
 Feature Article: A Systematic Survey on Math Word Problem Solvers Based on Large Language Models

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

8

Abstract— Nowadays, there is growing interest in improving the
reasoning capabilities of large language models (LLMs),
represented by designing an LLM-based solver for math word
problems (MWPs). This survey provides a comprehensive
overview of recent LLM- based methods that aim to solve MWPs.
In particular, we first introduce some preliminaries on MWPs and
their connection with LLMs. Then, we examine the capabilities of
each reviewed method by analyzing its architecture and
prompting technique. Finally, we discuss the limitations of LLM-
based MWP solvers and provide potential directions for future
research.

Index Terms— Large Language Model, Math Word Problem,
Prompt Engineering, Mathematical Reasoning

I. INTRODUCTION
he development of automatic AI systems for math word
problems has a long-standing history, dating back to the

1960s [1], [2]. A tool that can generate step-by-step solutions to
math word problems has the potential to offer personalized
guidance for students and assist educators in curriculum
development. However, automatically solving math word
problems (MWPs) is challenging, as the solver needs to
combine arithmetic skills with commonsense reasoning.

Before pre-trained large language models revolutionized
most NLP tasks, some small-scaled models with handcrafted
neural networks were proposed to solve MWPs. For example,
previous studies [3], [4] consider MWP as a generation task and
usually leverage LSTM-based sequence-to-sequence models to
learn the mapping from source sequences (i.e., question texts)
to target sequences (i.e., math expressions). These neural MWP
solvers without using pretrained language models (PLMs) have
been surveyed in [5]. However, the main disadvantage of
previously proposed neural solvers is that they must be trained
from scratch for different MWP datasets, making them
unscalable for other downstream tasks.

In recent years, language models (LMs) have reshaped the
landscape of the NLP field and demonstrated impressive
performance across diverse downstream tasks [6]. The
pretrained models, such as BERT [7], RoBERTa [8], DeBERTa
[9], BART [10] and GPT [11], have learned world knowledge
by parsing a vast amount of texts, which benefits the question
answering (QA) task consequently (e.g. commonsense QA

[12], answering math word problems [6] and assisting with
theorem proving [13]).

Large language models (LLMs) have an improved
performance on diverse NLP downstream tasks. However,
scaling up the size of language models alone has not
demonstrated their effectiveness on some mathematical
reasoning tasks, such as MWPs and theorem proving [14]. The
dataset GSM8K [15] containing step-by-step reasoning is
proposed to evaluate the LLM’s reasoning ability by checking
the effectiveness of its generated natural language solutions.
Cobbe et al. [15] proposed to finetune GPT3 [6] on GSM8K to
help the language model generate multi-step rationales and train
a neural component to verify the correctness of the model-
generated solution. This generate-and-verify framework could
enhance the model’s capacity of generating accurate answers.

Recently, some studies [16], [17], [18] have reported that
language models can demonstrate the emergent ability of
performing complex multi-step reasoning tasks when they are
large enough (e.g., over 100B parameters). In particular, the
breakthrough method, chain-of-thought (CoT) [16] prompting
strategy, can unlock the reasoning ability of LLMs when
provided with a few examples without any parameter update. A
series of intermediate natural language reasoning steps is
generated before giving the final answer.

II. MATH WORD PROBLEM

A. Difference between MWP and other QA task
Machine reading comprehension is one of the central tasks in

natural language understanding, especially for the task of
question answering (QA). In the context of knowledge-based
QA tasks, the system leverages knowledge-aware methods to
respond with the corresponding answer, e.g., knowledge triple
retrieval [19].

The MWP task can be considered as a special case of QA
task. However, the MWP task is different from the traditional
text-based QA tasks with the following challenges: (1) A MWP
needs to parse the human-readable words into machine-
understandable mathematical logic to perform quantitative
reasoning; (2) A MWP requires complex reasoning scenarios,
and MWP solvers need to be capable of mathematical

A Systematic Survey on Math Word Problem
Solvers Based on Large Language Models

Yicong Liang1 and Debby D. Wang1
1School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR

yliang@hkmu.edu.hk

T

Feature Article: Yicong Liang and Debby D. Wang

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

9

calculation and mathematical reasoning; (3) Unlike natural
language understanding, MWPs usually have a single correct
numeric answer, which increases the difficulty for the solver to
accurately generate the solution.

Math reasoning tasks include arithmetic problems and math
word problems. Arithmetic problems mainly correspond to
mathematical calculation consisting of arithmetic
representation and arithmetic calculation [20]. However, there
exist some differences between arithmetic problems and math
word problems. In particular, arithmetic problems focus on pure
mathematical operations and numerical manipulation, where
the input problems rarely contain semantic textual elements.

On the other hand, math word problems are usually presented
as verbal descriptions instead of explicit mathematical
equations in arithmetic problems. In addition, MWP is related
to the task of mathematical reasoning, where the solver can
interpret and generate step-by-step natural text before giving
the final answer.

Traditional span-based methods of extractive question-
answering tasks (e.g., SQuAD [21]) cannot be directly applied
to solve MWPs since the answer is usually the result of some
computation and is generally not a span in the question or
context. A MWP solver generates a numerical math expression
and feeds this expression to an external symbolic calculator to
obtain the final answer.

B. Preliminary
The math word problems include the following main com-

ponents: (1) A textual description related to the math problem;
(2) A set of known quantities mentioned in the problem text; (3)
An unknown quantity whose value needs to be solved. In
addition, MWP can be further grouped into the different levels:
(1) one-unknown variable to be solved, or multi-unknown
variables; (2) linear equations or non-linear equations. In this
survey, the reviewed methods only aim to solve math problems
solved by linear equations towards one unknown variable.

The solution to the problem denoted as A can be represented
in the following format: (1) A single numerical value, e.g.,
GPT3 [6] leverages standard prompting to output the final
answer for a given MWP question; (2) A mathematical ex-
pression, as an input to an external tool like Python calculator
[22]; (3) a series of textual reasoning steps including the final
numeric answer, e.g., chain-of-thought prompt [16] requires
LLM to generate rationales before giving the final answer.
Previous studies [23], [24] address to generate the solution to a
math word problem as a mathematical expression, and these
models try to map the problem text to a symbolic space with
numbers and operators.

We introduce preliminaries of generating solutions to MWPs
with LM prompting based on large language models, and the
notations for modeling are listed in Table I. Mathematically, a
math word problem is represented in the form of a text sequence
< w1, w2, · · · , wn >. There are some known quantities

mentioned in the text and one unknown variable that the system
needs to solve. How to extract the quantities is a preprocessing
problem, and some works simply adopt the string pattern
matching method [25] to recognize the numeric entries.

 Based on the backbone of large language models, solving
MWP can be transformed into text generation tasks. Therefore,
the language model objective can be used in the MWP task for
solution generation. In the following, we will introduce how to
incorporate a pretrained language model to solve the MWP task.

