
 Feature Article: Large Language Models (LLMs): Quantization

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

22

I. INTRODUCTION
arge language models (LLMs) have demonstrated
exceptional performance across a range of tasks, but their

computational and memory demands are significant. These
models, such as GPT-3 [1], which boasts 175 billion
parameters, require substantial resources to operate—needing
at least 350GB of memory to store and run in FP16. This setup
demands multiple high-capacity GPUs, like 8×48GB A6000 or
5×80GB A100, merely for inference. Figure 1, show the
comparison of LLM model size and GPU memory. The
substantial computation and communication overhead often
result in impractical latency for real-world applications.

One effective strategy to mitigate these challenges is
quantization, which enhances the efficiency of LLMs by
reducing their memory footprint and computational
requirements. Quantization achieves this by representing
weights and activations with low-bit integers, such as INT8 or
INT4, thereby lowering GPU memory consumption and
improving throughput, especially in operations like General
Matrix Multiply (GEMM) in linear layers and Batch Matrix
Multiply (BMM) in attention mechanisms. This approach can
significantly decrease the cost of deploying LLMs, making
them more feasible for practical applications [3-4]. Activations
of LLMs are challenging to quantize due to observed large
magnitude outliers, which leads to quantization error and
degradation in accuracy [5]. This makes it difficult to have a
quantization method that can work across models without
significant degradation in model accuracy and maintaining
performance.

In this article, we will review some of the popular
quantization methods and its impact on accuracy and
performance of popular models like OPT, Llama-2/3,
understanding how hardware friendly and post training
quantization methods for LLMs that can leverage support of
low precision INT8/INT4 compute efficiency available in the
hardware accelerators. More recently, we have seen the
introduction of smaller Small Language Models (SLMs).
Unlike LLMs that need hundreds of billions of parameters,
these SLMs require a few billion parameters. However, these
SLMs are trained on much cleaner data (textbook quality data),
and are designed to be more efficient.

II. QUANTIZATION

In this section, we present the mathematical framework for
the quantization scheme, which facilitates the efficient
execution of integer arithmetic operations on quantized values.
The transformation from real numbers 𝑟 to quantized integers 𝑞
is defined by equation for Asymmetric quantization, where 𝑆
and 𝑍, represent the scale and zero-point quantization
parameters, respectively. For 8-bit quantization, 𝑞 is an 8-bit
integer, the scale is typically a floating-point value that is
represented using a fixed-point format, and the zero-point is of
the same type as the quantized value. A key constraint is placed
on the zero-point to ensure that real zero values are quantized
accurately, without error. The reverse mapping, from quantized
values back to real values, is described by equation (2).

Quantization:
q = round (r/S + Z)

De-Quantization:
r = S (q – Z)

Symmetric Quantization:
q = round(r/S)

Where "S" is the scale and "Z" is the zero points, which are
determined from the original float distributions using:

S = (r_max – r_min) / (q_max – q_min)
Z = round (q_max – r_max / S)

Large Language Models (LLMs): Quantization

 Dwith Chenna1 and Rahul Kavi
1AMD http://www.amd.com
dwith.chenna@ieee.org

L

Fig. 1 AI model size over the years along with AI
accelerator memory capacity [11]

Feature Article: Dwith Chenna and Rahul Kavi

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

23

III. TRANSFORMERS ARCHITECTURE

Transformers have emerged as a transformative technology
in the realm of natural language processing (NLP),
fundamentally altering how machines understand and generate
human language. Unlike traditional models that process text
sequentially, word by word, Transformers can analyze an entire
sentence at once. This parallel processing capability allows
them to grasp the nuances of language more effectively, leading
to significant improvements in both speed and accuracy. The
concept of the Transformer was first introduced in the seminal
paper Attention Is All You Need [6]. Originally designed to
tackle sequence-to-sequence tasks such as machine translation
and text-to-speech, Transformers have since become the
cornerstone of many advanced NLP applications.

A. Self-Attention
A key innovation of the Transformer architecture is the self-

attention mechanism. This enables the model to assess the
significance of each word in a sentence relative to all others,
facilitating a deeper contextual understanding. By handling
entire sentences simultaneously, Transformers not only
expedite processing but also maintain a coherent understanding
of context across long distances in text. This capability has
revolutionized tasks like machine translation, content
generation, and even the creation of human-like text, setting
new benchmarks in NLP.

