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Abstract— Convolutional Neural Networks (CNNs), widely used 
in computer vision tasks, require substantial computation and 
memory resources, making it challenging for these models to run 
efficiently on resource-constrained devices. Network Architecture 
Search (NAS) methods have been developed to design compute-
efficient models like MobileNet and EfficientNet. However, many 
of these models suffer from inefficiencies in hardware utilization 
due to their ineffectiveness in understanding the system-level 
details like software framework, memory bandwidth limitations 
and hardware capabilities for model deployment on devices. This 
excessive focus on compute efficiency, sometimes referred to as the 
“MAC tunnel vision” problem, leads to sub-optimal performance 
during model deployment. In this paper, we aim to bridge this gap 
by analyzing the performance across popular network 
architectures like ResNet, EfficientNet for different network 
hyper-parameters such as input size, feature dimensions, grouped 
convolution and network depth. This analysis provides CNN 
modeling engineers with the necessary tools to design models that 
can efficiently utilize the resources of available hardware. This 
approach not only incorporates hardware awareness into the 
model deployment but also considers different aspects of 
deployment, such as optimization algorithms (e.g., layer fusion, 
quantization), execution model, efficient kernels and hardware 
capabilities. 

Index Terms— Convolutional Neural Networks, Computer 
Vision, Optimization Algorithms 

I. INTRODUCTION
onvolutional Neural Networks (CNNs) have significantly 
impacted Embedded Vision and Edge AI by enabling AI 

applications on resource-constrained devices. With compute 
requirements of AI models growing each year, hardware 
accelerators have become crucial for efficiency. The ubiquitous 
presence of CNN models for vision applications has spurred the 
development of various CNN accelerator platforms [1-3]. 
These accelerators are designed to handle a wide range of CNN 
models and deliver efficient performance. However, the fast-
evolving nature of CNN architectures presents a persistent 
challenge. This results in hardware accelerators constantly 
striving to keep pace with the latest models. Given the longer 
refresh cycles and lifecycles of hardware, this issue is 
increasingly prevalent across various fields. Tradeoffs related 
to compute and memory bandwidth may need to be 
reconsidered for future hardware versions. Bridging the gap 
between these developed models and inference platforms is 

necessary for overall system efficiency and enabling Edge AI 
applications. Achieving optimal system performance requires a 
deep understanding of hardware capabilities and the selection 
or design of architectures better suited to the hardware. CNN 
model deployments on hardware involves optimizing 
algorithms (i.e. layer fusion, pruning, quantization), execution 
models, efficient kernels, and leveraging hardware capabilities. 
Network Architecture Search (NAS) methods [4] for automatic 
search and design of CNN models have been used to find the 
optimum tradeoff between accuracy and compute efficiency. 
This led to development of many smaller and compute efficient 
model architectures like MobileNet[5] and EfficientNet[6]. A 
significant limitation of current NAS designs is a lack of 
consideration for hardware platform capabilities or features, 
focusing solely on compute or Multiply and Accumulate 
(MAC) efficiency. This results in inefficient design choices, 
also referred to as "MAC tunnel vision," where memory 
bandwidth constraints and other system and hardware 
limitations are overlooked. 

While the goal of NAS methods is to reduce compute or the 
number of parameters, this does not always lead to improved 
inference speed, as the software framework and underlying 
hardware capabilities play a crucial role. For instance, 
MobileNetV2[7], with 307M MACs and a model size of 13MB, 
exhibits a 30% higher runtime compared to ResNet18[8], which 
has 1.8B MACs and a model size of 45MB. This comparison 
clearly demonstrates that the total MACs or model size does not 
necessarily correlate with runtime performance. Table 1 shows 
the performance comparison between ResNet18 and 
MobileNetV2 on hardware accelerator [9], highlights 
inefficiencies in model deployment. This discrepancy raises an 
important question: how can we design models for better 
efficiency during deployment? The answer involves 
considering various factors such as network architecture, 
optimizations, implementation details, and hardware 
capabilities. Understanding the performance characteristics of 
these models on the inference framework and device is crucial. 
Evaluating models for deployment efficiency requires a system-
level approach that goes beyond just the compute or parameter 
count. It involves a detailed analysis of how different network 
design choices effects the perform under specific framework 
and hardware constraints. This approach ensures that the 
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models not only leverage the full potential of the hardware but 
also achieve the desired efficiency in real-world applications. 

