
10 Feature Article: Knowledge Discovery from Temporal Social Networks

Knowledge Discovery from Temporal Social
Networks

Shazia Tabassum, Fabı́ola S. F. Pereira, and João Gama

Abstract—Extracting knowledge from network data is a com-
plex task. It requires the use of appropriate tools and techniques,
especially in scenarios that take into account the volume and
evolving aspects of the network. There is a vast literature on
how to collect, process, and model social media data in the
form of networks, as well as key metrics of centrality. However,
there is still much to be discussed in relation to the analysis
of the underlying huge networks. In this article the goal is to
discuss briefly different techniques in the process of gaining
knowledge from networked data, especially considering time
perspective. Firstly, we presented some techniques for online
sampling of temporally ordered massive networked data which
can be efficiently plugged in for a further network mining task.
Next are discussed approximate mechanisms for high speed
network change detection using centrality measures. Hand in
hand we also presented, the ways of processing temporal network
streams, applications with real data and illustrations using
network visualizations. In the end are discussed concepts related
to temporal ordering of links and paths in temporal networks.

Index Terms—Temporal Networks, Sampling Evolving Net-
works, Change Detection, Streaming Network Analysis.

I. INTRODUCTION

H andling and processing, high-velocity networked data
generating from real-world applications is a current

exigency. Dynamic and evolutionary learning with space and
time efficient techniques is an imperative solution for these
flooding data networks. We are here focusing this issue in
the arena of dynamic sampling and change detection from
temporally evolving large networks.

Dynamic Sampling is an exemplary way to deal with
the issues relating to massive evolving data, like answering
approximate queries, running simulations, understanding and
modeling true network structure, inadequate data, detecting
events/changes in the network, etc. Apart from other appli-
cations one of its major appeals lies in estimating the true
network properties [1] that cannot be handled in entirety.
Though sampling population is a statistically established area,
it is not much explored in the current scenario of real-
time dynamic networked data. A comprehensive survey on
sampling network streams can be found in [2]. However it
does not focus on multi or weighted graphs. We presented in
the section III some dynamic sampling mechanisms.

Another problem discussed here is Dynamic Change De-
tection. Given a temporal network discussed above, how can
we detect structural changes across different time steps with
an online approach, under the one-pass constraint of data?
According to Gama et al. [3], change detection refers to

Shazia Tabassum and João Gama are with INESC TEC, University
of Porto, Portugal; and Fabı́ola S. F. Pereira is with Federal University of
Uberlandia, Brazil. Corresponding Author e-mail: (jgama@fep.up.pt).

techniques and mechanisms for explicit drift detection char-
acterized by the identification of change points or small time
intervals during which changes occur. In evolving networks
context, these changes can be detected observing the whole
network, for instance communities [4] and motifs [5] evolu-
tion; or the changes can be analyzed in a node-centric way,
where nodes centrality and roles are observed during network
evolution [6]. In section IV, we discussed these techniques.

II. LITERATURE REVIEW

There are a number of research works on sampling static
networks but here we will only discuss dynamic sampling
algorithms on temporal/evolving network streams coherent to
the scope of this article. As most of the real world networks
follow power-law distributions in their degree, clustering coef-
ficient etc. From this kind of networks that posses low number
of nodes with high degree and high number of nodes with low
degree, we are likely to get samples with most or all of nodes
from this lighter long tail. Since traditional stratified sampling
does not hold with the constraint of one pass, fast and space
efficiency, we need to find some strategies that overcome these
biases in an efficient way.

In [2] Ahmed et al. presented a simple edge stream sampling
which uses a similar approach as reservoir sampling [7] (refer
section III-B2). In this case, a new edge enters into the
reservoir if its hash value is within top-m minimum hash
values, where m is the size of reservoir. However, the method
did not ensue as an efficient representative sample. Addi-
tionally, Ahmed et al. [2] also proposed a Partially-induced
edge sampling algorithm called (PIES). This algorithm works
by storing nodes and also edges probabilistically in their
reservoirs while deleting the one already present at random
as in the reservoir sampling [7]. It maintains a fixed size
reservoir of nodes while the reservoir size for edges varied
based on nodes. CPIES, an update over PIES is given by
Zhang et al. [8]. They modified the decremental module of
PIES, by deleting the nodes from the reservoir with minimal
degree to produce a better cluster preserving structure. PIES
had a selection bias to high degree nodes which enhances in
CPIES as it tends to delete low degree nodes. Papagelis et
al. [9] proposed sampling algorithms that given a user in a
social network quickly obtains a near-uniform random sample
of nodes in its neighborhood using random walks.