Vanilla QA:

Given a textual question Q, the solution in terms of a single
numeric answer can be generated by the LLM. In addition, a
prefixed prompt will be added before generating the final
answer, e.g., “The answer is ” [6].

In-context learning:

To enhance the quality of the response from the LLM, in-
context learning (ICL) is incorporated into the natural language
processing (NLP) tasks. The ability of analogy with respect to
ICL is embedded in LLMs, which can be learned from a few
examples D in the context [26]. Each exemplar consists of one
question and its corresponding solution. Meanwhile, a list of
exemplars is concatenated to form the demonstration prompt,
which is fed into the LLM as an augmented context for
prediction on the testing question. The improvement by
leveraging ICL relies on the training stage and inference stage
[26], but this survey mainly focuses on the inference stage for
the MWP task.

Reasoning-enhanced QA:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

On the other hand, math word problems are usually presented
as verbal descriptions instead of explicit mathematical equa-
tions in arithmetic problems. In addition, MWP is related to the
task of mathematical reasoning, where the solver can interpret
and generate step-by-step natural text before giving the final
answer.

Traditional span-based methods of extractive question-
answering tasks (e.g., SQuAD [21]) can not be directly applied
to solve MWPs since the answer is usually the result of some
computation and is generally not a span in the question or
context. A MWP solver generates a numerical math expression
and feeds this expression to an external symbolic calculator to
obtain the final answer.

B. Preliminary

The math word problems include the following main com-
ponents: (1) A textual description related to the math problem;
(2) A set of known quantities mentioned in the problem text;
(3) An unknown quantity whose value needs to be solved. In
addition, MWP can be further grouped into the different levels:
(1) one-unknown variable to be solved, or multi-unknown
variables; (2) linear equations or non-linear equations. In this
survey, the reviewed methods only aim to solve math problems
solved by linear equations towards one unknown variable.

The solution to the problem denoted as A can be represented
in the following format: (1) A single numerical value, e.g.,
GPT3 [6] leverages standard prompting to output the final
answer for a given MWP question; (2) A mathematical ex-
pression, as an input to an external tool like Python calculator
[22]; (3) a series of textual reasoning steps including the final
numeric answer, e.g., chain-of-thought prompt [16] requires
LLM to generate rationales before giving the final answer.
Previous studies [23], [24] address to generate the solution to
a math word problem as a mathematical expression, and these
models try to map the problem text to a symbolic space with
numbers and operators.

We introduce preliminaries of generating solutions to MWPs
with LM prompting based on large language models, and the
notations for modeling are listed in Table I. Mathematically,
a math word problem is represented in the form of a text
sequence < w1, w2, · · · , wn >. There are some known quan-
tities mentioned in the text and one unknown variable that
the system needs to solve. How to extract the quantities is
a preprocessing problem, and some works simply adopt the
string pattern matching method [25] to recognize the numeric
entries.

Based on the backbone of large language models, solving
MWP can be transformed into text generation tasks. Therefore,
the language model objective can be used in the MWP task for
solution generation. In the following, we will introduce how
to incorporate a pretrained language model to solve the MWP
task.

Vanilla QA:

p(A|Q) =

|A|Y

i=1

p(ai|Q, a<i) (1)

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions

Q a question related to MWP

w a token in the text sequence

A a textual solution to the question

Y a numerical answer of the question

c one reasoning path

D A set of exemplars for in-context learning

Given a textual question Q, the solution in terms of a single
numeric answer can be generated by the LLM. In addition,
a prefixed prompt will be added before generating the final
answer, e.g., “The answer is ” [6].

In-context learning:

p(A|Q,D) =

|A|Y

i=1

p(ai|Q,D, a<i) (2)

To enhance the quality of the response from the LLM, in-
context learning (ICL) is incorporated into the natural lan-
guage processing (NLP) tasks. The ability of analogy with re-
spect to ICL is embedded in LLMs, which can be learned from
a few examples D in the context [26]. Each exemplar consists
of one question and its corresponding solution. Meanwhile, a
list of exemplars is concatenated to form the demonstration
prompt, which is fed into the LLM as an augmented context
for prediction on the testing question. The improvement by
leveraging ICL relies on the training stage and inference stage
[26], but this survey mainly focuses on the inference stage for
the MWP task.

Reasoning-enhanced QA:

p(A|D,Q) =
X

c

p(A, c|D,Q) =
X

c

p(A|D,Q, c)p(c|D,Q)

(3)
Scaling up the size of LLMs can elicit some reasoning abilities
that can improve the accuracy of MWP solvers by generating
a reasoning path c before giving the final numeric answer. In
particular, reasoning abilities can be unlocked by prompting
engineering [16], which generates a solution to MWP in the
step-by-step format.

III. SURVEYED METHODS

The principles for selecting reviewed papers in this work
are as follows: (1) The proposed methods are based on the
pretrained language models (e.g., GPT-3 [6], Codex [28]) as
their fundamental backbone, as shown in Table II; (2) The
tasks aim to solve math word problems, e.g., the datasets
in their experiments are related to MWP; (3) The reviewed
articles are published in top venues or with a citation count
over 50. The surveyed models are listed in Table III.

This survey first analyzes the compared models to determine
whether the parameters of their foundation language models
are updated. Accordingly, the reviewed methods are grouped

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

On the other hand, math word problems are usually presented
as verbal descriptions instead of explicit mathematical equa-
tions in arithmetic problems. In addition, MWP is related to the
task of mathematical reasoning, where the solver can interpret
and generate step-by-step natural text before giving the final
answer.

Traditional span-based methods of extractive question-
answering tasks (e.g., SQuAD [21]) can not be directly applied
to solve MWPs since the answer is usually the result of some
computation and is generally not a span in the question or
context. A MWP solver generates a numerical math expression
and feeds this expression to an external symbolic calculator to
obtain the final answer.

B. Preliminary

The math word problems include the following main com-
ponents: (1) A textual description related to the math problem;
(2) A set of known quantities mentioned in the problem text;
(3) An unknown quantity whose value needs to be solved. In
addition, MWP can be further grouped into the different levels:
(1) one-unknown variable to be solved, or multi-unknown
variables; (2) linear equations or non-linear equations. In this
survey, the reviewed methods only aim to solve math problems
solved by linear equations towards one unknown variable.

The solution to the problem denoted as A can be represented
in the following format: (1) A single numerical value, e.g.,
GPT3 [6] leverages standard prompting to output the final
answer for a given MWP question; (2) A mathematical ex-
pression, as an input to an external tool like Python calculator
[22]; (3) a series of textual reasoning steps including the final
numeric answer, e.g., chain-of-thought prompt [16] requires
LLM to generate rationales before giving the final answer.
Previous studies [23], [24] address to generate the solution to
a math word problem as a mathematical expression, and these
models try to map the problem text to a symbolic space with
numbers and operators.

