethereum tokens have reached 45% of second quarter
IPOs [6] in the US.

III. BLOCKCHAIN DATA MODELS

Public blockchains can be broadly categorized as unspent
transaction output (UTXO) based (e.g., Bitcoin, Litecoin) and
account based (e.g., Ethereum) blockchains. In both types

December 2018 Vol.19 No.2

IEEE Intelligent Informatics Bulletin



Feature Article: Cuneyt Gurcan Akcora, Matthew F. Dixon, Yulia R. Gel, and Murat Kantarcioglu 5

) address
transaction

88 6.88 6.88 4.68
(a,) [ a,

1B

[ as Ci)
\ 238
1.28
0.28 28\ 258
038
/ 18
a { % { @ Citp
S 038 138 " 0.68 048
0.38 0.68
[ az ) Time =o—

Fig. 1. A network of 11 addresses and 6 Bitcoin transactions. Block
boundaries are not shown. Coins at addresses a7 and ag remain unspent. The
difference between input and output amounts (e.g., 0.2B at ¢1) are collected
as the transaction fee. Most crypto-currencies have the same data model as
Bitcoin.

of blockchains, a data block consists of a finite number of
transactions, but the transactions have differing characteris-
tics. Below, we briefly discuss these two different type of
blockchain transaction data.

A. The Unspent Transaction Output Based Blockchain Data

The unspent transaction output (UTXO) based blockchains
are the earliest and most valuable (in terms of market cap-
italization) blockchains: Bitcoin alone constitutes 45-60% of
the total cryptocurrency [7] market capitalization. In UTXO
blockchains each data block contains a (financial) transaction
that encodes a transfer of coins between multiple parties. Each
transaction consumes (i.e., spends coins from) some inputs
and creates (i.e., directs coins to) new outputs. Fig. 1 shows
an example UTXO network, where transaction ¢; encodes a
transfer of bitcoins from the address a; to a4 and as. In
UTXO, coin supply is tied to block creation; a certain amount
of coins are created and given to the block miner as the block
reward. Bitcoin started with 50B per coin and halves the block
reward every 4 years. This geometric series will result in a total
of 21 million bitcoins.

We emphasize three rules that shape data on UTXO
blockchains. These rules are due to the design choices by
Satoshi Nakamoto in Bitcoin [2].

Source Rule: Input coins from multiple transactions can be
merged and spent in a single transaction (e.g., the address as
receives coins from ¢; and ¢ to spent in ¢4 in Fig. 1), or spent
separately (e.g., in Figure 1, ag spends coins received from t3
and t4 in t5 and tg).

Mapping Rule: Each coin payment must show proof of
funds by referencing a set of previous outputs. Although this
allows anyone to trace back a history of payments, it is not
always possible to locate where a specific coin originates
from. This is because each transaction lists a set of inputs
and outputs, separately. For example, ¢2 has two inputs and
three outputs, but an explicit mapping between inputs and
outputs does not exist. Coins flowing to as may have come
from either as and as, or both. As a result, a transaction can
be considered a lake with in-flowing rivers, and out-flowing
rivers (i.e., emissaries).

Balance Rule: Coins received from one transaction must all
be spent in a single transaction. Any amount that is not sent to

an output address is considered to be the transaction fee, and
gets collected by the miner who creates the block. In order to
keep the change, the coin spender can create a new address
(i.e., change address) and send the remaining balance to this
new address. Another option is to use the spender’s address
as one of the output addresses, and re-direct the balance. As a
community practice, this reuse of the spender’s address (i.e.,
address reuse) is discouraged. As a result, most nodes appear
in the graph two times only; once when they receive coins
and once when they spend it. The change address, if created,
becomes the new address of the coin owner.

Due to these rules, the unspent transaction output based
blockchains should be considered as forward branching trees,
rather than networks.