A. Change Detection in Dynamic Networks

Processing graphs as streams is an incoming problem. The
work [5] is one of the most complete when considering data
mining in evolving graph streams. The focus is on mining

December 2018 Vol.19 No.2 IEEE Intelligent Informatics Bulletin

Feature Article: Shazia Tabassum, Fabı́ola S. F. Pereira, and João Gama 11

closed graphs, not on change detection though. In [10] a
framework for processing graphs as streams is proposed for the
link prediction task. This framework considers the cumulative
grown of the graph, not addressing the space saving issue [11].

The most studied events in dynamic networks are anomalies
and bursts [4]. Anomaly detection refers to the discovery of
rare occurrences in data sets [12]. The most representative
work in anomaly detection for dynamic graphs is [13]. It
addresses the problem considering a time sequence of graphs
(graph sequences). The focus is on faults occurring in the
application layer of web-based systems. First, they extract
activity vectors from the principal eigen vector of dependency
matrix. Next, via singular value decomposition, it is possible
to find a typical activity pattern (in t − 1) and the current
activity vector (t). In the end, the angular variable between the
vectors defines the anomaly metric. The network processing
is through snapshots, not in a streaming fashion. Akoglu and
Faloutsos [14] used the Eigen Behavior based Event Detection
(EBED) method to detect events in SMS interactions a who-
texts-whom network. They are able to detect events in a global
perspective of the network.

Eberle et al. [15] proposed to discover anomalous sub
graphs in graph streams using a change detection metric. The
authors compute graph properties GP as the graph evolves and
then compare, using average and standard deviation, if there
is an abrupt change in these GP. If yes, the change has been
detected. The algorithm processes incoming edges in batches
using sliding window strategy.

III. SAMPLING EVOLVING MULTI-GRAPHS

Evolving Network Stream: In a streaming scenario, a
temporally evolving network is usually considered as a stream
of edges{e1, e2, e3, e4...} ∈ E generating from a graph stream
G. Every edge e = (u, v, t) is composed of a pair of vertices’s
from V and a time-stamp t, which indicates the time of
occurrence of e. We assume that the edges are streaming in
the order of time-stamps. E and V can have a temporally
changing cardinality.

Multi-graph Stream In a multi-graph stream an edge e
can recur randomly in G at various time-stamps t. Examples
include phone calls, tweets, co-authorship etc.

Graph Size Graph size in evolving networks is usually the
number of edges |E| at any time t or a time interval τ .

A. Methods of Sampling Streaming Graphs

1) Node Based Methods: Node based methods in general,
sample a set of nodes from the original graph. The resultant
samples contain a set of vertices from the graph stream and
showing no connections between them. Acquiring the corre-
sponding edges between them increases the time complexity.
Some sampling methods ([16],[8]) store the set of nodes and
also the set of edges (which also contain nodes) for ease of
computation.

2) Edge Based Methods: These samples are generated by
selecting a subset of edges from the original graph. The
resultant graph is a subgraph of original graph with nodes
and edges. Edges can be labelled, weighted or attributed.

Fig. 1: Pictorial representation of 104 top K edges sample at
the end of 31 days stream of telecom phone calls (edges) using
Space Saving (colors represent communities).

B. Algorithms for Sampling

1) Space Saving Algorithm (SS): What if we need a sample
of most active connections in the network at every time stamp
t, without having enough space to store all the connections in
the network? In such cases the Space Saving Algorithm pro-
posed by [17] is an appropriate choice. Space saving algorithm
is the most approximate and efficient algorithm for finding top
frequent elements from a data stream. The algorithm maintains
partial interest of information as it monitors only a subset of
elements from the stream. Considering the edge stream [18],
[19] it maintains counters for every element in the sample and
increments its count when the edge re-occurs in the stream. If
a new edge is encountered in the stream it is replaced with an
edge of the least counter value and its count is incremented.
Consequently it gives the top K frequent edges at any t from a
multi-graph stream. Note that this algorithm keeps track of the
top frequent edges but not how much frequent they are. The
samples posses a good community structure [18]. Top K, i.e
the sample size in this case should be given manually, which
do not grow with the growth of the network. Figure 1 shows a
sample from a stream of anonimised phone calls provided by
a service provider with around 280 to 10 calls per second at
mid-day and mid-night and on an average 12M calls per day
made by 4M subscribers.

