
Feature Article: Dwith Chenna

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

15

Abstract— Convolutional Neural Networks (CNNs), widely used
in computer vision tasks, require substantial computation and
memory resources, making it challenging for these models to run
efficiently on resource-constrained devices. Network Architecture
Search (NAS) methods have been developed to design compute-
efficient models like MobileNet and EfficientNet. However, many
of these models suffer from inefficiencies in hardware utilization
due to their ineffectiveness in understanding the system-level
details like software framework, memory bandwidth limitations
and hardware capabilities for model deployment on devices. This
excessive focus on compute efficiency, sometimes referred to as the
“MAC tunnel vision” problem, leads to sub-optimal performance
during model deployment. In this paper, we aim to bridge this gap
by analyzing the performance across popular network
architectures like ResNet, EfficientNet for different network
hyper-parameters such as input size, feature dimensions, grouped
convolution and network depth. This analysis provides CNN
modeling engineers with the necessary tools to design models that
can efficiently utilize the resources of available hardware. This
approach not only incorporates hardware awareness into the
model deployment but also considers different aspects of
deployment, such as optimization algorithms (e.g., layer fusion,
quantization), execution model, efficient kernels and hardware
capabilities.

Index Terms— Convolutional Neural Networks, Computer
Vision, Optimization Algorithms

I. INTRODUCTION
onvolutional Neural Networks (CNNs) have significantly
impacted Embedded Vision and Edge AI by enabling AI

applications on resource-constrained devices. With compute
requirements of AI models growing each year, hardware
accelerators have become crucial for efficiency. The ubiquitous
presence of CNN models for vision applications has spurred the
development of various CNN accelerator platforms [1-3].
These accelerators are designed to handle a wide range of CNN
models and deliver efficient performance. However, the fast-
evolving nature of CNN architectures presents a persistent
challenge. This results in hardware accelerators constantly
striving to keep pace with the latest models. Given the longer
refresh cycles and lifecycles of hardware, this issue is
increasingly prevalent across various fields. Tradeoffs related
to compute and memory bandwidth may need to be
reconsidered for future hardware versions. Bridging the gap
between these developed models and inference platforms is

necessary for overall system efficiency and enabling Edge AI
applications. Achieving optimal system performance requires a
deep understanding of hardware capabilities and the selection
or design of architectures better suited to the hardware. CNN
model deployments on hardware involves optimizing
algorithms (i.e. layer fusion, pruning, quantization), execution
models, efficient kernels, and leveraging hardware capabilities.
Network Architecture Search (NAS) methods [4] for automatic
search and design of CNN models have been used to find the
optimum tradeoff between accuracy and compute efficiency.
This led to development of many smaller and compute efficient
model architectures like MobileNet[5] and EfficientNet[6]. A
significant limitation of current NAS designs is a lack of
consideration for hardware platform capabilities or features,
focusing solely on compute or Multiply and Accumulate
(MAC) efficiency. This results in inefficient design choices,
also referred to as "MAC tunnel vision," where memory
bandwidth constraints and other system and hardware
limitations are overlooked.

While the goal of NAS methods is to reduce compute or the
number of parameters, this does not always lead to improved
inference speed, as the software framework and underlying
hardware capabilities play a crucial role. For instance,
MobileNetV2[7], with 307M MACs and a model size of 13MB,
exhibits a 30% higher runtime compared to ResNet18[8], which
has 1.8B MACs and a model size of 45MB. This comparison
clearly demonstrates that the total MACs or model size does not
necessarily correlate with runtime performance. Table 1 shows
the performance comparison between ResNet18 and
MobileNetV2 on hardware accelerator [9], highlights
inefficiencies in model deployment. This discrepancy raises an
important question: how can we design models for better
efficiency during deployment? The answer involves
considering various factors such as network architecture,
optimizations, implementation details, and hardware
capabilities. Understanding the performance characteristics of
these models on the inference framework and device is crucial.
Evaluating models for deployment efficiency requires a system-
level approach that goes beyond just the compute or parameter
count. It involves a detailed analysis of how different network
design choices effects the perform under specific framework
and hardware constraints. This approach ensures that the

Bridging the MAC Tunnel Vision: System-Level Performance
Analysis of CNN Model Deployment at the Edge

 Dwith Chenna

AMD http://www.amd.com
dwith.chenna@ieee.org

C

 Feature Article: Bridging the MAC Tunnel Vision: System-Level Performance Analysis of CNN Model
Deployment at the Edge

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

16

models not only leverage the full potential of the hardware but
also achieve the desired efficiency in real-world applications.