We introduce preliminaries of generating solutions to MWPs
with LM prompting based on large language models, and the
notations for modeling are listed in Table I. Mathematically,
a math word problem is represented in the form of a text
sequence < w1, w2, · · · , wn >. There are some known quan-
tities mentioned in the text and one unknown variable that
the system needs to solve. How to extract the quantities is
a preprocessing problem, and some works simply adopt the
string pattern matching method [25] to recognize the numeric
entries.

Based on the backbone of large language models, solving
MWP can be transformed into text generation tasks. Therefore,
the language model objective can be used in the MWP task for
solution generation. In the following, we will introduce how
to incorporate a pretrained language model to solve the MWP
task.

Vanilla QA:

p(A|Q) =

|A|Y

i=1

p(ai|Q, a<i) (1)

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions

Q a question related to MWP

w a token in the text sequence

A a textual solution to the question

Y a numerical answer of the question

c one reasoning path

D A set of exemplars for in-context learning

Given a textual question Q, the solution in terms of a single
numeric answer can be generated by the LLM. In addition,
a prefixed prompt will be added before generating the final
answer, e.g., “The answer is ” [6].

In-context learning:

p(A|Q,D) =

|A|Y

i=1

p(ai|Q,D, a<i) (2)

To enhance the quality of the response from the LLM, in-
context learning (ICL) is incorporated into the natural lan-
guage processing (NLP) tasks. The ability of analogy with re-
spect to ICL is embedded in LLMs, which can be learned from
a few examples D in the context [26]. Each exemplar consists
of one question and its corresponding solution. Meanwhile, a
list of exemplars is concatenated to form the demonstration
prompt, which is fed into the LLM as an augmented context
for prediction on the testing question. The improvement by
leveraging ICL relies on the training stage and inference stage
[26], but this survey mainly focuses on the inference stage for
the MWP task.

Reasoning-enhanced QA:

p(A|D,Q) =
X

c

p(A, c|D,Q) =
X

c

p(A|D,Q, c)p(c|D,Q)

(3)
Scaling up the size of LLMs can elicit some reasoning abilities
that can improve the accuracy of MWP solvers by generating
a reasoning path c before giving the final numeric answer. In
particular, reasoning abilities can be unlocked by prompting
engineering [16], which generates a solution to MWP in the
step-by-step format.

III. SURVEYED METHODS

The principles for selecting reviewed papers in this work
are as follows: (1) The proposed methods are based on the
pretrained language models (e.g., GPT-3 [6], Codex [28]) as
their fundamental backbone, as shown in Table II; (2) The
tasks aim to solve math word problems, e.g., the datasets
in their experiments are related to MWP; (3) The reviewed
articles are published in top venues or with a citation count
over 50. The surveyed models are listed in Table III.

This survey first analyzes the compared models to determine
whether the parameters of their foundation language models
are updated. Accordingly, the reviewed methods are grouped

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

On the other hand, math word problems are usually presented
as verbal descriptions instead of explicit mathematical equa-
tions in arithmetic problems. In addition, MWP is related to the
task of mathematical reasoning, where the solver can interpret
and generate step-by-step natural text before giving the final
answer.

Traditional span-based methods of extractive question-
answering tasks (e.g., SQuAD [21]) can not be directly applied
to solve MWPs since the answer is usually the result of some
computation and is generally not a span in the question or
context. A MWP solver generates a numerical math expression
and feeds this expression to an external symbolic calculator to
obtain the final answer.

B. Preliminary

The math word problems include the following main com-
ponents: (1) A textual description related to the math problem;
(2) A set of known quantities mentioned in the problem text;
(3) An unknown quantity whose value needs to be solved. In
addition, MWP can be further grouped into the different levels:
(1) one-unknown variable to be solved, or multi-unknown
variables; (2) linear equations or non-linear equations. In this
survey, the reviewed methods only aim to solve math problems
solved by linear equations towards one unknown variable.

The solution to the problem denoted as A can be represented
in the following format: (1) A single numerical value, e.g.,
GPT3 [6] leverages standard prompting to output the final
answer for a given MWP question; (2) A mathematical ex-
pression, as an input to an external tool like Python calculator
[22]; (3) a series of textual reasoning steps including the final
numeric answer, e.g., chain-of-thought prompt [16] requires
LLM to generate rationales before giving the final answer.
Previous studies [23], [24] address to generate the solution to
a math word problem as a mathematical expression, and these
models try to map the problem text to a symbolic space with
numbers and operators.

We introduce preliminaries of generating solutions to MWPs
with LM prompting based on large language models, and the
notations for modeling are listed in Table I. Mathematically,
a math word problem is represented in the form of a text
sequence < w1, w2, · · · , wn >. There are some known quan-
tities mentioned in the text and one unknown variable that
the system needs to solve. How to extract the quantities is
a preprocessing problem, and some works simply adopt the
string pattern matching method [25] to recognize the numeric
entries.

Based on the backbone of large language models, solving
MWP can be transformed into text generation tasks. Therefore,
the language model objective can be used in the MWP task for
solution generation. In the following, we will introduce how
to incorporate a pretrained language model to solve the MWP
task.

Vanilla QA:

p(A|Q) =

|A|Y

i=1

p(ai|Q, a<i) (1)

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions

Q a question related to MWP

w a token in the text sequence

A a textual solution to the question

Y a numerical answer of the question

c one reasoning path

D A set of exemplars for in-context learning

Given a textual question Q, the solution in terms of a single
numeric answer can be generated by the LLM. In addition,
a prefixed prompt will be added before generating the final
answer, e.g., “The answer is ” [6].

In-context learning:

p(A|Q,D) =

|A|Y

i=1

p(ai|Q,D, a<i) (2)

To enhance the quality of the response from the LLM, in-
context learning (ICL) is incorporated into the natural lan-
guage processing (NLP) tasks. The ability of analogy with re-
spect to ICL is embedded in LLMs, which can be learned from
a few examples D in the context [26]. Each exemplar consists
of one question and its corresponding solution. Meanwhile, a
list of exemplars is concatenated to form the demonstration
prompt, which is fed into the LLM as an augmented context
for prediction on the testing question. The improvement by
leveraging ICL relies on the training stage and inference stage
[26], but this survey mainly focuses on the inference stage for
the MWP task.

Reasoning-enhanced QA:

p(A|D,Q) =
X

c

p(A, c|D,Q) =
X

c

p(A|D,Q, c)p(c|D,Q)

(3)
Scaling up the size of LLMs can elicit some reasoning abilities
that can improve the accuracy of MWP solvers by generating
a reasoning path c before giving the final numeric answer. In
particular, reasoning abilities can be unlocked by prompting
engineering [16], which generates a solution to MWP in the
step-by-step format.

III. SURVEYED METHODS

The principles for selecting reviewed papers in this work
are as follows: (1) The proposed methods are based on the
pretrained language models (e.g., GPT-3 [6], Codex [28]) as
their fundamental backbone, as shown in Table II; (2) The
tasks aim to solve math word problems, e.g., the datasets
in their experiments are related to MWP; (3) The reviewed
articles are published in top venues or with a citation count
over 50. The surveyed models are listed in Table III.