2) Reservoir Sampling (RS): This is a well known algo-
rithm of Reservoir Sampling [7]. This algorithm works by
maintaining a reservoir of edges with a predefined sample of
size K. In the edge streaming scenario, firstly the reservoir
is filled with the initial edges from the stream. Every edge
coming after that is computed for the probability K/i of being
inserted. Where i is the length of the stream exhausted till
then. If the probability of the contending edge in the stream is
greater than the probability of an edge in the reservoir which

IEEE Intelligent Informatics Bulletin December 2018 Vol.19 No.2

12 Feature Article: Knowledge Discovery from Temporal Social Networks

is 1/i, then uniformly at random an edge is picked from the
reservoir. The picked edge is replaced with the edge in the
stream. In case the probability is less, the streaming edge
is discarded. As i increases, the probability of ith element
getting inserted into the reservoir decreases. Therefore, it leads
to samples with very old elements from the stream. [18] and
[20] show that these samples posses very weak community
structure and high bias to low degree nodes.

3) Biased Random Sampling (BRS): This algorithm is
proposed as a simple variant of RS in [18]. It is actually
an unbiased random sampling technique but considering RS
as a standard, this is its biased version. Unlike the above
algorithm where the probability of streaming edges diminishes
as the stream progresses, this algorithm ensures every edge
goes into the reservoir. An edge from the reservoir is chosen
for replacement at random. Therefore, the edge insertion is
deterministic but deletion is probabilistic. An edge staying for
a long time in the reservoir has the same probability of getting
out as an edge inserted recently. Consequently, the edges in the
reservoir are distributed randomly over time. It gives a better
community structure and distributions close to true network
than Reservoir Sampling [18] and [20].

The complexity of algorithm increases linearly with the size
K of sample in the above mechanisms.

4) Biased Dynamic Sampling Using Forgetting (SBias):
Recent interactions are evident to show the current status
of relationships, nevertheless some old stronger relations are
also substantially significant [20]. Therefore, this sampling
algorithm uses a fast memory-less forgetting function with
two parameters that help introduce biases on the network
based on time and relationship strengths. The main idea is
to exponentially forget edges based on time and weight of
edges. At every time interval τ the frequency of an edge in a
multi-graph is mapped to its weight. Every edge is considered
a vector stream of its occurrence and non-occurrence at every
τ . The forgetting function is imposed on all |E| edge vector
streams independently, where E is an edge set at time interval
τ . An illustration is given in figure 3. A threshold θ is used to
eliminate the edges from the network. The parameter values
α and θ can be increased to decrease the sample size.

ŵτ (e) = wτ (e) + (1− α)ŵτ−1(e) (1)

Where wτ (e) is the weight of an edge at τ . This algorithm
provides better distributions (closest to the true network) than
the above algorithms (figure 8) [20]. This illustration is given
using the CollegeMsg Networked data set comprised of private
messages sent on an online social network at the University
of California, Irvine [21], obtained from SNAP data sets2.
One of the important property of this algorithm is it does
not maintain a fixed size sample, which gets decreasing with
the increasing size of true network (most of them obeying a
power law increase over time). Though the sample size varies
it is bounded by the variance of network size per time step.

2Data available at https://snap.stanford.edu/data/CollegeMsg.html

C. Sampling Ego-Networks with forgetting factor

As ego-networks also densify [22] over time by making in-
feasible to store all the information of them in the memory. An
example graph of an ego-network (2-levels) from a phone calls
network is shown in figure 2. The function (1) and forgetting
mechanism here is the same as in the above SBias model but
applies for a single ego/personal network with any number of
levels/radius from the ego. The main variation is that in the
above algorithm we don’t need to remove the edges adjacent
to the deleted edge. In this case we remove the edges adjacent
to a deleted edge which otherwise do not have a connection
to the ego [23]. This method has an advantage as an input for
detecting changes in personal networks, predicting links and
detecting frauds etc.

IV. CHANGE DETECTION IN EVOLVING NETWORKS

We present here the change detection techniques from
a node-centric perspective in a network stream processing
environment. We call this task as Node Centrality Change
Detection. The techniques here presented were proposed in
[6] and focus on tracking nodes properties instead of global
graph properties ([15], [14]).