TABLE I: PERFORMANCE COMPARISON RESNET18 VS
MOBILENETV2

Network Model
Size

(Float)

Model Size
(Quantized)

Layers

MACs Latency
(Ms)

Throughput
(fps)

ResNet18 45MB 12MB 169 1.8B 7.35 538.7fps

MobileNetV2 13MB 3.5MB 357 307M 10.34 381.95fps

Many model developers often lack knowledge or
understanding of the deployment framework or device, making
the deployment process even more challenging. A paradigm
shift in model design that considers hardware capabilities can
unlock significant performance improvements [10-11].
However, understanding the implementation details and
tradeoffs related to inference hardware can be daunting. To
address this, a simpler interface is needed to evaluate on-device
performance, enabling its integration with automation
frameworks like NAS for efficient model design. While
existing benchmarks provide some guidance on the
performance of different model architectures, they often fail to
offer useful insights due to their limited design exploration
space. Fig. 1 shows the comparison of latency (runtime) vs
MACs performance of popular CNN architectures like ResNet,
EfficientNet on hardware accelerator, which shows a clear gap
in performance during model deployment. These results are
execution runtime (ms) of CNNs on hardware accelerator using
software frameworks with quantization tool.

Fig. 1. Comparison of latency (ms) vs MACs performance for
popular ResNet and EfficientNet architecture

In this paper, we aim to understand the effects of various
macro network design parameters—such as input sizes, feature
sizes, grouped convolutions and network depth—to facilitate
better model design. We explore the design space, providing
valuable insights for optimizing model deployment on
hardware. In the following section, we will explore NAS
methods and derive insights into architectural choices by
examining popular network architectures. The Implementation
section provides an overview of the software framework,

optimizations, and hardware capabilities. Lastly, the Results
and Analysis section discusses the outcomes and insights
gained from performance measurements.

II. NETWORK ARCHITECTURE DESIGN

Network Architecture Search (NAS) is a powerful and
increasingly essential tool in the field of machine learning and
artificial intelligence, particularly for designing efficient and
high-performance neural network models [4-6]. Traditional
methods of manually crafting neural network architectures have
become insufficient due to the rapidly growing complexity and
diversity of applications in computer vision, natural language
processing, and other domains. NAS automates the design
process by leveraging search algorithms to explore a vast space
of possible network architectures, optimizing for various
performance metrics such as accuracy, model size and compute
efficiency [4]. The need for NAS arises from the observation
that different neural network architectures can exhibit
significantly varied performance depending on the architecture,
optimizations, software framework and underlying hardware.
This variability poses a challenge for model developers, who
must balance tradeoffs between computational cost, memory
usage, and inference speed. NAS addresses this challenge by
systematically evaluating a wide range of architectures,
identifying optimal designs that might not be apparent through
manual tuning.

Fig. 2 Show the process of NAS design space exploration for
efficient model design

Recent advancements in NAS have introduced sophisticated
techniques, including reinforcement learning [12], evolutionary
algorithms [13], and gradient-based methods [14], to efficiently
navigate the search space. These techniques have enabled the
discovery of novel architectures that outperform human-
designed models on several benchmarks. Moreover, the
integration of hardware- aware NAS [15] has further enhanced
the applicability of these models by ensuring they are tailored
to the constraints and capabilities of specific hardware
platforms, such as GPUs, TPUs, and NPUs. However, in the
ever-growing space of accelerator hardware there is no one
solution fits all solution, which means the design choices need
to be understood specific to the software framework and
underlying hardware to achieve optimal performance.

In this section, we explore the different macro network

Feature Article: Dwith Chenna

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

17

design choices and try to understand its impact on the model.
We will start by examining popular network architectures like
ResNet and EfficientNet to understand the tradeoffs made by
NAS and its effectiveness. Next, we look at macro hyper-
parameters for network architecture design like input size,
in/out feature size, grouped convolution, width and network
depth.