This survey first analyzes the compared models to determine
whether the parameters of their foundation language models
are updated. Accordingly, the reviewed methods are grouped

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

On the other hand, math word problems are usually presented
as verbal descriptions instead of explicit mathematical equa-
tions in arithmetic problems. In addition, MWP is related to the
task of mathematical reasoning, where the solver can interpret
and generate step-by-step natural text before giving the final
answer.

Traditional span-based methods of extractive question-
answering tasks (e.g., SQuAD [21]) can not be directly applied
to solve MWPs since the answer is usually the result of some
computation and is generally not a span in the question or
context. A MWP solver generates a numerical math expression
and feeds this expression to an external symbolic calculator to
obtain the final answer.

B. Preliminary

The math word problems include the following main com-
ponents: (1) A textual description related to the math problem;
(2) A set of known quantities mentioned in the problem text;
(3) An unknown quantity whose value needs to be solved. In
addition, MWP can be further grouped into the different levels:
(1) one-unknown variable to be solved, or multi-unknown
variables; (2) linear equations or non-linear equations. In this
survey, the reviewed methods only aim to solve math problems
solved by linear equations towards one unknown variable.

The solution to the problem denoted as A can be represented
in the following format: (1) A single numerical value, e.g.,
GPT3 [6] leverages standard prompting to output the final
answer for a given MWP question; (2) A mathematical ex-
pression, as an input to an external tool like Python calculator
[22]; (3) a series of textual reasoning steps including the final
numeric answer, e.g., chain-of-thought prompt [16] requires
LLM to generate rationales before giving the final answer.
Previous studies [23], [24] address to generate the solution to
a math word problem as a mathematical expression, and these
models try to map the problem text to a symbolic space with
numbers and operators.

We introduce preliminaries of generating solutions to MWPs
with LM prompting based on large language models, and the
notations for modeling are listed in Table I. Mathematically,
a math word problem is represented in the form of a text
sequence < w1, w2, · · · , wn >. There are some known quan-
tities mentioned in the text and one unknown variable that
the system needs to solve. How to extract the quantities is
a preprocessing problem, and some works simply adopt the
string pattern matching method [25] to recognize the numeric
entries.

Based on the backbone of large language models, solving
MWP can be transformed into text generation tasks. Therefore,
the language model objective can be used in the MWP task for
solution generation. In the following, we will introduce how
to incorporate a pretrained language model to solve the MWP
task.

Vanilla QA:

p(A|Q) =

|A|Y

i=1

p(ai|Q, a<i) (1)

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions

Q a question related to MWP

w a token in the text sequence

A a textual solution to the question

Y a numerical answer of the question

c one reasoning path

D A set of exemplars for in-context learning

Given a textual question Q, the solution in terms of a single
numeric answer can be generated by the LLM. In addition,
a prefixed prompt will be added before generating the final
answer, e.g., “The answer is ” [6].

In-context learning:

p(A|Q,D) =

|A|Y

i=1

p(ai|Q,D, a<i) (2)

To enhance the quality of the response from the LLM, in-
context learning (ICL) is incorporated into the natural lan-
guage processing (NLP) tasks. The ability of analogy with re-
spect to ICL is embedded in LLMs, which can be learned from
a few examples D in the context [26]. Each exemplar consists
of one question and its corresponding solution. Meanwhile, a
list of exemplars is concatenated to form the demonstration
prompt, which is fed into the LLM as an augmented context
for prediction on the testing question. The improvement by
leveraging ICL relies on the training stage and inference stage
[26], but this survey mainly focuses on the inference stage for
the MWP task.

Reasoning-enhanced QA:

p(A|D,Q) =
X

c

p(A, c|D,Q) =
X

c

p(A|D,Q, c)p(c|D,Q)

(3)
Scaling up the size of LLMs can elicit some reasoning abilities
that can improve the accuracy of MWP solvers by generating
a reasoning path c before giving the final numeric answer. In
particular, reasoning abilities can be unlocked by prompting
engineering [16], which generates a solution to MWP in the
step-by-step format.

III. SURVEYED METHODS

The principles for selecting reviewed papers in this work
are as follows: (1) The proposed methods are based on the
pretrained language models (e.g., GPT-3 [6], Codex [28]) as
their fundamental backbone, as shown in Table II; (2) The
tasks aim to solve math word problems, e.g., the datasets
in their experiments are related to MWP; (3) The reviewed
articles are published in top venues or with a citation count
over 50. The surveyed models are listed in Table III.

This survey first analyzes the compared models to determine
whether the parameters of their foundation language models
are updated. Accordingly, the reviewed methods are grouped

 Feature Article: A Systematic Survey on Math Word Problem Solvers Based on Large Language Models

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

10

Scaling up the size of LLMs can elicit some reasoning
abilities that can improve the accuracy of MWP solvers by
generating a reasoning path c before giving the final numeric
answer. In particular, reasoning abilities can be unlocked by
prompting engineering [16], which generates a solution to
MWP in the step-by-step format.

III. SURVEYED METHODS

The principles for selecting reviewed papers in this work are
as follows: (1) The proposed methods are based on the
pretrained language models (e.g., GPT-3 [6], Codex [28]) as
their fundamental backbone, as shown in Table II; (2) The tasks
aim to solve math word problems, e.g., the datasets in their
experiments are related to MWP; (3) The reviewed articles are
published in top venues or with a citation count over 50. The
surveyed models are listed in Table III.

This survey first analyzes the compared models to determine
whether the parameters of their foundation language models are
updated. Accordingly, the reviewed methods are grouped into
two mainstreams: finetune-based and prompt-based methods.

A. Finetune-based Models
Numerical reasoning skills are challenging when the LMs

are only trained on the objective of the vanilla language model.
Geva et al. [23] proposed a multi-task training strategy to inject
mathematical reasoning skills into PLMs. Notably, the
proposed framework GenBERT [23] incorporates automatic
data generation in the pretraining task and is trained on textual
data in the form of question-passage pairs. GenBERT is a
BERT-based model for generating arbitrary output tokens. It

can handle the extractive QA task, where the answer is a text
span among the question or context and contains a generative
head that can output the numeric answer.

The MWP solver trained on the language model objective
may make mistakes in generating mathematical expressions.
The models trained to learn the mapping from problem text to
math expressions may have unsatisfactory performance
because it is difficult for them to learn to distinguish between
ground-truth and predictive expressions with minor mistakes
[24]. To handle this limitation, Shen et al. [24] additionally
introduce a ranker to explicitly train the model to distinguish
between accurate and inaccurate expressions. The proposed
model Generate & Rank [24] within transformer-based
encoder-decoder architecture BART [10] first generates
expression candidates and then ranks the candidates to make the
final prediction.