In the approaches presented in this section, we consider an
edge stream S which is a continuous and unbounded flow
of objects E1, E2, E3....., where each edge Ei is defined by
(v, u, t) which represents a connection between vertices/nodes
u and v at time t. The vertices {u, v,} ∈ V and get added
to or deleted from V at anytime t.

A. Processing a Streaming Network

For every incoming edge (v, u, t) from a stream S, the
centrality scores Cm(v) and Cm(u) for nodes u and v are
updated in the order of t, for m being a node centrality metric
(in case of degree centrality, the degree of nodes u and v
is updated for every incoming edge {u, v} at t where as
in the case of betweenness and closeness, the centrality of
nodes are updated only after every T). Another variable T
is a discrete time-step/time-interval with granularity defined
by the user. After every T the centrality scores are reset
and starts accumulating again. Therefore, we keep track of
centrality score of nodes per day. Consequently we store a set
of nodes (with changing cardinality) and a streaming vector
of its associated centralities per time step T. As a result, we
have an independent non stationary stream of centrality scores
{CmT1

, CmT2
, CmT3

........} for every node v in S after every time
step T. To get a normalized version of scores, after every time-
step T the centrality of a node is divided by the number of
nodes in graph at T. Therefore we have normalized centrality
scores in the vector stream. Further we employed aggregating
mechanisms to the above streams of centrality scores per node.

B. Aggregating Mechanisms

For notational simplicity in the below equations we use
CT for CmT (v) as all notations for the techniques below are
considered for a stream of centrality scores per node per
centrality metric.

December 2018 Vol.19 No.2 IEEE Intelligent Informatics Bulletin

Feature Article: Shazia Tabassum, Fabı́ola S. F. Pereira, and João Gama 13

(a) (b)

Fig. 2: Ego-network of a user (red) on day 1 and day31 from the phone call network.

Fig. 3: Pictorial representation of SBias sample at τ4 with
α = 0.4 and θ = 0.5.

1) Moving Window Average (MWA): A window of size WS

consists of data points from the latest temporal time steps
{T, T − 1, T − 2, ..., T − (WS − 1)}. The window keeps on
sliding to always maintain the latest WS time steps and the
data points from T −WS are forgotten. Alongside, the mean
of data points within the window is calculated by using simple
equation (2) where CT−i is the stream of centrality scores at
time-step T − i using measure m per node. In this approach
all the data points in the window are assigned equal weights.

µT =
1

WS

WS−1∑
i=0

CT−i (2)

As the window slides the mean of data points in the window
is updated, either using the above equation (2) for small
window sizes and equation (3) for large window sizes.

µT = µT−1WS − CT−WS
+ CT (3)

2) Weighted Moving Window Average (WMWA): Weighted
moving window average follows the same window sliding
strategy as in MWA and computes average over the data
points in the window. The improvement over MWA is that
the accumulated data points per time step T in the window

are weighted linearly as given in equation (4). The oldest
data points in the window attain a least weight and the latest
data point acquires the highest weight linear to the least one.
Weights are updated, when the window slides. Assignment of
weights per data point depends on the size of window.

µT =

WS−1∑
i=0

CT−i(WS − i)
WS − i

(4)

3) Page Hinckley Test (PH): Page Hinckley [24] is one of
the memory less sequential analysis techniques typically used
for change detection [25], [26], [27], [3]. We use it as a non-
parametric test, as the distribution is non stationary and not
known. This test considers a cumulative variable mT , defined
as the cummulated difference between the latest centrality
score at T and the previous mean till the current moment,
as given in the equation (5) below:

mT =

T∑
i=1

|CT − µT−1| − α (5)

Where µT = 1/|T |
∑T
i=1 Ci, µ0 = 0 and α = magnitude

of changes that are allowed. For calculating µT we also need
to store the number of time-steps passed.

The equation (5) given above uses fixed α value, which is
not pertinent with our multiple vector streams of centralities
per node, where the centrality scores of few active nodes are
way higher than some least active nodes. Therefore, using
same value of α over differing node centralities would not
be fair enough. Hence, we use a relative α, which is relative
with the differing centrality scores per node. Relative α is a
point percentage of previous aggregated mean of that node, as
given in equation (6).

mT =

T∑
i=1

|CT − µT−1| − αµT−1 (6)

IEEE Intelligent Informatics Bulletin December 2018 Vol.19 No.2

14 Feature Article: Knowledge Discovery from Temporal Social Networks

Further to calculate change point score we need a variable
MT which is the minimum value of mT and is always
maintained and updated for every new time step T as given in
equation 7

MT = min(mT ; i = 1...T) (7)

C. Detecting Change Points

1) Change Point Scoring Function: To detect the change
points and their magnitude after every time-step T in MWA
and WMWA, we use a change point scoring function given in
equation (8)

ΓT =
|CT − µT−1|

max(CT , µT−1)
(8)

Where CT is the current centrality score and µT−1 is the
mean of previous centrality scores in the window. The change
point scoring function gives the percentage point increase or
decrease of the current centrality score with the previous mean.
It takes values 0 ≤ ΓT ≤ 1.

