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I. INTRODUCTION
arge language models (LLMs) have demonstrated 
exceptional performance across a range of tasks, but their 

computational and memory demands are significant. These 
models, such as GPT-3 [1], which boasts 175 billion 
parameters, require substantial resources to operate—needing 
at least 350GB of memory to store and run in FP16. This setup 
demands multiple high-capacity GPUs, like 8×48GB A6000 or 
5×80GB A100, merely for inference. Figure 1, show the 
comparison of LLM model size and GPU memory. The 
substantial computation and communication overhead often 
result in impractical latency for real-world applications.  

One effective strategy to mitigate these challenges is 
quantization, which enhances the efficiency of LLMs by 
reducing their memory footprint and computational 
requirements. Quantization achieves this by representing 
weights and activations with low-bit integers, such as INT8 or 
INT4, thereby lowering GPU memory consumption and 
improving throughput, especially in operations like General 
Matrix Multiply (GEMM) in linear layers and Batch Matrix 
Multiply (BMM) in attention mechanisms. This approach can 
significantly decrease the cost of deploying LLMs, making 
them more feasible for practical applications [3-4]. Activations 
of LLMs are challenging to quantize due to observed large 
magnitude outliers, which leads to quantization error and 
degradation in accuracy [5]. This makes it difficult to have a 
quantization method that can work across models without 
significant degradation in model accuracy and maintaining 
performance. 

In this article, we will review some of the popular 
quantization methods and its impact on accuracy and 
performance of popular models like OPT, Llama-2/3, 
understanding how hardware friendly and post training 
quantization methods for LLMs that can leverage support of 
low precision INT8/INT4 compute efficiency available in the 
hardware accelerators. More recently, we have seen the 
introduction of smaller Small Language Models (SLMs). 
Unlike LLMs that need hundreds of billions of parameters, 
these SLMs require a few billion parameters. However, these 
SLMs are trained on much cleaner data (textbook quality data), 
and are designed to be more efficient. 

II. QUANTIZATION

In this section, we present the mathematical framework for 
the quantization scheme, which facilitates the efficient 
execution of integer arithmetic operations on quantized values. 
The transformation from real numbers 𝑟 to quantized integers 𝑞 
is defined by equation for Asymmetric quantization, where 𝑆 
and 𝑍, represent the scale and zero-point quantization 
parameters, respectively. For 8-bit quantization, 𝑞 is an 8-bit 
integer, the scale is typically a floating-point value that is 
represented using a fixed-point format, and the zero-point is of 
the same type as the quantized value. A key constraint is placed 
on the zero-point to ensure that real zero values are quantized 
accurately, without error. The reverse mapping, from quantized 
values back to real values, is described by equation (2). 

Quantization: 
q = round (r/S + Z) 

De-Quantization: 
r = S (q – Z) 

Symmetric Quantization: 
q = round(r/S) 

Where "S" is the scale and "Z" is the zero points, which are 
determined from the original float distributions using:  

S = (r_max – r_min) / (q_max – q_min) 
Z = round (q_max – r_max / S) 

Large Language Models (LLMs): Quantization 

 Dwith Chenna1 and Rahul Kavi 
1AMD http://www.amd.com 
dwith.chenna@ieee.org 

L 

Fig. 1 AI model size over the years along with AI 
accelerator memory capacity [11] 
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III. TRANSFORMERS ARCHITECTURE

Transformers have emerged as a transformative technology 
in the realm of natural language processing (NLP), 
fundamentally altering how machines understand and generate 
human language. Unlike traditional models that process text 
sequentially, word by word, Transformers can analyze an entire 
sentence at once. This parallel processing capability allows 
them to grasp the nuances of language more effectively, leading 
to significant improvements in both speed and accuracy. The 
concept of the Transformer was first introduced in the seminal 
paper Attention Is All You Need [6]. Originally designed to 
tackle sequence-to-sequence tasks such as machine translation 
and text-to-speech, Transformers have since become the 
cornerstone of many advanced NLP applications. 

A. Self-Attention 
A key innovation of the Transformer architecture is the self-

attention mechanism. This enables the model to assess the 
significance of each word in a sentence relative to all others, 
facilitating a deeper contextual understanding. By handling 
entire sentences simultaneously, Transformers not only 
expedite processing but also maintain a coherent understanding 
of context across long distances in text. This capability has 
revolutionized tasks like machine translation, content 
generation, and even the creation of human-like text, setting 
new benchmarks in NLP. 