B. Encoder-Decoder Architecture
Transformers are built upon a two-part architecture: the

encoder and the decoder. The encoder is responsible for reading

and processing the input text, effectively distilling it into a form
that the model can comprehend. This process involves breaking
down a sentence into its core elements. The decoder, on the
other hand, takes this processed information and generates the
output sequence, such as translating the sentence into another
language. This encoder-decoder interaction is crucial for tasks
that require a nuanced understanding of context, like translation.

Within the encoder, multiple layers are employed, each
consisting of self-attention mechanisms and feed-forward
neural networks. The self-attention mechanism enables the
encoder to weigh the importance of other words in the sentence
when considering a specific word. This is mathematically
facilitated by generating Query (Q), Key (K), and Value (V)
vectors, which together allow the model to dynamically
interpret the sentence’s context. The decoder, starting

C. Positional Encoding
Since Transformers analyze all words in a sentence

simultaneously, they require a mechanism to capture the order
of words—this is achieved through positional encoding. Each
word is assigned a unique positional code that represents its
location in the sentence, ensuring the model understands the
sequence and flow of language. This is essential for preserving
the meaning and structure of sentences.

D. Multi-head Attention
A distinguishing feature of Transformers is the multi-head

attention mechanism, which allows the model to focus on
different parts of a sentence simultaneously. By applying
multiple attention heads, the model can capture various

Fig. 2 Transformer architecture (left), Feed Forward Network (right) and Multi-head attention (right)

 Feature Article: Large Language Models (LLMs): Quantization

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

24

relationships and dependencies between words, leading to a
richer and more nuanced understanding of the text. This parallel
processing of attention layers is what gives Transformers their
powerful capability to handle complex language tasks with ease.

IV. TRANSFORMER QUANTIZATION

The quantization methods used of transformer models can be
broadly classified as i) Post Training Quantization (PTQ) and
ii) Quantization Aware Training (QAT). The quantization
parameters need to be adjusted to maintain the accuracy
performance after quantization. The process of retraining the
model to account for quantization is called Quantization Aware
Training (QAT) or without retraining through Post Training
Quantization (PTQ). A high-level comparison of two
approaches is shown in Figure 3.

Fig. 3 Model quantization Quantization Aware Training
(QAT) and Post Training Quantization (PTQ) [12]

In this article, we will be primarily focusing on PTQ which
can be applied to the model trained with QAT. PTQ is the most
popular technique because of its low compute requirement and
its ability to quantize already trained models without the need

for additional finetuning.

A. Mixed Precision
In practice, different levels of precision are applied

selectively throughout the Transformer architecture. High-
precision operations, such as FP16, are reserved for critical
components where accuracy is paramount, and which are not
compute intense like SoftMax activation and elementwise
operations. These operations are sensitive to small numerical
changes, and maintaining high precision ensures that the model
can capture the intricate relationships within the data. On the
other hand, lower-precision formats, like INT8 or even INT4,
are used to optimize performance by reducing the
computational load and memory usage. This is particularly
advantageous for real-time applications or when operating in
resource-constrained environments, though it may come with a
slight compromise in accuracy. The decision on where to apply
different levels of precision is driven by the specific needs of
the application. In scenarios where speed and efficiency are
more important, lower precision can be utilized to achieve
faster inference times and reduce power consumption. By
carefully managing these trade-offs, developers can tailor
Transformer models to deliver the optimal balance between
accuracy and performance for their intended use cases.

B. Quantization Granularity
Quantization granularity refers to the level at which

quantization is applied within a Transformer model, impacting
both the precision and the efficiency of computations. There are
several approaches to quantization granularity, each suited to
different aspects of the model's architecture.

Fig. 4 Quantization precision mapping for Transformers [6]

Feature Article: Dwith Chenna and Rahul Kavi

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

25

Per-Tensor Quantization is the most straightforward
approach, where a single quantization coefficient is applied
across an entire tensor. While this method is computationally
efficient, it may lead to a loss in accuracy, especially in complex
models like Transformers where the dynamic range of values
can vary significantly across different parts of the tensor.