For a PH test, after every time-step T the change points are
scored using the equation (9).

ΓT = mT −MT (9)

2) Change Point Detection: We can decide the magnitude
of change allowed by the above change point scoring function.
For this we use a threshold θ on Γ, to signal an alarm of change
in the node. It takes values either 0 or 1. ”1” indicates a node
centrality change and ”0” indicates no change.

εT =

{
1, if ΓT ≥ θ.
0, otherwise.

(10)

We also apply a relative θ for detecting change points in
PH Test only, as the change point scores from windowed
approaches are already normalized in equation (8). Therefore
to normalize threshold over multiple streams of centrality
scores in PH test we use a relative threshold θ by multiplying
the threshold θ with MT of that node at time T as in equation
11.

εT =

{
1, if ΓT ≥ (θ ×MT).

0, otherwise.
(11)

While carrying out the above-mentioned mechanisms we
considered the following assumptions. For window based
approaches change detection starts only after the window of
size WS is filled. If there exists no edges for a node in a time
step T , then the mean is calculated assuming a ”0” centrality
score. If a node is newly introduced (with edges) in the stream
in the time interval T then the previous mean at T − 1 is
considered ”0” during change point scoring. In window based
approaches if a node does not appear in the stream for a WS

time steps, the node is deleted to save space.
The above described model for change detection using

centrality measures is illustrated in figure 4

Fig. 4: Preference change detection model.

D. Centrality changes in Twitter network

In [28], [6] we applied the node centrality change detection
problem to infer user preference changes in temporal interac-
tion networks. Figure 5 illustrates the Twitter evolving network
related to Brazilian news we utilized. The network represents
interactions among users through retweets.

In order to exemplify the techniques presented in this
section, Figure 6 shows the events detected in Twitter net-
work from Figure 5 based on in-degree centrality and MWA
aggregating mechanism.

V. TEMPORAL CENTRALITIES IN TEMPORAL SOCIAL
NETWORKS

The topological structure of static networks can be char-
acterized by an abundance of measures. In essence, such
measures are based on connections between neighboring nodes
(such as the degree or clustering coefficient), or between larger
sets of nodes (such as path lengths, network diameter and
centrality measures). When the additional dimension of time is
included in the network picture, many of these measures need
rethinking. Our main goal here is to represent social networks,
specially Twitter, founded on temporal graphs theory [29].
According to Holme and Saramaki [30], temporal networks
can be divided into two classes corresponding to the types of
representations: contact sequences and interval graphs. While
in contact sequences, the edges are active over a set of times,
in interval graphs they are active over a set of intervals. In
Figure 7 we exemplify Twitter social network as an interval
graph.

In temporal networks the concept of geodesic distance
should take into account the temporal ordering of links [30].
A temporal path Pu,v in a temporal graph G is a sequence
Pu,v =< (v1, v2, t1), (v2, v3, t2), ..., (vk−1, vk, tk−1) >,
where (vi, vi+1, tinit, tend) ∈ E is the i-th temporal edge on
Pu,v , 1 ≤ i ≤ k, R is the retention time of nodes, i.e., the
time between information arrival in the node and the instant
from which it can be forwarded, T is the edge traversal time,
ti + R + T ≤ ti+1, tinit ≤ ti ≤ tend, n ≤ t1 and tk−1 ≤ N ,
u = v1 and v = vk.

In a Twitter temporal graph representation, one can adopt
R = 1 day and T = 0, as tweets are published instantaneously
and the average interaction time for posts is one day [31]. Con-
sidering the temporal network of Figure 7 and the parameters
W = [1, 9], T = 0 and R = 1, we can cite some examples

December 2018 Vol.19 No.2 IEEE Intelligent Informatics Bulletin

Feature Article: Shazia Tabassum, Fabı́ola S. F. Pereira, and João Gama 15

Fig. 5: Snapshots of samples of the evolving interaction network. Nodes are Twitter users. One tie from user u1 to u2 means that
u2 retweed at t some text originally posted by u1. Colors represent topics that users are talking about. The samples were built
by filtering nodes with degree between 50-22000 and edges representing the 4 most popular topics. Each snapshot corresponds
to 1 day time-interval. This figure highlights the edges evolving aspect. Nodes are not evolving for better visualization.