B. Encoder-Decoder Architecture 
Transformers are built upon a two-part architecture: the

encoder and the decoder. The encoder is responsible for reading 

and processing the input text, effectively distilling it into a form 
that the model can comprehend. This process involves breaking 
down a sentence into its core elements. The decoder, on the 
other hand, takes this processed information and generates the 
output sequence, such as translating the sentence into another 
language. This encoder-decoder interaction is crucial for tasks 
that require a nuanced understanding of context, like translation. 

Within the encoder, multiple layers are employed, each 
consisting of self-attention mechanisms and feed-forward 
neural networks. The self-attention mechanism enables the 
encoder to weigh the importance of other words in the sentence 
when considering a specific word. This is mathematically 
facilitated by generating Query (Q), Key (K), and Value (V) 
vectors, which together allow the model to dynamically 
interpret the sentence’s context. The decoder, starting 

C.  Positional Encoding 
Since Transformers analyze all words in a sentence

simultaneously, they require a mechanism to capture the order 
of words—this is achieved through positional encoding. Each 
word is assigned a unique positional code that represents its 
location in the sentence, ensuring the model understands the 
sequence and flow of language. This is essential for preserving 
the meaning and structure of sentences.

D. Multi-head Attention 
A distinguishing feature of Transformers is the multi-head

attention mechanism, which allows the model to focus on 
different parts of a sentence simultaneously. By applying 
multiple attention heads, the model can capture various 

Fig. 2 Transformer architecture (left), Feed Forward Network (right) and Multi-head attention (right) 
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relationships and dependencies between words, leading to a 
richer and more nuanced understanding of the text. This parallel 
processing of attention layers is what gives Transformers their 
powerful capability to handle complex language tasks with ease. 

IV. TRANSFORMER QUANTIZATION

The quantization methods used of transformer models can be 
broadly classified as i) Post Training Quantization (PTQ) and 
ii) Quantization Aware Training (QAT). The quantization
parameters need to be adjusted to maintain the accuracy
performance after quantization. The process of retraining the
model to account for quantization is called Quantization Aware
Training (QAT) or without retraining through Post Training
Quantization (PTQ). A high-level comparison of two
approaches is shown in Figure 3.

Fig. 3 Model quantization Quantization Aware Training 
(QAT) and Post Training Quantization (PTQ) [12] 

In this article, we will be primarily focusing on PTQ which 
can be applied to the model trained with QAT. PTQ is the most 
popular technique because of its low compute requirement and 
its ability to quantize already trained models without the need 

for additional finetuning. 

A. Mixed Precision 
In practice, different levels of precision are applied

selectively throughout the Transformer architecture. High-
precision operations, such as FP16, are reserved for critical 
components where accuracy is paramount, and which are not 
compute intense like SoftMax activation and elementwise 
operations. These operations are sensitive to small numerical 
changes, and maintaining high precision ensures that the model 
can capture the intricate relationships within the data. On the 
other hand, lower-precision formats, like INT8 or even INT4, 
are used to optimize performance by reducing the 
computational load and memory usage. This is particularly 
advantageous for real-time applications or when operating in 
resource-constrained environments, though it may come with a 
slight compromise in accuracy. The decision on where to apply 
different levels of precision is driven by the specific needs of 
the application. In scenarios where speed and efficiency are 
more important, lower precision can be utilized to achieve 
faster inference times and reduce power consumption. By 
carefully managing these trade-offs, developers can tailor 
Transformer models to deliver the optimal balance between 
accuracy and performance for their intended use cases. 

B. Quantization Granularity 
Quantization granularity refers to the level at which

quantization is applied within a Transformer model, impacting 
both the precision and the efficiency of computations. There are 
several approaches to quantization granularity, each suited to 
different aspects of the model's architecture. 

Fig. 4 Quantization precision mapping for Transformers [6] 
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Per-Tensor Quantization is the most straightforward 
approach, where a single quantization coefficient is applied 
across an entire tensor. While this method is computationally 
efficient, it may lead to a loss in accuracy, especially in complex 
models like Transformers where the dynamic range of values 
can vary significantly across different parts of the tensor. 

Per-Group Quantization offers a finer level of control by 
applying quantization across groups of rows or columns within 
a tensor. For example, M rows (for activations) or K columns 
(for weights) might correspond to a single quantization 
coefficient, with K often set to values like 64. This method 
balances the trade-off between computational efficiency and 
maintaining accuracy by allowing different parts of the tensor 
to be quantized differently, depending on their significance. 