UTXO blockchains also contain non-transactional data. In
the first Bitcoin block, Nakamoto had left the text message
“The Times 3 January 2009 Chancellor on brink of second
bailout for banks”. Adding metadata to Bitcoin transactions
have been a topic of discussion and since 2014, each Bitcoin
transaction contains a field (OP_RETURN) that is designed to
store log information in 80 bytes [8].

Improving on the metadata functionality, The Namecoin
blockchain has been created in 2011 to store key-value pairs
for a decentralized namespace. Namecoin data blocks store
registrations or updates for the .bit domain names, which
are independent of the ICANN. A domain expires 35,999
blocks (200-250 days) after it is registered as a key-value pair
in the Blockchain. Besides the domain registration (i.e., /d),
Namecoin has a public online identity namespace (i.e., /id),
along with other proposed services.

Storing the full Blockchain to reach .bit domain addresses
in real time has discouraged Namecoin adoption. Although
online explorer sites and browser extensions have been created
to help Internet users with .bit domains, Namecoin namespaces
have historically remained underutilized, and most blocks are
empty of any key-value pair [9].

B. Account Based Blockchain Data

In account based blockchains, an address can spend a
fraction of its coins and keep the remaining balance. In these
blockchains, a transaction has exactly one input and one output
address. Although address creation is free, mostly a single
address is used to receive and send coins multiple times.

Created in 2015, Ethereum [10] is currently the most valu-
able account based blockchain. Similar to Bitcoin, Ethereum
has a currency: Ether. However, the Ethereum project’s main
goal is to store data and software code on a Blockchain. The
code (a smart contract) is written in the proprietary coding
language Solidity, which is compiled to bytecode and executed
on the Ethereum Virtual Machine. Smart Contracts are self-
executing Turing complete contracts which contain code and
agreements. An analogy is the MYSQL snippets stored on a
database. However, Smart Contracts also ensure unstoppable,
deterministic code execution that can be verified publicly.

Account based blockchains use two types of addresses;
externally owned addresses (governed by users) and contract
addresses (governed by smart contract code). A transaction to
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upload the Smart Contract code to a contract address is usually
initiated by an externally owned address (i.e., user address),
but it can also be initiated by a contract address. The code
at the address is stored in the Blockchain and replicated at
all Blockchain nodes. In other words, uploading the contract
forces other nodes to store the code locally.

Similar to the log field in UTXO blockchains, each
Ethereum transaction contains an input data field which is
used to pass messages (i.e., function names and parameters)
to smart contracts. The code is executed by feeding parameters
to the stored function. This execution occurs at all nodes,
worldwide. For this reason, Ethereum is called the World
Computer.

Contract creation is expensive, but born by the contract
creator. Subsequently, other users or contracts can create
transactions directed to the contract address to call the func-
tions contained in the contract. Costs of operations (such as
multiplication = 5 and addition = 3) executed by the contract
are summed up in terms of the execution fee called “gas”,
and billed to the address that created the transaction, in ethers.
The currency ether acts as the digital oil of Ethereum World
Computer.

Smart Contracts gave rise to Smart Contract based tokens:
exchanged data units. Holding tokens allow users to get
serviced by a company in real life. For example, the Storj
token stores files on your hard disk, and pays you a fee through
Ethereum. Furthermore, tokens can be bought or sold online
and act as value stores. In this worldwide market, tokens that
are valuable are arbitrated in fiat currencies. These prices can
be viewed on online exchanges such as coinmarketcap.com

Account based blockchains have two types of transactions.
The first transaction type involves a transfer of the used
cryptocurrency, such as Ether on Ethereum, between two
addresses. This can be modeled with a directed edge between
the two addresses.