It is challenging for autoregressive models to accomplish
mathematical reasoning tasks since they cannot correct their
errors when a generation is generated. Similar to the idea in [24]
that the solutions generated need to be evaluated, Cobbe et al.
[15] proposed training verifiers to check the correctness of the
candidate solutions. In addition, the proposed model [15]
developed reasoning steps in natural language such that the
produced solutions were more interpretable by humans instead
of producing a math expression in [24]. The generator based on
GPT3 [6] is finetuned on a curated math dataset GSM8K [15]
for generating rationales to form the full natural language
solution. The experimental results suggest that it is essential to
allow the MWP solver to generate a natural language solutionJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE II
PRETRAINED LANGUAGE MODELS USED IN MATH WORD PROBLEM.

Pretrained LM Size
GPT2 [11] 1.5B
GPT3 [6] 175B
GPT-J [27] 6B
Codex [28] 12B
PaLM [17] 540B
BERT [7] 340M
BART [10] 406M
DeBERTa [9] 304M

TABLE III
SURVEYED PAPERS.

Model Venue Language model Parameters update External component
GPT3 [6] Arxiv GPT3 No Nill
CoT [16] NeurIPS GPT3 No Nill
Zeroshot-CoT [29] NeurIPS GPT3 No Nill
Auto-CoT [30] ICLR GPT3 No Sentence-BERT
PAL [31] ICML Codex No Nill
PoT [32] TMLR Codex No SymPy
Self-consistency [18] ICLR PaLM No Nill
Least-to-most [33] ICLR GPT3 No Nill
MathPrompter [25] ACL GPT3 No Calculator
DECLARATIVE [22] NeurIPS Codex No SymPy
Plan-and-Solve [34] ACL GPT3 No Nill
Complexity [35] ICLR GPT3 No Nill
GenBERT [23] ACL BERT Yes Nill
Generate & Rank [24] EMNLP BART Yes Trained Ranker
Verifier [15] Arxiv GPT3 Yes Trained Verifer
STaR [36] NeurIPS GPT-J Yes Nill
DIVERSE [37] ACL DeBERTa Yes Trained Verifier
CoRe [38] ACL GPT-J Yes Trained Verifier

into two mainstreams: finetune-based and prompt-based meth-
ods.

A. Finetune-based Models

Numerical reasoning skills are challenging when the LMs
are only trained on the objective of the vanilla language model.
Geva et al. [23] proposed a multi-task training strategy to
inject mathematical reasoning skills into PLMs. Notably, the
proposed framework GenBERT [23] incorporates automatic
data generation in the pretraining task and is trained on textual
data in the form of question-passage pairs. GenBERT is a
BERT-based model for generating arbitrary output tokens. It
can handle the extractive QA task, where the answer is a text
span among the question or context, and contains a generative
head that can output the numeric answer.

The MWP solver trained on the language model objective
may make mistakes in generating mathematical expressions.
The models trained to learn the mapping from problem text
to math expressions may have unsatisfactory performance
because it is difficult for them to learn to distinguish be-
tween ground-truth and predictive expressions with minor
mistakes [24]. To handle this limitation, Shen et al. [24]
additionally introduce a ranker to explicitly train the model to
distinguish between accurate and inaccurate expressions. The
proposed model Generate & Rank [24] within transformer-
based encoder-decoder architecture BART [10] first generates
expression candidates and then ranks the candidates to make
the final prediction.

It is challenging for autoregressive models to accomplish
mathematical reasoning tasks since they cannot correct their
errors when a generation is generated. Similar to the idea in
[24] that the solutions generated need to be evaluated, Cobbe
et al. [15] proposed training verifiers to check the correctness
of the candidate solutions. In addition, the proposed model
[15] developed reasoning steps in natural language such that
the produced solutions were more interpretable by humans
instead of producing a math expression in [24]. The generator
based on GPT3 [6] is fine-tuned on a curated math dataset
GSM8K [15] for generating rationales to form the full natural
language solution. The experimental results suggest that it
is essential to allow the MWP solver to generate a natural
language solution before giving the final answer, and the
performance dropped dramatically if directly outputting a final
numeric answer without any intermediate steps [15].

Generating intermediate reasoning steps improves LM per-
formance on complex tasks like MWP, but fine-tuning the
generator requires massive training examples with rationales.
To address this limitation, Zelikman et al. [36] developed a
self-taught reasoner (STaR) by iteratively bootstrapping the
reasoning ability to generate rationales. In particular, start-
ing with a small prompt dataset that contains intermediate
rationales, StaR adopts in-context prompting to annotate each
example in the large dataset for further finetuning the language
model [36]. To improve the robustness, rationalization is
applied [36] to reason backward for problems that the model
fails to solve, i.e., given the correct answer as a hint, let the

Feature Article: Yicong Liang and Debby D. Wang

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

11

before giving the final answer, and the performance dropped
dramatically if directly outputting a final numeric answer
without any intermediate steps [15].

Generating intermediate reasoning steps improves LM
performance on complex tasks like MWP, but fine-tuning the
generator requires massive training examples with rationales.
To address this limitation, Zelikman et al. [36] developed a self-
taught reasoner (STaR) by iteratively bootstrapping the
reasoning ability to generate rationales. In particular, starting
with a small prompt dataset that contains intermediate
rationales, StaR adopts in-context prompting to annotate each
example in the large dataset for further finetuning the language
model [36]. To improve the robustness, rationalization is
applied [36] to reason backward for problems that the model
fails to solve, i.e., given the correct answer as a hint, let the
model generate the rationale accordingly. Finally, the
finetuning process will be repeated on the enlarged dataset with
previously generated rationales.

Few-shot learning for solving MWP is a challenging task
that requires the LMs to elicit intermediate reasoning steps.
Even equipped with the LLMs like GPT3 (175B) [6] and PaLM
(540B) [17], the reasoning abilities are still limited. To further
improve the reasoning capacity of PLMs, Li et al. [37] designed
a diverse verifier to aggregate different sampled reasoning
paths to solve the MWP. Specifically, the proposed model
DIVERSE [37] first samples different demonstration exemplars
for constructing diverse prompts and then feeds them OpenAI
PLMs (e.g., text-davinci-002) to generate various reasoning
paths. Second, DIVERSE trains a step-aware verifier by
finetuning DeBERTa [9] to score the quality of each path and
uses a weighted voting mechanism [37] to obtain the final
answer.

Directly prompting PLMs to solve MWPs often does not
yield satisfactory results, as the generation process lacks the
level of supervision and adaptivity that humans possess. Zhu et
al. [38] argued that the human-like reasoning framework could
be modeled using a dual system approach, with a generator for
immediate reactions and a verifier for more nuanced reasoning.
Their proposed model CoRe [38] leverages the direct
interaction between the generator and verifier to improve the
generalization ability of LLMs. First, the verifier can provide
reliable feedback to supervise the generator for rationale
generation. Second, the verifier leverages Monte Carlo Tree
Search (MCTS) [39] to score the tokens of reasoning paths
produced by the generator. Finally, the proposed strategy of
self-thinking can provide informative self-produced data to
teach the generator and verifier.