A. ResNet
ResNet, created by He et al. [8], marked a significant

advancement in CNN architecture by introducing residual
learning and techniques for efficient deep network training.
This development addressed the vanishing gradient problem,
allowing the creation of even deeper CNN models. ResNet's
breakthrough enabled a 152-layer deep CNN, which won the
2015 ILSVRC competition. Compared to AlexNet and VGG,
ResNet achieved 20x and 8x greater depth, respectively, with
relatively lower computational complexity. Empirical evidence
indicated that ResNet models with 50, 101, and 152 layers
outperformed their shallower counterparts. These models
demonstrated notable accuracy improvements in complex
visual tasks such as image recognition and localization on the
COCO dataset. ResNeXt [16] further improved upon this by
considering it as an ensemble of smaller networks, employing
diverse convolutions (1x1, 3x3, 5x5) alongside 1x1 bottleneck
convolution blocks to explore various topologies across
different paths.

B. EfficientNet
EfficientNet, developed by AutoML NAS [17], is crafted to

enhance both accuracy and computational efficiency. Utilizing
mobile inverted residual bottleneck convolutions (MBConv)
similar to MobileNet, it adopts compound scaling [6] to create
various networks tailored to different computational budgets
and model sizes. EfficientNet achieved superior accuracy for
compute to existing CNNs, significantly reducing model size
and MACs/FLOPs. For example, EfficientNet-B0 outperforms
ResNet-50 while using 5x fewer parameters and 10x fewer
FLOPs. These models surpass alternatives like ResNet,
DenseNet, and Inception with considerably fewer parameters.

One of the significant design choices when comparing
ResNet and EfficientNet is the use of Depthwise convolution,
that reduce the number of compute/MACs for the same
parameter size. Fig. 3 below show the basic building blocks
used to create the CNN models. The 1x1 convolutions are used
to expand/compress the feature maps and 3x3 convolution
allowing to work on larger feature map size within the block.
Using Depthwise convolution, allowed EfficientNet to be much
deeper allowing them to have a much larger receptive field and
better learning capability for the same compute budget.

Fig. 3 Building blocks of the Convolutional Neural Network
(CNN) models

The prevalence of NAS methods for model design has made
these building blocks ubiquitous in many popular architectures.
The design choices for such models include macro parameters
that significantly influence the performance and efficiency of
models. In this analysis, we start with the ResNet based NAS
based on the basic building block with (1x1, 3x3, 1x1)
convolutions. We slowly evolve the architecture choices to
better understand its impact on the model performance. Key
parameters include:

1) Input Size: The dimensions of the input images or data
affect the network's computational load and memory bandwidth
requirements. Larger input sizes can capture more detailed
information but require more processing power, while smaller
input sizes reduce computational demand at the cost of
potentially losing fine-grained details. In this analysis we
explore how the impact of input size ranging from 32x32 to
1024x1024 affects the performance on device due to its
compute and memory bandwidth implications.

2) In/Out Feature Size: The input and output feature sizes
determine the breadth of the feature maps at each layer. These
sizes are crucial for balancing the network's capacity to learn
complex features against the computational and memory
resources required. The input/output feature sizes are
intentionally multiples of 16 or 32 for better efficiency on the
hardware, across wide range of values ranging from 4 to 256.
The features map sizes are multiples for 2x, 4x, 8x, the basic
width within the different modules.

3) Grouped Convolution: Grouped convolutions divide the
input channels into smaller groups for separate processing. This
reduces the number of parameters and computational
complexity for efficient model training and inference. It is
particularly useful in architectures like ResNeXt and MobileNet.
For groups parameters in the range [4, 256], whenever the
groups > input/output features, it is replaced by depth-wise
convolution. We use groups = nan as a placeholder for depth-
wise convolution i.e. it adopts the groups = input channels.

4) Activations: Activation functions introduce non-linearity
into the network, enabling it to learn complex patterns.