The second type, internal transactions, are created when
smart contracts change states associated with addresses. In the
most basic scenario, consider a sell order issued by address
a1 to a Smart Contract where the fo parameter is ao and
the value parameter is 2 token. The Smart Contract creates
an internal transaction that transfers 2 tokens from a; to as.
Internal transactions can be discovered in two ways: by parsing
the transaction’s message and updating states associated with
a1 and ae manually, or by running the transaction message
through the smart contract code and observing the states and
logs created during execution. The second option requires
running a full Ethereum node and executing every contract
transaction, which is costly in terms of time and resources. The
parsing option is easier as it does not require code execution.
However, the parsing method cannot discover transaction
failures (due to reasons such as insufficient gas), and create
internal transactions that do not actually exist.

IV. BLOCKCHAIN DATA ANALYTICS METHODS AND
TooLs

Largely deriving from existing network analysis method-
ology, early research works analyze UTXO data by creating

() address

Split Chainlet transaction

Merge Chainlet Transition Chainlet

Fig. 2. Chainlets encode a transaction with its inputs and outputs. Chainlets
can be aggregated and their occurrence information can then be used in
machine learning tasks.

a graph that employs a single type of node only. These are
transaction and address graph approaches.

In the transaction graph approach, addresses are ignored
and edges are created among transaction nodes [11], [12].
Naturally, the transaction graph is acyclic and a transaction
node cannot have new edges in the future.

In the address graph approach [13], transactions are ignored
and edges are created among address nodes. However, because
of the Mapping Rule (see Sec. III), inputs of a transactions
must be connected to all output addresses of a transaction,
which may create large cliques if too many addresses are
involved in a transaction.

Single node type approaches do not provide a faithful
representation of the Blockchain data (See [14] for more
on Blockchain data models). The loss of information about
addresses or transactions seem to have an impact in predictive
models [15].

K-chainlets [16] offer a lossless way to encode network
subgraphs where nodes can be addresses or chainlets. The
model utilizes local higher order structures of the Blockchain
graph. Rather than using individual edges or nodes, subgraphs
can be used as the building block in Blockchain analysis. The
term chainlet refers to such subgraphs.

This choice is due to two reasons. First, the subgraph can
be taken as a single data unit because inclusion of nodes and
edges in it is based on a single decision. As a transaction
is immutable, joint inclusion of input/output nodes in its
subgraph cannot be changed afterwards. This is unlike the
case on a social network where nodes can become closer on
the graph because of actions of their neighbors. Second, as
shown in Fig. 2, subgraphs have distinct shapes that reflect
their role in the network, and these roles can be aggregated to
analyze network dynamics.

As Bitcoin became popular, a number of studies aimed at
using various network characteristics for price predictions.
For instance, [17], [15] employ such network features as
mean account balance, number of new edges and clustering
coefficients. In turn, network flows and temporal behavior of
the network have been used as alternative price predictors by
[18] and [19], respectively.

Studies in network features show that since 2010 the Bitcoin
network can be considered a scale-free network [20]. In- and
out-degree distributions of the transactions graphs are highly
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heterogeneous and exhibit a disassortative behavior [21]. Ac-
tive entities on the network change frequently, but there are
consistently active entities [22]. The most central nodes in the
network are coin exchange sites [23].

As all transactions are one-to-one, account based
blockchains enable the usage of traditional graph analysis
tools easily [24], [25]. However care must be taken to extract
internal transactions from ordinary transactions, so that all
relationships (i.e., token buy/sell) between addresses can be
modeled on the graph.

As a second issue, the complete Ethereum graph have
overlapping layers of token networks; each token can be
represented with a separate graph on the Ethereum network
where nodes are user/contract addresses. A token network is a
directed, weighted multi-graph. Two token networks may share
nodes but not edges. The complete Ethereum graph consists
of layers of token networks. Multiple edges can exist between
two nodes of the Ethereum graph, and each edge can transfer
a different token. On the Ethereum blockchain, it is not rare
to see hundreds of edges between two nodes.