B. Prompt-based Models
Based on the transformer-based framework with self-

attention technique [40], numerous downstream tasks have
been transferred into text generation problems by following the

“pretrain, prompt and predict” paradigm. In this paradigm,
instead of finetuning the PLMs to adapt to a new task, solving
text-based tasks is reformulated to the original language model
pretraining with the help of an appropriate textual prompt [41].
Inspired by the idea that humans can perform a new language
task from a few demonstration examples or simple task
instructions, Brown et al. [6] leverage in-context learning
within few-shot settings and prompt the language model GPT3
to solve the target tasks by providing some task examples as
additional context during the inference stage without any
gradient update [6]. The significant advancement of this setting
is that the users can prompt the model with a few input-output
demonstration exemplars instead of finetuning a separate LM
checkpoint for each new task. The experimental results [6]
show that scaling up LMs greatly improves task-agnostic, few-
shot performance.

The critical limitation of a finetune-based MWP solver is that
it is expensive to collect a large set of training data with high-
quality rationales. The traditional few-shot prompting
technique used in [6] has been successful for a series of simple
QA tasks but performs poorly on tasks requiring reasoning
ability even with increasing LM scale [42]. Wei et al. proposed
chain-of-thought prompting [16] to elicit the LLMs’ reasoning
ability for complex tasks, e.g., commonsense reasoning and
arithmetic. This approach involves a sequence of intermediate
reasoning steps expressed in natural language, leading to the
final output. CoT prompting can be considered as a special type
of in-context learning where each exemplar includes the
reasoning thought process instead of just a single final answer.
The experimental results suggest that CoT prompting improves
performance by allowing the sequential reasoning steps
embodied in the generation [16].

Pretrained large language models are well-known as excel-
lent few-shot learners with task-specific exemplars and can
generate complex rationales via step-by-step solution examples.
Kojima et al. [29] show that PLMs are also decent zero-shot
learners by leveraging a simple but effective prompt “Let’s
think step by step” before giving the final answer. The proposed
model Zero-shot-CoT [29] does not require handcrafted task-
specific exemplars and outperforms zero-shot LLMs on diverse
downstream reasoning tasks, e.g., arithmetic math word
problems.

According to the prompting design regarding the number of
exemplars, CoT prompting can be classified into two significant
paradigms: few-shot CoT and zero-shot CoT. In general, few-
shot CoT with task-specific rationales demonstrations
outperforms zero-shot CoT in most cases. However, manually
constructing exemplars with step-by-step reasoning chains for
a specific task or even each testing question is nontrivial.
Randomly or heuristically selecting in-context examples in CoT
prompting may have a high risk of unstable performance in
reasoning tasks. To address this limitation, Zhang et al. [30]
proposed automatically constructing demonstrations with
questions and reasoning chains instead of handcrafting in-

 Feature Article: A Systematic Survey on Math Word Problem Solvers Based on Large Language Models

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

12

context exemplars. Prompting LLM to generate reasoning
chains for each exemplar directly often comes with mistakes.
The proposed solver Auto-CoT [30] increases the diversity of
demonstration questions to help the LLM lower the mistakes in
generating reasoning chains. Particularly, the questions are
clustered based on their representation obtained by Sentence-
BERT [43], and a representative question from each cluster is
selected.

LLMs have demonstrated their effectiveness in diverse
downstream reasoning tasks by using CoT and in-context
learning. However, LLMs often make arithmetic mistakes in
the solutions, even if the generated rationales are logically
correct. Program-Aided Language model (PAL) [31] addressed
the underlying problem that LLMs often struggle with
performing arithmetic operations and proposes to use an
external tool (i.e., Python program) to deal with the calculation
work. PAL leverages the LLM (i.e., Codex [28]) to read a
testing problem and then generates a program [31] instead of
natural language rationales [16], [29], [30] as intermediate
reasoning steps to assure the calculation accuracy by using the
Python interpreter.

Previous methods [16], [30], [29] output the chain-of-
thought reasoning steps in natural language and let the PLMs
do reasoning and computation jobs simultaneously. Chen et al.
[32] argued that LMs could express reasoning steps as programs
in a few lines of code, and the external language interpreter (e.g.,
Sympy [44]) can finish the computation work. The proposed
model Program of Thoughts (PoT) decouples complex
computation from reasoning and language under- standing. To
compare PoT with vanilla CoT [16] and Zero-shot CoT [29],
PoT leverages the program of thoughts in each exemplar and
does not require an extra step to extract the answer from the
reasoning steps since the generated program can be executed by
the interpreter to return the final answer. Intuitively, there exist
multiple different ways of solution leading to its unique correct
answer for a complex reasoning problem. Inspired by that,
Wang et al. [18] designed a novel decoding strategy, self-
consistency, to sample multiple solutions instead of greedily
decoding only one as used in vanilla CoT [16]. In particular,
self-consistency first samples a diverse set of reasoning paths
and then aggregates them by using a majority voting scheme to
select the most consistent answer. Compared to the sample-and-
rank methods [15], [37], self-consistency does not require
training an additional component or finetuning the backbone
LM to verify the correctness probability of the generated
solution.

In-context learning and CoT have been widely adopted in
prompting engineering to help LLMs solve various reasoning
tasks. However, LLMs will have poor performance in the case
when the examples in the ICL demonstration prompt are easier
than the testing problem1. To address this issue, Zhou et al. [33]
introduced a new prompting strategy, Least-to-most, to help

1 A MWP can be simply measured its difficulty by the number of solving
steps [33].

LLMs improve easy-to-hard generalization. Specifically, least-
to-most decomposes a complex problem into a series of simpler
subproblems and then solves them sequentially. In both stages,
the decomposition and subproblem solving are accomplished
by the LM without any parameter update. In addition, Least-to-
most can be incorporated with ICL and CoT to further enhance
the performance in reasoning tasks.

In the zero-shot setting, Zero-shot CoT [29] has
demonstrated its remarkable performance in mathematical
reasoning tasks. However, Imani et al. [25] pointed out two
limitations in CoT-based prompting methods: (1) lack of
checking the validity of reasoning steps; (2) lack of confidence
in the predictions. The proposed model MathPrompter [25] first
transforms the question into an Algebraic template with value-
variable mapping and then sends it to the LLM to generate two
different solutions in Algebraic and program ways for cross-
checking. Afterward, MathPrompter evaluates the two
generated solutions using multiple randomly selected values to
check consensus among the answers. Repeat the above steps
several times to extract the most frequent value observed for the
answer.

Some methods [31], [32] offload the calculation to a
language interpreter to eliminate the arithmetic error that LLMs
often make in generating the solutions. However, these
program-based models favor those problems with simple
procedures and are less effective for problems requiring
declarative reasoning. He-Yueya et al. [22] proposed the
approach DECLARATIVE to perform mathematical
declarations. DECLARATIVE prompts the LLM to formalize
MWPs as a set of variables and equations incrementally and
solves the equations by passing them to Sympy [44].