 Feature Article: Bridging the MAC Tunnel Vision: System-Level Performance Analysis of CNN Model
Deployment at the Edge

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

18

Common activation functions include ReLU, Leaky ReLU,
Softmax and Swish. The choice of activation function impacts
the model's training dynamics and overall performance. The
activations significantly impact the training and inference
performance, with ReLU/ReLU6 activations popular due to its
simplicity and hardware friendly implementation. In this
analysis we will be limiting to ReLU activation, as it is popular
and allows for layer fusion optimizations for model deployment.

5) Network Depth: The number of layers in a network
defines its depth. Deeper networks can model more complex
functions and hierarchical features but are prone to issues like
vanishing gradients and increased computational demands. In
the case of deployment on accelerators (NPU), the network
depth also impacts the memory latency significantly as the
activations need to be moved in/out of the local memory of the
acceleration due to limited memory size.

Careful design and tuning of these parameters are essential
to developing efficient and effective neural networks tailored to
specific platform and its compute/memory constraints.

III. IMPLEMENTATION

Deploying CNN models effectively requires a robust
software framework and various optimization techniques to
ensure efficient performance on diverse hardware platforms.
Popular frameworks such as TensorFlow, PyTorch, and ONNX
provide the tools necessary for model training, evaluation, and
deployment. To enhance model efficiency, optimizations like
pruning and quantization are employed. Pruning reduces model
size by removing redundant parameters, while quantization
converts model weights and activations from floating-point to
lower precision, thereby decreasing memory usage and
computational requirements. Hardware accelerators such as
GPUs, TPUs, and NPUs (specialized AI chips) are integral to
speeding up CNN inference. These accelerators are designed to
handle the parallel nature of CNN operations, delivering
significant performance boosts and enabling real-time
processing capabilities in applications such as image
recognition and object detection.

Most of the current NAS algorithms focus on model accuracy
and compute, without understanding the implications of these
choices on inference or hardware accelerator efficiency. This
leads to replacing compute intense operations (i.e.
Convolutions) with relatively more memory intense operations
(i.e. Depth-wise Convolutions), which fail to map efficiently to
the hardware accelerators that are designed for CNN. This leads
to degradation in performance or runtime inference time as
shown in Fig 1. As the choices for different hardware
accelerators varies, it is not possible to have a one size fits all
solution. The model needs to understand the on-device
capabilities and make decisions accordingly for efficiency. This
work explores the CNN design space to help model design
choices and guide the design choices. These methodologies can
be applied to different platforms.

A. Edge AI Inference
The trained model is deployed on the edge device using

offline tools. These deployment tools need to support different
frameworks like PyTorch/Tensorflow or use a model exchange
format like ONNX. For our analysis we will be using Ryzen AI
software to deploy ONNX models on to the NPU (Phoenix).

The Ryzen AI software framework does the following:
i. Convert the model to format compatible with the inference
platform i.e. converting from TFLite/PyTorch model to ONNX
model.
ii. Optimize the model graph through layer fusion and
quantization.
iii. Split the graph into sub-graphs for model execution on
different hardware CPU/GPU/NPU
iv. Precompute buffer and allocation for model execution on
the device
v. Mapping models Ops to hardware low-level kernels and
code generation.

Layer fusion is an important graph optimization that
combines adjacent operations like Conv + ReLU or Conv + BN
+ ReLU, to avoid additional memory latency involved to move
the intermediate results. Quantization [18] is another popular
technique that reduces the memory footprint and compute
efficiency of CNN model by reducing the precision of weights
and compute from float (FP32) to integer (INT8) operations.
While it does have its own challenges in term of maintaining
model accuracy, it is a popular technique due to inherent
support for INT8 compute on many edge inference platforms.

B. Measurement Tool
The measurement tools measure the throughput and latency

of the model deployment on hardware. The graph is converted
to ONNX model, which is future optimized through
quantization (i.e. INT8) for the target platform by using the
ONNX quantization tool. The quantized graph is deployed on
the device for latency and throughput measurement. For better
analysis of hardware efficiency, we compute the M MACs/Sec,
which is a normalized measure of hardware throughput. This
provides more balanced view of hardware efficiency across
different network models.