A. Tools

A criticism of Blockchain is that data blocks are written
into files (e.g., as levelDB files in Ethereum and .dat files in
Bitcoin) on disk, which makes data querying time consuming.
Recent years have witnessed development of Blockchain query
languages [26] and analytics frameworks [27] but their adop-
tion is still limited. Companies such as Santiment.com and
Chainalysis.com have developed in-house data querying and
analysis tools, but these are not yet open to public. Online
explorers such as blockchain.com and etherscan.io provide
limited analytics tools to the public.

A widely used tool in Bitcoin data analytics is the BlockSci
project [28]. A similar tool is the Bitcoin Network Visual
Analytics tool Biva.!

Besides transaction data that involve financial relations
between addresses, the advent of Ethereum 2.0, which brought
software code to blockchains, has propelled smart contract
analysis [29] as an important data analytics direction. How-
ever, most research approaches in this direction are based
on static code analysis for tasks such as contract classifica-
tion [30], and do not analyze the decisions made by the studied
smart contracts.

V. APPLICATIONS OF BLOCKCHAIN DATA ANALYTICS

Since the seminal Bitcoin paper [2] in 2008, cryptocurren-
cies [7] have been the most prominent Blockchain application.
Recently there has been an interest in analyzing Blockchain
platform (e.g., Ethereum [25]) data but Bitcoin and a few
other alt-coins have been the main focus of Blockchain Data
Analytics. Broadly, studies address the capacity and limitations
for coins to provide a robust and transparent economic system
for all economic participants.

Ihttps://github.com/feog/Biva
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Fig. 3. Daily Bitcoin price prediction in 2016. Model performances for various
chainlet models are shown. For three or more steps ahead forecasts, chainlets
play an increasingly significant predictive role in Bitcoin price formation, even
when other more conventional factors, such as historical price and number of
transactions, are accounted for in the model.

a) Price Prediction: One central question is how Bitcoin
fares as a financial asset class - in particular whether the trans-
action graph is linked to price formation and impact liquidity,
or even a market crash. Analyzing the relationship between
transactions and addresses and Bitcoin price, has therefore
become an important analytics research direction [31]. In
particular, there is a growing focus on building statistical
models which can predict and attribute price movements to
transactions and transaction graph properties. While simple
Blockchain transactional features, such as average transaction
amount, are shown to exhibit mixed performance for cryp-
tocurrency price forecasting [15], a number of recent studies
show the utility of global graph features to predict the price
[32], [33], [19], [15]. For instance, [17] analyzed the predictive
effects of average balance, clustering coefficient, and number
of new edges on the Bitcoin price and [16] use Blockchain
chainlets as predictors. Two network flow measures were
recently proposed by [18] to quantify the dynamics of the
Bitcoin transaction network and to assess the relationship
between flow complexity and Bitcoin market variables.

The extent to which we can build predictive models from
the chainlets has already led to some promising results [16].
In particular, we have been able to identify certain types and
groups of chainlets that exhibit predictive influence on Bitcoin
price and volatility. Fig. 3 shows the percent decrease in root
mean squared error (RMSE) for some of these models relative
to a simple baseline model, which uses Bitcoin prices and
transaction volumes of previous days only [16]. Specifically,
we evaluate ¢y, (h)/Ya, (h), i=1,...,5, for h=1,...,30
days ahead, where 1y, (h) and )y, (h) are the RMSEs for
the chainlet predictive model M; and the baseline model M,
respectively. We find that Model 5, which uses five different
chainlets, yields the most competitive predictive performance.

In addition to price prediction, chainlets are a lead indicator
for price risk - the relative daily loss distribution conditioned
on the ’extreme chainlets’ leads to more accurate outlier
prediction [32]. Without extreme chainlets, risk models under-
estimate the extreme Bitcoin losses. These extreme chainlets
represent transactions from a large number of accounts to
fewer addresses or vice versa. Such transactions represent
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systemic movements of coins to and from exchanges and other
funds.