Per-Group Quantization offers a finer level of control by
applying quantization across groups of rows or columns within
a tensor. For example, M rows (for activations) or K columns
(for weights) might correspond to a single quantization
coefficient, with K often set to values like 64. This method
balances the trade-off between computational efficiency and
maintaining accuracy by allowing different parts of the tensor
to be quantized differently, depending on their significance.

Per-Channel or Per-Token Quantization provides the highest
granularity, applying a separate quantization coefficient to each
individual channel or token. In the case of per-token
quantization for activations (denoted as X), each row of the
activation matrix receives its own quantization coefficient.
Similarly, for per-channel quantization of weights (denoted as
W), each column is assigned a distinct quantization coefficient.
This approach allows for the most precise adjustments,
preserving the nuances in data processing but at the cost of
increased computational complexity.

Fig. 5 Quantization granularity for Transformers [1]

By choosing the appropriate quantization granularity,
developers can finetune the balance between the model’s
accuracy and the computational resources required for its
deployment. Per-channel and per-token quantization methods
are useful when maintaining high accuracy is crucial, while per-
group and per-tensor quantization are favored for optimizing
performance in resource-constrained environments.

Many quantization algorithms try to use different trade-off
quantization schemes, mixed precision and quantization
granularity to achieve the highest accuracy for the best
performance efficiency. We discuss a few popular quantization

techniques applied to transformer based LLMs mainly i) GPTQ
ii) AWQ iii) SmoothQuant and iv) Block Quantization. We
deep dive into different trade-offs for these different methods
and analyze the effect on accuracy for popular models.

C. GPTQ
GPTQ (Gradient Post-Training Quantization) is an efficient

algorithm for layerwise quantization of large language models
(LLMs), designed to reduce the computational footprint while
maintaining model accuracy. The algorithm converts floating-
point weight parameters into quantized integers, aiming to
minimize errors at the output level. The process begins by
performing a Cholesky decomposition of the Hessian inverse
matrix, which helps guide the quantization by understanding
how weight changes affect the model's output. GPTQ operates
in batches to run efficiently on GPUs, where each batch
contains a subset of weight matrix columns.

For each column, the algorithm performs the following steps:
i. Quantizes the weights by converting floating-point values
into lower-precision integers.
ii. Calculates the quantization error, which represents the
difference between the original and quantized values.
iii. Updates the weights within the current block to account
for the error, ensuring better approximation.

After processing a batch, GPTQ further updates all the
remaining weights, compensating for any errors introduced in
the quantized block. This iterative process ensures that the
entire weight matrix is adjusted, allowing the model to retain
high accuracy despite reduced precision. By processing weights
in isolation and updating errors dynamically, GPTQ enables
significant model compression with minimal accuracy loss.

D. Activation-aware Weight Quantization (AWQ)
AWQ (Activation-Weighted Quantization) [7] is an

advanced quantization technique that leverages activation
information to enhance the precision of weight quantization in
Transformer models. Unlike traditional methods that primarily
rely on the magnitude of weights to guide quantization, AWQ
focuses on the sensitivity of weights based on activation
patterns. Even minor contributions ranging from 0.1% to 1%
can significantly improve the overall quantization results. One
of the core principles of AWQ is the use of activation-based
scaling, which has proven to be more effective than scaling
based solely on weight magnitude. This approach ensures that
the scaling factors are aligned with the actual importance of
weights in the context of activations, leading to a more accurate
quantization. To determine the optimal scaling factors, a small
calibration dataset is used, allowing the model to adjust the
scales in a way that minimizes quantization error.

Additionally, AWQ adopts a hardware-friendly approach by
utilizing integer scales rather than floating-point ones. This
minimizes quantization error and is more compatible with the
low-precision arithmetic used in modern hardware accelerators.

 Feature Article: Large Language Models (LLMs): Quantization

December 2024 Vol. 24 No. 1 IEEE Intelligent Informatics Bulletin

26

Empirical heuristics suggest that scaling values less than or
equal to 2 yield the best results, producing the least quantization
error. AWQ typically employs a 4-bit quantization for weights
and a 16-bit quantization for activations (W4A16). This
configuration balances between reducing the model size and
computational load while maintaining a high level of accuracy,
particularly in scenarios where activation sensitivity plays a
crucial role. By combining these techniques, AWQ provides a
robust solution for deploying high-performance Transformer
models in environments where resources are limited.