Fig. 4 Measurement tools for the inference latency/throughput

IV. RESULTS AND ANALYSIS

In this section, we summarize the results for different
network parameters and characterize the performance of the

Feature Article: Dwith Chenna

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

19

inference framework and inference platform. These results can
be guidelines for CNN design for runtime deployment. It also
enables efficient model design of inference deployment on
hardware. It gives useful insights into the effect of different
building blocks, input size, grouped convolution operations,
network width and network depth. While these results and
analysis are focused on CNN due to its better understanding of
design space, they can be applied to Transformers and similar
architectures. These results characterize the performance of
NPU for different network design choices, giving valuable
insights to the AI/ML engineers about the inference framework
and platform.

A. NPU Performance Characteristics
To better understand the performance characteristics of the

CNN model deployment at the Edge, we try to highlight one
dimension by sweeping it across the search space while keeping
all the other dimension constant. This allows us to analyze the
impact of the hyperparameter on the model deployment. During
this analysis we try to answer the following: i) what is the
impact on model performance, ii) what is the reason for this
characteristic and iii) what are guidelines for implementation of
NN design.

B. Input Size
Input image size has significant effect on the network

accuracy and performance. As it decides the amount of
computation needed and determines the intermediate activation
size. Hence, it has a twofold impact on both compute and
memory bandwidth. In Fig. 5, where we compare the different
input size profiles for combinations of CNN models on CPU,
we see a roof line curve maximizing at 224x224 resolution.
There might be different factors contributing to this, such as the
efficient or customized kernels might be designed for the more
popular input resolutions, or the inputs hardware tradeoffs yield
best results for that specific resolution. This gives AI/ML
engineers the necessary information to make design choices for
input resolution for optimal performance.

Fig. 5 Hardware throughput efficiency (M MACs/sec) vs Input
Size on CPU

C. Feature Size/Width
These feature sizes determine the number of input/output

feature maps at each layer a.k.a network width. The hardware
accelerators are designed as SIMD machines to exploit the
parallelism within the convolutions that form the bulk of
network compute. These accelerators have SIMD width that are
multiples of 32/64. To have the efficient implementation we see
in Fig. 6 when the width is increased in multiples of 32, the
overall hardware efficient is improved.

Fig. 6 Hardware throughput efficiency (M MACs/sec) vs
width on CPU

Fig. 7 shows the impact of width = 32/64 on a range of CNN
models. We see a significant improvement in hardware
efficiency, which is even more pronounced for regular
convolution compared to depth-wise convolution. In summary,
instead of slowly growing the feature map size, if the network
is able increase feature maps size to multiples of 32 at the
earliest i.e. in the first few layers, we see a boost in the overall
performance on the device.

Fig. 7 Hardware throughput efficiency (M MACs/sec) vs
number of layers on CPU

 Feature Article: Bridging the MAC Tunnel Vision: System-Level Performance Analysis of CNN Model
Deployment at the Edge

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

20

D. Network Depth
With the advent of efficient architectures, we see more and

more depth-wise convolutions. These have only a fractional
computational cost compared to regular convolutions, allowing
these networks to grow much deeper for the same compute
budget. However, in case of deployment on accelerators, the
network depth also impacts the memory latency significantly as
the activations need to be moved in/out of the local memory of
the acceleration due to limited memory size. Fig. 8 shows the
latency profiles of these networks across different widths. We
see that convolutions (groups=1) show higher latency due to
significantly larger MACs compensating for the hardware
inefficiencies in the depth-wise convolutions (groups=nan). An
interesting observation is how CPU is better able to handle the
depth-wise convolutions across different depths compared to
which shows a linear increase in latency, due to memory latency
overheads for the data movement.

Fig. 8 Latency (ms) vs network depth on CPU

E. Grouped Convolution
Grouped convolutions is a compute efficient convolution

operation used to reduce the compute intensity of the model. In
Fig. 9, we can clearly see distinct characteristic profiles for
grouped convolutions on CPU. In the case of CPU, we see the
groups = 1,2 seems to have high hardware efficiency compared
to larger groups like 16/32. As shown in the figure, as it draws
closer to depth-wise convolution we again see a spike in the
performance. This can be explained by the generic processor
(CPU) and cached based memory system is able to efficiently
handle depth-wise convolution. On the contrary we see a steady
fall in efficiency, which are designed to leverage the parallelism
and data reuse, which suffers from the excessive memory
latency due to limited reusability of weight/inputs for depth-
wise convolutions. Moreover, these bulky regular convolution
with potential redundancy make them robust to quantization
noise.