TABLE I: PERFORMANCE COMPARISON RESNET18 VS 
MOBILENETV2 

Network Model 
Size 

(Float) 

Model Size 
(Quantized) 

# 
Layers 

MACs Latency 
(Ms) 

Throughput 
(fps) 

ResNet18 45MB 12MB 169 1.8B 7.35 538.7fps 

MobileNetV2 13MB 3.5MB 357 307M 10.34 381.95fps 

Many model developers often lack knowledge or 
understanding of the deployment framework or device, making 
the deployment process even more challenging. A paradigm 
shift in model design that considers hardware capabilities can 
unlock significant performance improvements [10-11]. 
However, understanding the implementation details and 
tradeoffs related to inference hardware can be daunting. To 
address this, a simpler interface is needed to evaluate on-device 
performance, enabling its integration with automation 
frameworks like NAS for efficient model design. While 
existing benchmarks provide some guidance on the 
performance of different model architectures, they often fail to 
offer useful insights due to their limited design exploration 
space. Fig. 1 shows the comparison of latency (runtime) vs 
MACs performance of popular CNN architectures like ResNet, 
EfficientNet on hardware accelerator, which shows a clear gap 
in performance during model deployment. These results are 
execution runtime (ms) of CNNs on hardware accelerator using 
software frameworks with quantization tool. 

Fig. 1. Comparison of latency (ms) vs MACs performance for 
popular ResNet and EfficientNet architecture 

In this paper, we aim to understand the effects of various 
macro network design parameters—such as input sizes, feature 
sizes, grouped convolutions and network depth—to facilitate 
better model design. We explore the design space, providing 
valuable insights for optimizing model deployment on 
hardware. In the following section, we will explore NAS 
methods and derive insights into architectural choices by 
examining popular network architectures. The Implementation 
section provides an overview of the software framework, 

optimizations, and hardware capabilities. Lastly, the Results 
and Analysis section discusses the outcomes and insights 
gained from performance measurements. 

II. NETWORK ARCHITECTURE DESIGN

Network Architecture Search (NAS) is a powerful and 
increasingly essential tool in the field of machine learning and 
artificial intelligence, particularly for designing efficient and 
high-performance neural network models [4-6]. Traditional 
methods of manually crafting neural network architectures have 
become insufficient due to the rapidly growing complexity and 
diversity of applications in computer vision, natural language 
processing, and other domains. NAS automates the design 
process by leveraging search algorithms to explore a vast space 
of possible network architectures, optimizing for various 
performance metrics such as accuracy, model size and compute 
efficiency [4]. The need for NAS arises from the observation 
that different neural network architectures can exhibit 
significantly varied performance depending on the architecture, 
optimizations, software framework and underlying hardware. 
This variability poses a challenge for model developers, who 
must balance tradeoffs between computational cost, memory 
usage, and inference speed. NAS addresses this challenge by 
systematically evaluating a wide range of architectures, 
identifying optimal designs that might not be apparent through 
manual tuning. 

Fig. 2 Show the process of NAS design space exploration for 
efficient model design 

Recent advancements in NAS have introduced sophisticated 
techniques, including reinforcement learning [12], evolutionary 
algorithms [13], and gradient-based methods [14], to efficiently 
navigate the search space. These techniques have enabled the 
discovery of novel architectures that outperform human-
designed models on several benchmarks. Moreover, the 
integration of hardware- aware NAS [15] has further enhanced 
the applicability of these models by ensuring they are tailored 
to the constraints and capabilities of specific hardware 
platforms, such as GPUs, TPUs, and NPUs. However, in the 
ever-growing space of accelerator hardware there is no one 
solution fits all solution, which means the design choices need 
to be understood specific to the software framework and 
underlying hardware to achieve optimal performance. 

In this section, we explore the different macro network 
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design choices and try to understand its impact on the model. 
We will start by examining popular network architectures like 
ResNet and EfficientNet to understand the tradeoffs made by 
NAS and its effectiveness. Next, we look at macro hyper-
parameters for network architecture design like input size, 
in/out feature size, grouped convolution, width and network 
depth. 

A. ResNet 
ResNet, created by He et al. [8], marked a significant

advancement in CNN architecture by introducing residual 
learning and techniques for efficient deep network training. 
This development addressed the vanishing gradient problem, 
allowing the creation of even deeper CNN models. ResNet's 
breakthrough enabled a 152-layer deep CNN, which won the 
2015 ILSVRC competition. Compared to AlexNet and VGG, 
ResNet achieved 20x and 8x greater depth, respectively, with 
relatively lower computational complexity. Empirical evidence 
indicated that ResNet models with 50, 101, and 152 layers 
outperformed their shallower counterparts. These models 
demonstrated notable accuracy improvements in complex 
visual tasks such as image recognition and localization on the 
COCO dataset. ResNeXt [16] further improved upon this by 
considering it as an ensemble of smaller networks, employing 
diverse convolutions (1x1, 3x3, 5x5) alongside 1x1 bottleneck 
convolution blocks to explore various topologies across 
different paths. 