Fig. 6 Overview of AWQ Quantization, scaling weights before
quantization [7]

E. Smooth Quant
SmoothQuant [8] is a technique designed to address the

challenges of quantizing Transformer models, particularly
focusing on the difficulty of quantizing activations due to their
wide dynamic range. This wide range often results in a
significant limitation on quantization precision, making it
challenging to maintain model accuracy. In contrast, weights
typically exhibit a more uniform distribution, making them
easier to quantize with higher precision. To mitigate the impact
of quantization on activations, SmoothQuant proposes a novel
scaling method that redistributes quantization error from
activations to weights. This redistribution is controlled by a
parameter known as “migration strength,” which determines the
extent to which quantization error is shifted. A migration
strength of 0 indicates that all quantization error remains in the
activations, reflecting the original distribution. Conversely, a
migration strength of 1 moves all the quantization error to the
weights. Through experimentation, it has been observed that a
migration strength within the range of 0.4 to 0.5 offers an
optimal balance, minimizing the overall quantization error.

SmoothQuant utilizes an 8-bit quantization scheme for both
weights and activations (W8A8), a configuration that helps
achieve a balance between model efficiency and accuracy. The
flexibility of this method is further enhanced by its
orthogonality to other quantization schemes, meaning it can be
integrated with various existing quantization approaches
without being constrained by them. This versatility makes
SmoothQuant a powerful tool for improving the performance
of Transformer models in resource-constrained environments
while maintaining high accuracy.

Fig. 7 SmoothQuant showing the migration factors that
transfers variability in activations to weights

V. RESULTS AND ANALYSIS

In this section, we will be evaluating the results for different
quantization techniques on popular models like OPT and Llama,
across their different variants in sizes.

A. Model Evaluation
Perplexity is a metric used to evaluate the performance of

language models, measuring how well a model predicts a
sample of text. Using the WikiText-2 dataset containing a
diverse collection of Wikipedia articles, perplexity is calculated
by determining the inverse probability of the test words
normalized by the number of words. A lower perplexity
indicates that the model has a better understanding of the
language and predicts the next word more accurately.
Perplexity helps in comparing different models and assessing
their ability to generate coherent and contextually relevant text.

B. GPTQ
GPTQ can accurately compress some of the largest publicly

available models down to 3 and 4 bits. Tables show the
perplexity measurement on the wikitest-2 database on different
sizes of the OPT models, showing consistent results even for
large model sizes. Similarly, Table 2 shows the perplexity
metrics for the Llama-2 family of models. These results are
generated using the AutoGPTQ library [10].

TABLE I: PERPLEXITY METRICS ON WIKITEXT-2 FOR
AUTOGPTQ ON OPT MODELS

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

FP16 14.62 12.47 10.86 10.13

GPTQ (INT4-g128) 16.15 12.84 11.05 10.21

TABLE II: PERPLEXITY METRICS ON WIKITEXT-2 FOR
AUTOGPTQ ON LLAMA-2 MODELS

Feature Article: Dwith Chenna and Rahul Kavi

IEEE Intelligent Informatics Bulletin December 2024 Vol. 24 No.1

27

PPL Llama-2
7B

Llama-2
13B

Llama-2
70B

FP16 5.47 4.88 3.32

GPTQ (INT4-g128) 5.87 4.97 3.52

C. AWQ
Activation-aware Weight Quantization (AWQ) is an

effective way for low-bit 4 bit weight quantization. Table 1.
shows the perplexity measurement on the wikitest-2 dataset on
different variants of OPT based models, showing consistent
results across model sizes from 1.3B to 30B. Similarly, we look
at the perplexity metrics for the Llama-2 family of models
showing consistent results with 4-bit quantization.