Fig. 9 Hardware throughput efficiency (M MACs/sec) vs
groups on CPU

In summary, we present a comprehensive performance
results in the CNN design space to learn the characteristics of
inference platform. The findings provide an explanation for
implication of design choices in the design space.

V. CONCLUSION

In conclusion, we have characterized a collection of CNN
model architectures to enable efficient design choices. Our
analysis provides guidelines across various parameters to
enhance the efficiency of CNN models on hardware. Our
findings demonstrate that hardware-aware design choices for
CNNs can significantly improve overall efficiency, maximizing
the capabilities of both software frameworks and hardware
accelerators. This research underscores the importance of
considering hardware constraints and opportunities in the
design of CNN models to achieve optimal performance.

VI. FUTURE WORK

In this paper, we presented a systematic study on the impact
of various macro network architecture choices in a controlled
setting. While this paper primarily discusses CNN models,
similar analysis can be applied to transformers or similar
models for better model design. Moreover, expanding this study
on larger datasets of NAS models with various network
configurations will give a more comprehensive understanding
of performance characteristics on a wide range of model
architectures.

REFERENCES
[1] Facebook, "Accelerating Facebook's Infrastructure with Application

specific Hardware," https://engineering.fb.com/2019/03/14/data-center-
engineering/accelerating-infrastructure/, 2021.

[2] "Edge TPU," https://cloud.google.com/edge-tpu, accessed: 2021-01-09.
[3] EETimes, "AWS Rolls Out AI Inference Chip,"

https://www.eetimes.com/aws-rolls-out-ai- inference-chip/, 2021.
[4] Ren, P., Xiao, Y., Chang, X., Huang, P.-y., Li, Z., Chen, X., and Wang,

X. A comprehensive survey of neural architecture search: Challenges and
solutions. ACM Comput. Surv., 54(4), 2021.

[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.

Feature Article: Dwith Chenna

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

21

MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[6] Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine
Learning, pp. 6105-6114, 2019.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuarells and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510-4520, 2018

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CVPR, 2016.

[9] "RyzenAI Software":
https://www.amd.com/en/developer/resources/ryzen-ai-software.html

[10] Hadjer Benmeziane et al. 2021. A comprehensive survey on hardware-
aware neural architecture search. arXiv preprint arXiv:2101.09336, 2021.

[11] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao,
Haoran You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. 2021.
HW-NAS-Bench: Hardware-Aware Neural Architecture Search
Benchmark. In Proc. Int. Conf. Learn. Represent.
https://arxiv.org/abs/2103.10584

[12] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement
learning," 2016. [Online]. Available: http://arxiv.org/abs/1611.01578

[13] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W.
Banzhaf, "Nsga-net: Neural architecture search using multiobjective
genetic algorithm," in Proceedings of the Genetic and Evolutionary
 Computation Conference, 2019. [Online]. Available:
https://doi.org/10.1145/3321707.3321729

[14] X. Zhang, Z. Huang, and N. Wang, "You only search once: Single shot
neural architecture search via direct sparse optimization," CoRR, vol.
abs/1811.01567, 2018. [Online]. Available:
http://arxiv.org/abs/1811.01567

[15] L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, "Fast hardware-aware
neural architecture search," in IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 2959-
2967.

[16] Hitawala, S. Evaluating ResNeXt Model Architecture for Image
Classification. arXiv 2018, arXiv:1805.08700

[17] X. He, K. Zhao, and X. Chu, "AutoML: A survey of the state-of-theart,"
Knowl.-Based Syst., vol. 212, Jan. 2021, Art. no. 106622.

[18] Dwith Chenna, "Quantization of Convolutional Neural Networks: A
Practical Approach", International Journal of Science & Engineering
Development Research, Vol.8, Issue 12, page no.181 - 192, December-
2023, Available: http://www.ijrti.org/papers/IJRTI2312025.pdf