Per-Channel or Per-Token Quantization provides the highest 
granularity, applying a separate quantization coefficient to each 
individual channel or token. In the case of per-token 
quantization for activations (denoted as X), each row of the 
activation matrix receives its own quantization coefficient. 
Similarly, for per-channel quantization of weights (denoted as 
W), each column is assigned a distinct quantization coefficient. 
This approach allows for the most precise adjustments, 
preserving the nuances in data processing but at the cost of 
increased computational complexity. 

Fig. 5 Quantization granularity for Transformers [1] 

By choosing the appropriate quantization granularity, 
developers can finetune the balance between the model’s 
accuracy and the computational resources required for its 
deployment. Per-channel and per-token quantization methods 
are useful when maintaining high accuracy is crucial, while per-
group and per-tensor quantization are favored for optimizing 
performance in resource-constrained environments.  

Many quantization algorithms try to use different trade-off 
quantization schemes, mixed precision and quantization 
granularity to achieve the highest accuracy for the best 
performance efficiency. We discuss a few popular quantization 

techniques applied to transformer based LLMs mainly i) GPTQ 
ii) AWQ iii) SmoothQuant and iv) Block Quantization. We
deep dive into different trade-offs for these different methods
and analyze the effect on accuracy for popular models.

C. GPTQ 
GPTQ (Gradient Post-Training Quantization) is an efficient

algorithm for layerwise quantization of large language models 
(LLMs), designed to reduce the computational footprint while 
maintaining model accuracy. The algorithm converts floating-
point weight parameters into quantized integers, aiming to 
minimize errors at the output level. The process begins by 
performing a Cholesky decomposition of the Hessian inverse 
matrix, which helps guide the quantization by understanding 
how weight changes affect the model's output. GPTQ operates 
in batches to run efficiently on GPUs, where each batch 
contains a subset of weight matrix columns. 

For each column, the algorithm performs the following steps: 
i. Quantizes the weights by converting floating-point values
into lower-precision integers.
ii. Calculates the quantization error, which represents the
difference between the original and quantized values.
iii. Updates the weights within the current block to account
for the error, ensuring better approximation.

After processing a batch, GPTQ further updates all the 
remaining weights, compensating for any errors introduced in 
the quantized block. This iterative process ensures that the 
entire weight matrix is adjusted, allowing the model to retain 
high accuracy despite reduced precision. By processing weights 
in isolation and updating errors dynamically, GPTQ enables 
significant model compression with minimal accuracy loss. 

D. Activation-aware Weight Quantization (AWQ) 
AWQ (Activation-Weighted Quantization) [7] is an

advanced quantization technique that leverages activation 
information to enhance the precision of weight quantization in 
Transformer models. Unlike traditional methods that primarily 
rely on the magnitude of weights to guide quantization, AWQ 
focuses on the sensitivity of weights based on activation 
patterns. Even minor contributions ranging from 0.1% to 1% 
can significantly improve the overall quantization results. One 
of the core principles of AWQ is the use of activation-based 
scaling, which has proven to be more effective than scaling 
based solely on weight magnitude. This approach ensures that 
the scaling factors are aligned with the actual importance of 
weights in the context of activations, leading to a more accurate 
quantization. To determine the optimal scaling factors, a small 
calibration dataset is used, allowing the model to adjust the 
scales in a way that minimizes quantization error. 

Additionally, AWQ adopts a hardware-friendly approach by 
utilizing integer scales rather than floating-point ones. This 
minimizes quantization error and is more compatible with the 
low-precision arithmetic used in modern hardware accelerators. 
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Empirical heuristics suggest that scaling values less than or 
equal to 2 yield the best results, producing the least quantization 
error. AWQ typically employs a 4-bit quantization for weights 
and a 16-bit quantization for activations (W4A16). This 
configuration balances between reducing the model size and 
computational load while maintaining a high level of accuracy, 
particularly in scenarios where activation sensitivity plays a 
crucial role. By combining these techniques, AWQ provides a 
robust solution for deploying high-performance Transformer 
models in environments where resources are limited. 