Fig. 6: Change events detected (red) in Twitter network based
on in-degree centrality and MWA aggregating mechanism.

Fig. 7: Twitter as an interval graph. Nodes are Twitter users
and an edge (u, v, tinit, tend) indicates that v starts following
u at tinit and unfollows u at tend+1.

of temporal paths: PA,D =< (A,B, 1), (B,D, 2) >= 1
(fastest path), PA,D =< (A,B, 2), (B,D, 6) >= 4, PA,C =<
(A,C, 2) >= 0 (fastest path).

Centrality metrics that take into account the distance be-
tween two nodes are impacted by temporal paths definition.
We focus on closeness and betweenness [32]. To compute
these metrics in a temporal network scenario, we need to
consider the number of fastest paths instead of the number of
shortest paths as in static definition. A comprehensive study

on centrality metrics for temporal networks can be found on
[33].

As application example of temporal centralities in temporal
networks, in [28] we discuss that tracking how follow/unfollow
relationships on Twitter evolve over time can help us to
understand their impact on users behaviors.

VI. CONCLUSION

We discussed three topics in this article concerned from the
size and complexity of the networks in the start to finish of
knowledge discovery process. Four sampling mechanisms for
fast massive scale free networks were presented, namely Space
Saving for top K, Reservoir Sampling, Biased Random Sam-
pling and Sampling using forgetting (SBias). Their properties
and biases were discussed supported with some illustrations
for better comprehensibility.

Further we demonstrated a fast approach for detecting
changes in the network using centralities alternative to node
features or content that is time and space expensive to be
acquired. Additionally these are complimented with some
aggregating and memory less tests for efficient change points
detection.

Lastly some concepts relating to information transmission
and temporal paths were discussed briefly, opening new range
of possibilities in these kind of networks.

ACKNOWLEDGMENT

The authors would like to thank the support of the project
TEC4Growth RL SMILES Smart, mobile, Intelligent and
Large Scale Sensing and analytics NORTE-01-0145-FEDER-
000020 which is financed by the North Portugal regional
operational program (NORTE 2020), under the Portugal 2020
partnership agreement, and through the European regional
development fund.

IEEE Intelligent Informatics Bulletin December 2018 Vol.19 No.2

16 Feature Article: Knowledge Discovery from Temporal Social Networks

(a) True Network #Nodes=1899 #Edges=20296 AvDeg=10.6 D=0.008 #Compo-
nents=16

(b) RS #Nodes=296 #Edges=225 AvgDeg=0.76 Density=0.005 #Compo-
nents=76

(c) BRS #Nodes=189 #Edges=225 AvgDeg=1.196 Density=0.006 #Compo-
nents=25

(d) SBias #Nodes=182 #Edges=225 AvgDeg=1.236 Density=0.007 #Compo-
nents=21

Fig. 8: Snapshot at the end of observed stream (CollegeMsg) of true network and samples (1%).

REFERENCES

[1] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi, “On sampling
from massive graph streams,” Proceedings of the VLDB Endowment,
vol. 10, no. 11, pp. 1430–1441, 2017.

[2] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 8, no. 2, p. 7, 2014.

[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[4] M. Cordeiro and J. Gama, Online Social Networks Event Detection: A
Survey. Cham: Springer International Publishing, 2016, pp. 1–41.

[5] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Mining frequent
closed graphs on evolving data streams,” in 17th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, ser. KDD
’11, 2011, pp. 591–599.

[6] F. S. F. Pereira, S. Tabassum, J. Gama, S. de Amo, and G. M. B. Oliveira,
Processing Evolving Social Networks for Change Detection Based on
Centrality Measures. Cham: Springer International Publishing, 2019,
pp. 155–176.

[7] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[8] J. Zhang, K. Zhu, Y. Pei, G. Fletcher, and M. Pechenizkiy, “Clustering-
structure representative sampling from graph streams,” in International
Workshop on Complex Networks and their Applications. Springer, 2017,
pp. 265–277.