Zero-shot CoT can lower the effort to manually handcrafted
step-by-step reasoning exemplars, but it still suffers from
missing-step and calculation errors. To address the missing-
step limitation, Wang et al. [34] manually craft the Plan-and-
solve prompt to guide the LM to devise a plan to decompose the
entire task into several subtasks and solve each subtask
sequentially. To address the arithmetic limitation, the
researchers add a detailed instruction prompt [34] to ask the LM
to pay more attention to variables and calculation results.

Demonstration exemplars with reasoning steps can improve
the prediction performance for new inputs. However, different
exemplars may influence the testing question differently when
making inferences. Which reasoning exemplars make the most
the most effective in-context learning prompts becomes a
critical question. Fu et al. [35] proposed complexity-based
prompting, a novel example selection scheme, for CoT multi-
step reasoning. Specifically, select complex instances 2 with
CoT reasoning steps in the in-context learning prompt before
the testing question. The experimental results suggest that
selecting complex questions as in-context learning exemplars
improves the performance on math word reasoning tasks [35].

2 The complexity indicator is the number of steps to solve the question.

Feature Article: Yicong Liang and Debby D. Wang

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

13

IV. CHALLENGES AND FUTURE DIRECTIONS

When the large language models (e.g. GPT [45] and LLaMA
[46]) are released to the public, the trends show that fewer
models will be proposed for outputting math expression only,
and more research will focus on leveraging the LLMs directly
to generate a natural language solution for MWPs, including the
rationales and numeric final answer. The possible reason may
be that, due to the difference between natural language text
sequences and mathematical expressions, one minor mistake
will change the semantics and lead to an incorrect answer,
whereas natural language generation is more robust to these tiny
mistakes [24]. In addition, the performance of MWP solvers for
generating mathematical expressions will only degrade quickly
when the expression gets longer [4].

Generating stepwise rationales can enhance the performance
of language models on complex reasoning tasks. However,
inducing the rationale generation from LMs requires
constructing a large amount of data containing reasoning steps.
It is very expensive to construct such datasets manually to
finetune the LLMs. To the best of our knowledge, only GSM8K
[15] and MATH [14] provide full step-by-step solutions to
finetune the LLMs, in order to generate the solution for a testing
problem. In addition, the language model finetuned on one
specific dataset may not generalize well on another MWP
dataset.

Another line of method to elicit LLMs to generate reasoning
steps automatically is to adopt some prompting strategies,
including instructions, trigger sentences, and in-context
learning. LLMs have shown promising performance in solving
new reasoning problems by simply conditioning on a few
demonstration examples (e.g., few-show learning). However,
small variations in prompt configuration have been known to
affect few-shot performance dramatically [35]. Handcrafting
instructing prompts for different reasoning MWP datasets needs
much expertise and annotation work. The order of exemplars
listed in the demonstration, the complexity of problems
provided in in-context learning, and the relation (e.g., similarity)
between demonstration examples and the testing problem may
affect the prediction performance.

Based on the challenges illustrated above, we will outline
some future directions for improving the reasoning ability of
MWP solvers. As a formula is not only a simple sequence of
mathematical symbols but also has strong logical and se- mantic
relation with its context [47], selecting the appropriate formulas
is the key step to solve an MWP. Hence, training the
representation of the formula is essential for the neural solver.
In addition, it is interesting to check the relatedness between the
formula and the supporting generated rationale in each step and
in different steps by jointly training with the formula and its
surrounding context, which could further improve the
interpretability of the solver system for users.

Combining Chain-of-thought prompting with in-context
learning has shown the efficiency in unlocking the reasoning

capability of LLMs without any gradient update or finetuning
models [16], [18], [30], [6]. There is still some work to be done
to optimize the selection of demonstration examples. Given an
exemplar base with a reasoning-step solution for each question,
train a small-scaled neural module to select in-context
exemplars automatically for the testing problem.

Although LLMs have decent performance in many NLP
tasks, building an LLM-based education system is still
challenging. Li et al. [48] argue that LLMs basically need to
integrate five educational abilities to address students’ concerns
for their studies. Besides automatically solving MWPs, the
solver can be constructed as a multi-functional education
system. For example, given a problem that a student cannot
solve by herself the first time, the system can generate other
questions with similar principles for her to make more practice.
On the other hand, instead of directly giving a complete solution
to the question, it is more helpful to generate some hints based
on the student’s partial solution. The traditional MWP solver
can be transferred to an LLM-based MWP assistant to meet
students’ various requirements.

V. CONCLUSION

Automatically generating high-quality and step-by-step
solutions to math word problems has numerous applications in
education. This paper presents an overview of the current state
of knowledge on math word problems based on LLMs. We
divided the reviewed models into two groups, namely finetune-
based and prompt-based, and examined their fine- tuning
framework and prompting strategies. Finally, we issued the
limitations of existing LLM-based MWP solvers and
highlighted the future directions worth working on. We hope
this survey can highlight the current state of MWP research and
provide some insight into future work in this direction.

ACKNOWLEDGMENT
The work described in this paper was supported by the Katie

Shu Sui Pui Charitable Trust — Academic Publication
Fellowship (Project Reference No. KSPF/2023/05).

REFERENCES
[1] E. A. Feigenbaum, J. Feldman et al., Computers and thought. New York

McGraw-Hill, 1963, vol. 37.
[2] E. Charniak, "Computer solution of calculus word problems," in

Proceedings of the 1st international joint conference on Artificial
Intelligence, 1969, pp. 303-316.

[3] J. Li, L. Wang, J. Zhang, Y. Wang, B. T. Dai, and D. Zhang, "Modeling
intra-relation in math word problems with different functional multi-head
attentions," in Proceedings of the 57th annual meeting of the association
for computational linguistics, 2019, pp. 6162-6167.

[4] Z. Xie and S. Sun, "A goal-driven tree-structured neural model for math
word problems." in Ijcai, 2019, pp. 5299-5305.

[5] D. Zhang, L. Wang, L. Zhang, B. T. Dai, and H. T. Shen, "The gap of
semantic parsing: A survey on automatic math word problem solvers,"
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 9, pp. 2287-2305, 2019.

 Feature Article: A Systematic Survey on Math Word Problem Solvers Based on Large Language Models

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

14

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell et al., "Language models are
few-shot learners," Advances in neural information processing systems,
vol. 33, pp. 1877-1901, 2020.

[7] J. Devlin, "Bert: Pre-training of deep bidirectional transformers for
language understanding," arXiv preprint arXiv:1810.04805, 2018.

[8] Y. Liu, "Roberta: A robustly optimized bert pretraining approach," arXiv
preprint arXiv:1907.11692, 2019.

[9] P. He, X. Liu, J. Gao, and W. Chen, "Deberta: Decoding-enhanced bert
with disentangled attention," arXiv preprint arXiv:2006.03654, 2020.