TABLE III: PERPLEXITY METRICS ON WIKITEXT-2 FOR AWQ ON
OPT MODELS

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

FP16 14.62 12.47 10.86 10.13

AWQ (INT3-g128) 16.32 13.58 11.39 10.56

AWQ (INT4-g128) 14.92 12.70 10.92 10.22

TABLE IV: PERPLEXITY METRICS ON WIKITEXT-2 FOR AWQ ON
LLAMA-2 MODELS

PPL Llama-2
7B

Llama-2
13B

Llama-2
70B

FP16 5.47 4.88 3.32

AWQ (INT3-g128) 6.24 5.32 3.74

AWQ (INT4-g128) 5.6 4.97 3.41

D. SmoothQuant
SmoothQuant shows reliable results with 8-bit quantization

for different variants of popular model i.e. OPT / Llama-2.
Table 4 compares the perplexity metric measured on WikiText-
2 dataset for FP16 and SmoothQuant models, it shows
consistent results with minimal drop in accuracy across
different variants of the OPT/Llama-2 models.

TABLE V: COMPARISON OF PERPLEXITY METRICS FOR FP16 AND
SMOOTHQUANT(A8W8) ON OPT MODELS

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

FP16 14.62 12.47 10.86 10.13

SmoothQuant
(A8W8)

14.82 12.50 10.86 10.14

TABLE VI: COMPARISON OF PERPLEXITY METRICS ON WIKITEXT-
2 FOR FP16 AND SMOOTHQUANT (A8W8)

PPL Llama-2
7B

Llama-2
13B

Llama-2
70B

FP16 5.47 4.88 3.32

SmoothQuant
(A8W8)

5.515 4.929 3.359

VI. CONCLUSION

In conclusion, as the demand for LLM applications grows,
efficient deployment strategies become increasingly critical.
Quantization stands out as a key solution, enabling significant
reductions in computational and memory overhead while
addressing the pressing concerns of cost, environmental impact,
and data privacy at the edge. By exploring and implementing
advanced quantization techniques like AWQ, SmoothQuant,
and Block Quantization, we can unlock the full potential of
large language models in resource-constrained environments.

Along with quantization techniques, choosing quality data
based on the intended end-use can greatly improve performance.
This presentation will provide valuable insights into the
practical application of these techniques, highlighting their
benefits and trade-offs and ultimately guiding the path toward
more sustainable and efficient GenAI deployments.

REFERENCES
[1] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. Language models are few-shot learners. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 1877-1901.
Curran Associates, Inc., 2020a. URL
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb
8ac142f64a-Paper.pdf.

[2] Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan,
C., Diab, M., Li, X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster,
K., Simig, D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer, L.
Opt: Open pre-trained transformer language models, 2022. URL
https://arxiv.org/abs/2205.01068.

[3] Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. Llm.int8(): 8-
bit matrix multiplication for transformers at scale. arXiv preprint
arXiv:2208.07339, 2022.

[4] Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and He, Y.
Zeroquant: Efficient and affordable post-training quantization for large-
scale transformers, 2022. URL https://arxiv.org/abs/2206.01861.

[5] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, S. Han, Smoothquant:
Accurate and efficient post-training quantization for large language
models, in: ICML, Vol. 202 of Proceedings of Machine Learning
Research, PMLR, 2023, pp. 38087-38099. 2, 20

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. NeurIPS, 2017.

[7] J. Lin, J. Tang, H. Tang, S. Yang, X. Dang, and S. Han, "Awq: Activation-
aware weight quantization for llm compression and acceleration," 2023.

[8] Phi-3 Microsoft, "Technical Report: A Highly Capable Language Model
Locally on Your Phone", 2024.

[9] Multi-task Language Understanding on MMLU, 2024.
[10] AutoGPTQ:https://github.com/AutoGPTQ/AutoGPTQ/blob/main/examp

les/quantization/bas ic_usage_wikitext2.py
[11] Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W., and Keutzer,

K. Ai and memory wall. IEEE Micro, pp. 1-5, 2024.
[12] Dwith Chenna, "Quantization of Convolutional Neural Networks: A

Practical Approach", International Journal of Science & Engineering
Development Research, Vol.8, Issue 12, page no.181 - 192, December-
2023, Available :http://www.ijrti.org/papers/IJRTI2312025.pdf

[13] AWQ, Github: https://github.com/mit-han-lab/llm-awq
[14] SmoothQuant, Github: https://github.com/mit-han-lab/smoothquant