B. EfficientNet 
EfficientNet, developed by AutoML NAS [17], is crafted to

enhance both accuracy and computational efficiency. Utilizing 
mobile inverted residual bottleneck convolutions (MBConv) 
similar to MobileNet, it adopts compound scaling [6] to create 
various networks tailored to different computational budgets 
and model sizes. EfficientNet achieved superior accuracy for 
compute to existing CNNs, significantly reducing model size 
and MACs/FLOPs. For example, EfficientNet-B0 outperforms 
ResNet-50 while using 5x fewer parameters and 10x fewer 
FLOPs. These models surpass alternatives like ResNet, 
DenseNet, and Inception with considerably fewer parameters. 

One of the significant design choices when comparing 
ResNet and EfficientNet is the use of Depthwise convolution, 
that reduce the number of compute/MACs for the same 
parameter size. Fig. 3 below show the basic building blocks 
used to create the CNN models. The 1x1 convolutions are used 
to expand/compress the feature maps and 3x3 convolution 
allowing to work on larger feature map size within the block. 
Using Depthwise convolution, allowed EfficientNet to be much 
deeper allowing them to have a much larger receptive field and 
better learning capability for the same compute budget.

Fig. 3 Building blocks of the Convolutional Neural Network 
(CNN) models 

The prevalence of NAS methods for model design has made 
these building blocks ubiquitous in many popular architectures. 
The design choices for such models include macro parameters 
that significantly influence the performance and efficiency of 
models. In this analysis, we start with the ResNet based NAS 
based on the basic building block with (1x1, 3x3, 1x1) 
convolutions. We slowly evolve the architecture choices to 
better understand its impact on the model performance. Key 
parameters include: 

1) Input Size: The dimensions of the input images or data
affect the network's computational load and memory bandwidth 
requirements. Larger input sizes can capture more detailed 
information but require more processing power, while smaller 
input sizes reduce computational demand at the cost of 
potentially losing fine-grained details. In this analysis we 
explore how the impact of input size ranging from 32x32 to 
1024x1024 affects the performance on device due to its 
compute and memory bandwidth implications. 

2) In/Out Feature Size: The input and output feature sizes
determine the breadth of the feature maps at each layer. These 
sizes are crucial for balancing the network's capacity to learn 
complex features against the computational and memory 
resources required. The input/output feature sizes are 
intentionally multiples of 16 or 32 for better efficiency on the 
hardware, across wide range of values ranging from 4 to 256. 
The features map sizes are multiples for 2x, 4x, 8x, the basic 
width within the different modules. 

3) Grouped Convolution: Grouped convolutions divide the
input channels into smaller groups for separate processing. This 
reduces the number of parameters and computational 
complexity for efficient model training and inference. It is 
particularly useful in architectures like ResNeXt and MobileNet. 
For groups parameters in the range [4, 256], whenever the 
groups > input/output features, it is replaced by depth-wise 
convolution. We use groups = nan as a placeholder for depth-
wise convolution i.e. it adopts the groups = input channels. 

4) Activations: Activation functions introduce non-linearity
into the network, enabling it to learn complex patterns. 
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Common activation functions include ReLU, Leaky ReLU, 
Softmax and Swish. The choice of activation function impacts 
the model's training dynamics and overall performance. The 
activations significantly impact the training and inference 
performance, with ReLU/ReLU6 activations popular due to its 
simplicity and hardware friendly implementation. In this 
analysis we will be limiting to ReLU activation, as it is popular 
and allows for layer fusion optimizations for model deployment. 

5) Network Depth: The number of layers in a network
defines its depth. Deeper networks can model more complex 
functions and hierarchical features but are prone to issues like 
vanishing gradients and increased computational demands. In 
the case of deployment on accelerators (NPU), the network 
depth also impacts the memory latency significantly as the 
activations need to be moved in/out of the local memory of the 
acceleration due to limited memory size. 

Careful design and tuning of these parameters are essential 
to developing efficient and effective neural networks tailored to 
specific platform and its compute/memory constraints. 