[10] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, "Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension," arXiv preprint arXiv:1910.13461, 2019.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
"Language models are unsupervised multitask learners," OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[12] A. Talmor, J. Herzig, N. Lourie, and J. Berant, "Commonsenseqa: A
question answering challenge targeting commonsense knowledge," arXiv
preprint arXiv:1811.00937, 2018.

[13] Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and Szegedy,
"Autoformalization with large language models," Advances in Neural
Information Processing Systems, vol. 35, pp. 32 353-32 368, 2022.

[14] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, Song,
and J. Steinhardt, "Measuring mathematical problem solving with the
math dataset," arXiv preprint arXiv:2103.03874, 2021.

[15] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M.
Plappert, J. Tworek, J. Hilton, R. Nakano et al., "Training verifiers to
solve math word problems," arXiv preprint arXiv:2110.14168, 2021.

[16] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D.
Zhou et al., "Chain-of-thought prompting elicits reasoning in large
language models," Advances in neural information processing systems,
vol. 35, pp. 24 824-24 837, 2022.

[17] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., "Palm: Scal- ing
language modeling with pathways," Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1-113, 2023.

[18] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery,
and D. Zhou, "Self-consistency improves chain of thought reasoning in
language models," arXiv preprint arXiv:2203.11171, 2022.

[19] X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang, "Kepler: A
unified model for knowledge embedding and pre-trained language
representation," Transactions of the Association for Computational
Linguistics, vol. 9, pp. 176-194, 2021.

[20] W. Liu, H. Hu, J. Zhou, Y. Ding, J. Li, J. Zeng, M. He, Q. Chen, B. Jiang,
A. Zhou et al., "Mathematical language models: A survey," arXiv preprint
arXiv:2312.07622, 2023.

[21] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, "Squad: 100,000+
questions for machine comprehension of text," arXiv preprint
arXiv:1606.05250, 2016.

[22] J. He-Yueya, G. Poesia, R. E. Wang, and N. D. Goodman, "Solving math
word problems by combining language models with symbolic solvers,"
arXiv preprint arXiv:2304.09102, 2023.

[23] M. Geva, A. Gupta, and J. Berant, "Injecting numerical reasoning skills
into language models," arXiv preprint arXiv:2004.04487, 2020.

[24] J. Shen, Y. Yin, L. Li, L. Shang, X. Jiang, M. Zhang, and Q. Liu,
"Generate & rank: A multi-task framework for math word problems,"
arXiv preprint arXiv:2109.03034, 2021.

[25] S. Imani, L. Du, and H. Shrivastava, "Mathprompter: Mathematical rea-
soning using large language models," arXiv preprint arXiv:2303.05398,
2023.

[26] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z.
Sui, "A survey on in-context learning," arXiv preprint arXiv:2301.00234,
2022.

[27] B. Wang and A. Komatsuzaki, "GPT-J-6B: A 6 Billion Parameter
Autoregressive Language Model," https://github.com/kingoflolz/mesh-
transformer-jax, May 2021.

[28] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H.
Edwards, Y. Burda, N. Joseph, G. Brockman et al., "Evaluating large
language models trained on code," arXiv preprint arXiv:2107.03374,
2021.

[29] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, "Large lan-
guage models are zero-shot reasoners," Advances in neural information
processing systems, vol. 35, pp. 22 199-22 213, 2022.

[30] Z. Zhang, A. Zhang, M. Li, and A. Smola, "Automatic chain of thought
prompting in large language models," arXiv preprint arXiv:2210.03493,
2022.

[31] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G.
Neubig, "Pal: Program-aided language models," in International
Conference on Machine Learning. PMLR, 2023, pp. 10 764-10 799.

[32] W. Chen, X. Ma, X. Wang, and W. W. Cohen, "Program of thoughts
prompting: Disentangling computation from reasoning for numerical
reasoning tasks," arXiv preprint arXiv:2211.12588, 2022.

[33] D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans,
C. Cui, O. Bousquet, Q. Le et al., "Least-to-most prompting enables
complex reasoning in large language models," arXiv preprint
arXiv:2205.10625, 2022.

[34] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P. Lim,
"Plan-and-solve prompting: Improving zero-shot chain-of-thought
reasoning by large language models," arXiv preprint arXiv:2305.04091,
2023.

[35] Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, "Complexity- based
prompting for multi-step reasoning," in The Eleventh International
Conference on Learning Representations, 2022.

[36] E. Zelikman, Y. Wu, J. Mu, and N. Goodman, "Star: Bootstrapping
reasoning with reasoning," Advances in Neural Information Processing
Systems, vol. 35, pp. 15 476-15 488, 2022.

[37] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen, "Making
large language models better reasoners with step-aware verifier," arXiv
preprint arXiv:2206.02336, 2022.

[38] X. Zhu, J. Wang, L. Zhang, Y. Zhang, Y. Huang, R. Gan, J. Zhang, and
Y. Yang, "Solving math word problems via cooperative reasoning
induced language models," arXiv preprint arXiv:2210.16257, 2022.

[39] L. Kocsis and C. Szepesvari, "Bandit based montecarlo planning," in
European conference on machine learning. Springer, 2006, pp. 282- 293.

[40] A. Vaswani, "Attention is all you need," Advances in Neural Information
Processing Systems, 2017.

[41] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, "Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural
language processing," ACM Computing Surveys, vol. 55, no. 9, pp. 1-35,
2023.

[42] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J.
Aslanides, S. Henderson, R. Ring, S. Young et al., "Scaling language
models: Methods, analysis & insights from training gopher," arXiv
preprint arXiv:2112.11446, 2021.

[43] N. Reimers, "Sentence-bert: Sentence embeddings using siamese bert-
networks," arXiv preprint arXiv:1908.10084, 2019.

[44] A. Meurer, C. P. Smith, M. Paprocki, O. Certik, S. B. Kirpichev, M.
Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh et al., "Sympy:
symbolic computing in python," PeerJ Computer Science, vol. 3, p. e103,
2017.

[45] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
Zhang, S. Agarwal, K. Slama, A. Ray et al., "Training language models
to follow instructions with human feedback," Advances in neural
information processing systems, vol. 35, pp. 27 730-27 744, 2022.

[46] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.A. Lachaux, T. Lacroix,
B. Rozie`re, N. Goyal, E. Hambro, F. Azhar et al., "Llama: Open and
efficient foundation language models," arXiv preprint arXiv:2302.13971,
2023.

[47] S. Peng, K. Yuan, L. Gao, and Z. Tang, "Mathbert: A pre- trained model
for mathematical formula understanding," arXiv preprint
arXiv:2105.00377, 2021.

[48] Q. Li, L. Fu, W. Zhang, X. Chen, J. Yu, W. Xia, W. Zhang, R. Tang, and
Y. Yu, "Adapting large language models for education: Foundational ca-
pabilities, potentials, and challenges," arXiv preprint arXiv:2401.08664,
2023.