[9] M. Papagelis, G. Das, and N. Koudas, “Sampling online social net-
works,” IEEE Transactions on knowledge and data engineering, vol. 25,
no. 3, pp. 662–676, 2013.

December 2018 Vol.19 No.2 IEEE Intelligent Informatics Bulletin

Feature Article: Shazia Tabassum, Fabı́ola S. F. Pereira, and João Gama 17

[10] J. Fairbanks, D. Ediger, R. McColl, D. A. Bader, and E. Gilbert,
“A statistical framework for streaming graph analysis,” in IEEE/ACM
Int. Conf. on Advances in Social Networks Analysis and Mining, ser.
ASONAM ’13, 2013, pp. 341–347.

[11] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.
[12] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and

description: a survey,” Data Mining and Knowledge Discovery, vol. 29,
no. 3, pp. 626–688, 2015.

[13] T. Ide and H. Kashima, “Eigenspace-based anomaly detection in com-
puter systems,” in Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’04,
2004, pp. 440–449.

[14] L. Akoglu and C. Faloutsos, “Event detection in time series of mobile
communication graphs,” in Proceedings of 27th army science confer-
ence, ser. 18, vol. 2, no. 3, 2010.

[15] W. Eberle and L. Holder, “Identifying anomalies in graph streams using
change detection,” in KDD Workshop on Mining and Learning in Graphs
(MLG), 2016.

[16] N. K. Ahmed, J. Neville, and R. Kompella, “Space-efficient sampling
from social activity streams,” in Proceedings of the 1st international
workshop on big data, streams and heterogeneous source mining:
algorithms, Systems, Programming Models and Applications. ACM,
2012, pp. 53–60.

[17] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in International
Conference on Database Theory. Springer, 2005, pp. 398–412.

[18] S. Tabassum and J. Gama, “Sampling massive streaming call graphs,”
in ACM Symposium on Advanced Computing, 2016, pp. 923–928.

[19] S. Tabassum, “Social network analysis of mobile streaming networks,”
in Mobile Data Management (MDM), 2016 17th IEEE International
Conference on, vol. 2. IEEE, 2016, pp. 20–25.

[20] S. Tabassum and J. Gama, “Biased dynamic sampling for temporal
network streams,” in Complex Networks and Their Applications VII.
COMPLEX NETWORKS 2018. Studies in Computational Intelligence,
vol 812. Springer, 2018, pp. 512–523.

[21] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” Journal of the American Society for Information Science
and Technology, vol. 60, no. 5, pp. 911–932, 2009.

[22] S. Tabassum and J. Gama, “Evolution analysis of call ego-networks,”
in International Conference on Discovery Science. Springer, 2016, pp.
213–225.

[23] ——, “Sampling evolving ego-networks with forgetting factor,” in
Workshop MobDM, Mobile Data Management (MDM), 2016 17th IEEE
International Conference on, 2016.

[24] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[25] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi, “Test of page-hinkley,
an approach for fault detection in an agro-alimentary production system,”
in Proceedings of the Asian control conference, vol. 2. Citeseer, 2004,
pp. 815–818.

[26] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine learning, vol. 90, no. 3, pp. 317–346,
2013.

[27] R. Sebastião, M. M. Silva, R. Rabiço, J. Gama, and T. Mendonça, “Real-
time algorithm for changes detection in depth of anesthesia signals,”
Evolving Systems, vol. 4, no. 1, pp. 3–12, 2013.

[28] F. S. Pereira, J. a. Gama, S. Amo, and G. M. Oliveira, “On analyzing
user preference dynamics with temporal social networks,” Mach. Learn.,
vol. 107, no. 11, pp. 1745–1773, Nov. 2018.

[29] F. S. F. Pereira, S. Amo, and J. Gama, “Evolving centralities in tem-
poral graphs: a twitter network analysis,” in Mobile Data Management
(MDM), 2016 17th IEEE International Conference on, 2016.

[30] P. Holme and J. Saramaki, “Temporal networks,” Physics Reports, vol.
519, no. 3, pp. 97–125, 2012.

[31] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in
temporal graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 9,
pp. 721–732, 2014.

[32] R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An
Introduction. New York, NY, USA: Cambridge University Press, 2014.

[33] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora,
Temporal Networks. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, ch. Graph Metrics for Temporal Networks, pp. 15–40.

IEEE Intelligent Informatics Bulletin December 2018 Vol.19 No.2