Which Blockchain representation? The core idea behind
the aforementioned predictive analytics approaches is to ex-
tract certain global network features made available through
Blockchain and employ them for predictions, with utility in
financial markets. The best approach to represent the network
is application driven and an open area of research, ranging
from approaches which offer a defensible economic interpre-
tation to purely attractive on theoretical grounds. However,
there is mounting empirical evidence that Blockchain data
augments conventional predictive studies (i.e., combining other
data sources with Blockchain data is necessary).

b) Criminal Usage Detection: Since its early days, Bit-
coin has been used in dark markets, such as SilkRoad.com to
connect illegal vendors with buyers. By design, cryptocurren-
cies are pseudo-anonymous because users do not need identify
themselves to enter the network, but all of their transactions
on the Blockchain are public. Knowing this aspect, criminals
devise schemes to separate their real life and online iden-
tities. Such schemes include connecting to the Blockchain
network through privacy-enhancing distributed platforms such
as Tor [34]. Furthermore, criminals aim at making their
actions indistinguishable from the actions of ordinary users on
the Blockchain. This involves creating transactions that look
normal in terms of frequency, time and amount, with varying
success.

Beyond online trade, cryptocurrencies are used in payments
for human trafficking [35], ransomware [36], personal black-
mails [37] and money laundering [38], among many others.
Blockchain Data Analytics tools and algorithms can be used
by law agencies [39] to detect and analyze such criminal
activities.

Securities governance concerns have arisen around the
stability of digital coins as a currency, its susceptibility to
price manipulation and illegal usage for money laundering and
blackmailing [38], [40], [41], [22], [42]. A key question is
the extent to which Blockchain delivers the anonymity which
financial criminals seek. The lack of explicit mapping (see the
Mapping rule in Sec. III) in UTXO based cryptocurrencies,
such as Litecoin and Bitcoin, hinders tracking flow of coins
among addresses in time. Although some heuristics [43]
have been used to track coins, it is possible to use a series
of mixing [44] transactions to hide coin flows. Researchers
have found empirical clues for this mixing behavior in the
Bitcoin blockchain [45], [13]. Later crypto-currencies such as
Zcash [46] and Monero [47] improve the mixing capability by
introducing additional measures such as shielded pools. These
cryptocurrencies give strong guarantees for anonymity.

The anonymity question can be addressed by first under-
standing the patterns of criminal usage. Moser et al. [38]
analyzed the opportunities and limitations of anti-money
laundering (AML) on Bitcoin by identifying how successive
transactions are used to transfer money. Blockchain addresses
can then be linked to identify suspects behind suspicious trans-
action patterns in cryptocurrencies [13]. The pattern is usually
defined as a repeating transaction involving the movement
of digital coins from a black (i.e., affiliated with criminal

gains) address to an online exchange, where the coins can
be cashed out without being confiscated by authorities. The
black address that starts the transaction chain may be related to
money laundering [38] and ransomware payment [36]. There
is growing evidence on the existence of these illicit activities
in Blockchain networks and the reader is referred to [48], [49].

In general, the relative scarcity of wallet addresses la-
belled as either malicious, fraudulent or the target of ran-
somware, motivates the application of unsupervised learning.
For example, a few known ransom addresses can be used to
discover other associated wallet addresses by observing the
"co-spending’ behavior [43]. Other techniques such as over-
sampling, adaptive penalization and Bayesian networks have
been used to address the class imbalance problem in detection
of Bitcoin Ponzi schemes [50].

VI. CONCLUSION

Blockchain technology has recently witnessed a spark of
consumer and industrial interest in a broad range of appli-
cations, from digital finance to food safety to health care
to weapon tracking. As increasingly more new Blockchain
applications appear everyday, the complexity and volume of
the data stored by Blockchain also rapidly expand — thereby,
constituting a new standalone research direction of Blockchain
Data Analytics.> In this invited paper, we provide a brief
overview of the current state of Blockchain Data Analytics,
focusing both on methodological advancement and the emerg-
ing research challenges, as well as offering insight into some
of the most important financial applications.
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