III. IMPLEMENTATION

Deploying CNN models effectively requires a robust 
software framework and various optimization techniques to 
ensure efficient performance on diverse hardware platforms. 
Popular frameworks such as TensorFlow, PyTorch, and ONNX 
provide the tools necessary for model training, evaluation, and 
deployment. To enhance model efficiency, optimizations like 
pruning and quantization are employed. Pruning reduces model 
size by removing redundant parameters, while quantization 
converts model weights and activations from floating-point to 
lower precision, thereby decreasing memory usage and 
computational requirements. Hardware accelerators such as 
GPUs, TPUs, and NPUs (specialized AI chips) are integral to 
speeding up CNN inference. These accelerators are designed to 
handle the parallel nature of CNN operations, delivering 
significant performance boosts and enabling real-time 
processing capabilities in applications such as image 
recognition and object detection.  

Most of the current NAS algorithms focus on model accuracy 
and compute, without understanding the implications of these 
choices on inference or hardware accelerator efficiency. This 
leads to replacing compute intense operations (i.e. 
Convolutions) with relatively more memory intense operations 
(i.e. Depth-wise Convolutions), which fail to map efficiently to 
the hardware accelerators that are designed for CNN. This leads 
to degradation in performance or runtime inference time as 
shown in Fig 1. As the choices for different hardware 
accelerators varies, it is not possible to have a one size fits all 
solution. The model needs to understand the on-device 
capabilities and make decisions accordingly for efficiency. This 
work explores the CNN design space to help model design 
choices and guide the design choices. These methodologies can 
be applied to different platforms. 

A. Edge AI Inference 
The trained model is deployed on the edge device using

offline tools. These deployment tools need to support different 
frameworks like PyTorch/Tensorflow or use a model exchange 
format like ONNX. For our analysis we will be using Ryzen AI 
software to deploy ONNX models on to the NPU (Phoenix). 

The Ryzen AI software framework does the following: 
i. Convert the model to format compatible with the inference
platform i.e. converting from TFLite/PyTorch model to ONNX
model.
ii. Optimize the model graph through layer fusion and
quantization.
iii. Split the graph into sub-graphs for model execution on
different hardware CPU/GPU/NPU
iv. Precompute buffer and allocation for model execution on
the device
v. Mapping models Ops to hardware low-level kernels and
code generation.

Layer fusion is an important graph optimization that 
combines adjacent operations like Conv + ReLU or Conv + BN 
+ ReLU, to avoid additional memory latency involved to move
the intermediate results. Quantization [18] is another popular
technique that reduces the memory footprint and compute
efficiency of CNN model by reducing the precision of weights
and compute from float (FP32) to integer (INT8) operations.
While it does have its own challenges in term of maintaining
model accuracy, it is a popular technique due to inherent
support for INT8 compute on many edge inference platforms.

B. Measurement Tool 
The measurement tools measure the throughput and latency

of the model deployment on hardware. The graph is converted 
to ONNX model, which is future optimized through 
quantization (i.e. INT8) for the target platform by using the 
ONNX quantization tool. The quantized graph is deployed on 
the device for latency and throughput measurement. For better 
analysis of hardware efficiency, we compute the M MACs/Sec, 
which is a normalized measure of hardware throughput. This 
provides more balanced view of hardware efficiency across 
different network models. 

Fig. 4 Measurement tools for the inference latency/throughput 

IV. RESULTS AND ANALYSIS

In this section, we summarize the results for different 
network parameters and characterize the performance of the 
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inference framework and inference platform. These results can 
be guidelines for CNN design for runtime deployment. It also 
enables efficient model design of inference deployment on 
hardware. It gives useful insights into the effect of different 
building blocks, input size, grouped convolution operations, 
network width and network depth. While these results and 
analysis are focused on CNN due to its better understanding of 
design space, they can be applied to Transformers and similar 
architectures. These results characterize the performance of 
NPU for different network design choices, giving valuable 
insights to the AI/ML engineers about the inference framework 
and platform. 

A. NPU Performance Characteristics 
To better understand the performance characteristics of the

CNN model deployment at the Edge, we try to highlight one 
dimension by sweeping it across the search space while keeping 
all the other dimension constant. This allows us to analyze the 
impact of the hyperparameter on the model deployment. During 
this analysis we try to answer the following: i) what is the 
impact on model performance, ii) what is the reason for this 
characteristic and iii) what are guidelines for implementation of 
NN design. 

B. Input Size 
Input image size has significant effect on the network

accuracy and performance. As it decides the amount of 
computation needed and determines the intermediate activation 
size. Hence, it has a twofold impact on both compute and 
memory bandwidth. In Fig. 5, where we compare the different 
input size profiles for combinations of CNN models on CPU, 
we see a roof line curve maximizing at 224x224 resolution. 
There might be different factors contributing to this, such as the 
efficient or customized kernels might be designed for the more 
popular input resolutions, or the inputs hardware tradeoffs yield 
best results for that specific resolution. This gives AI/ML 
engineers the necessary information to make design choices for 
input resolution for optimal performance. 

Fig. 5 Hardware throughput efficiency (M MACs/sec) vs Input 
Size on CPU 

C. Feature Size/Width 
These feature sizes determine the number of input/output

feature maps at each layer a.k.a network width. The hardware 
accelerators are designed as SIMD machines to exploit the 
parallelism within the convolutions that form the bulk of 
network compute. These accelerators have SIMD width that are 
multiples of 32/64. To have the efficient implementation we see 
in Fig. 6 when the width is increased in multiples of 32, the 
overall hardware efficient is improved. 

Fig. 6 Hardware throughput efficiency (M MACs/sec) vs 
width on CPU 

Fig. 7 shows the impact of width = 32/64 on a range of CNN 
models. We see a significant improvement in hardware 
efficiency, which is even more pronounced for regular 
convolution compared to depth-wise convolution. In summary, 
instead of slowly growing the feature map size, if the network 
is able increase feature maps size to multiples of 32 at the 
earliest i.e. in the first few layers, we see a boost in the overall 
performance on the device. 

Fig. 7 Hardware throughput efficiency (M MACs/sec) vs 
number of layers on CPU 
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D. Network Depth 
With the advent of efficient architectures, we see more and

more depth-wise convolutions. These have only a fractional 
computational cost compared to regular convolutions, allowing 
these networks to grow much deeper for the same compute 
budget. However, in case of deployment on accelerators, the 
network depth also impacts the memory latency significantly as 
the activations need to be moved in/out of the local memory of 
the acceleration due to limited memory size. Fig. 8 shows the 
latency profiles of these networks across different widths. We 
see that convolutions (groups=1) show higher latency due to 
significantly larger MACs compensating for the hardware 
inefficiencies in the depth-wise convolutions (groups=nan). An 
interesting observation is how CPU is better able to handle the 
depth-wise convolutions across different depths compared to 
which shows a linear increase in latency, due to memory latency 
overheads for the data movement. 

Fig. 8 Latency (ms) vs network depth on CPU 

E. Grouped Convolution 
Grouped convolutions is a compute efficient convolution

operation used to reduce the compute intensity of the model. In 
Fig. 9, we can clearly see distinct characteristic profiles for 
grouped convolutions on CPU. In the case of CPU, we see the 
groups = 1,2 seems to have high hardware efficiency compared 
to larger groups like 16/32. As shown in the figure, as it draws 
closer to depth-wise convolution we again see a spike in the 
performance. This can be explained by the generic processor 
(CPU) and cached based memory system is able to efficiently 
handle depth-wise convolution. On the contrary we see a steady 
fall in efficiency, which are designed to leverage the parallelism 
and data reuse, which suffers from the excessive memory 
latency due to limited reusability of weight/inputs for depth-
wise convolutions. Moreover, these bulky regular convolution 
with potential redundancy make them robust to quantization 
noise. 

Fig. 9 Hardware throughput efficiency (M MACs/sec) vs 
groups on CPU 

In summary, we present a comprehensive performance 
results in the CNN design space to learn the characteristics of 
inference platform. The findings provide an explanation for 
implication of design choices in the design space. 

V. CONCLUSION

In conclusion, we have characterized a collection of CNN 
model architectures to enable efficient design choices. Our 
analysis provides guidelines across various parameters to 
enhance the efficiency of CNN models on hardware. Our 
findings demonstrate that hardware-aware design choices for 
CNNs can significantly improve overall efficiency, maximizing 
the capabilities of both software frameworks and hardware 
accelerators. This research underscores the importance of 
considering hardware constraints and opportunities in the 
design of CNN models to achieve optimal performance. 

VI. FUTURE WORK

In this paper, we presented a systematic study on the impact 
of various macro network architecture choices in a controlled 
setting. While this paper primarily discusses CNN models, 
similar analysis can be applied to transformers or similar 
models for better model design. Moreover, expanding this study 
on larger datasets of NAS models with various network 
configurations will give a more comprehensive understanding 
of performance characteristics on a wide range of model 
architectures. 
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