Fig. 6 Overview of AWQ Quantization, scaling weights before 
quantization [7] 

E. Smooth Quant 
SmoothQuant [8] is a technique designed to address the

challenges of quantizing Transformer models, particularly 
focusing on the difficulty of quantizing activations due to their 
wide dynamic range. This wide range often results in a 
significant limitation on quantization precision, making it 
challenging to maintain model accuracy. In contrast, weights 
typically exhibit a more uniform distribution, making them 
easier to quantize with higher precision. To mitigate the impact 
of quantization on activations, SmoothQuant proposes a novel 
scaling method that redistributes quantization error from 
activations to weights. This redistribution is controlled by a 
parameter known as “migration strength,” which determines the 
extent to which quantization error is shifted. A migration 
strength of 0 indicates that all quantization error remains in the 
activations, reflecting the original distribution. Conversely, a 
migration strength of 1 moves all the quantization error to the 
weights. Through experimentation, it has been observed that a 
migration strength within the range of 0.4 to 0.5 offers an 
optimal balance, minimizing the overall quantization error. 

SmoothQuant utilizes an 8-bit quantization scheme for both 
weights and activations (W8A8), a configuration that helps 
achieve a balance between model efficiency and accuracy. The 
flexibility of this method is further enhanced by its 
orthogonality to other quantization schemes, meaning it can be 
integrated with various existing quantization approaches 
without being constrained by them. This versatility makes 
SmoothQuant a powerful tool for improving the performance 
of Transformer models in resource-constrained environments 
while maintaining high accuracy. 

Fig. 7 SmoothQuant showing the migration factors that 
transfers variability in activations to weights 

V. RESULTS AND ANALYSIS

In this section, we will be evaluating the results for different 
quantization techniques on popular models like OPT and Llama, 
across their different variants in sizes. 

A. Model Evaluation 
Perplexity is a metric used to evaluate the performance of

language models, measuring how well a model predicts a 
sample of text. Using the WikiText-2 dataset containing a 
diverse collection of Wikipedia articles, perplexity is calculated 
by determining the inverse probability of the test words 
normalized by the number of words. A lower perplexity 
indicates that the model has a better understanding of the 
language and predicts the next word more accurately. 
Perplexity helps in comparing different models and assessing 
their ability to generate coherent and contextually relevant text. 

B. GPTQ 
GPTQ can accurately compress some of the largest publicly

available models down to 3 and 4 bits. Tables show the 
perplexity measurement on the wikitest-2 database on different 
sizes of the OPT models, showing consistent results even for 
large model sizes. Similarly, Table 2 shows the perplexity 
metrics for the Llama-2 family of models. These results are 
generated using the AutoGPTQ library [10]. 

TABLE I: PERPLEXITY METRICS ON WIKITEXT-2 FOR
AUTOGPTQ ON OPT MODELS 

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B 

FP16 14.62 12.47 10.86 10.13 

GPTQ (INT4-g128) 16.15 12.84 11.05 10.21 

TABLE II: PERPLEXITY METRICS ON WIKITEXT-2 FOR
AUTOGPTQ ON LLAMA-2 MODELS 
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PPL Llama-2 
7B 

Llama-2 
13B 

Llama-2 
70B 

FP16 5.47 4.88 3.32 

GPTQ (INT4-g128) 5.87 4.97 3.52 

C. AWQ 
Activation-aware Weight Quantization (AWQ) is an

effective way for low-bit 4 bit weight quantization. Table 1. 
shows the perplexity measurement on the wikitest-2 dataset on 
different variants of OPT based models, showing consistent 
results across model sizes from 1.3B to 30B. Similarly, we look 
at the perplexity metrics for the Llama-2 family of models 
showing consistent results with 4-bit quantization. 

TABLE III: PERPLEXITY METRICS ON WIKITEXT-2 FOR AWQ ON 
OPT MODELS 

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B 

FP16 14.62 12.47 10.86 10.13 

AWQ (INT3-g128) 16.32 13.58 11.39 10.56 

AWQ (INT4-g128) 14.92 12.70 10.92 10.22 

TABLE IV: PERPLEXITY METRICS ON WIKITEXT-2 FOR AWQ ON 
LLAMA-2 MODELS 

PPL Llama-2 
7B 

Llama-2 
13B 

Llama-2 
70B 

FP16 5.47 4.88 3.32 

AWQ (INT3-g128) 6.24 5.32 3.74 

AWQ (INT4-g128) 5.6 4.97 3.41 

D. SmoothQuant 
SmoothQuant shows reliable results with 8-bit quantization

for different variants of popular model i.e. OPT / Llama-2. 
Table 4 compares the perplexity metric measured on WikiText-
2 dataset for FP16 and SmoothQuant models, it shows 
consistent results with minimal drop in accuracy across 
different variants of the OPT/Llama-2 models. 

TABLE V: COMPARISON OF PERPLEXITY METRICS FOR FP16 AND 
SMOOTHQUANT(A8W8) ON OPT MODELS 

PPL OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B 

FP16 14.62 12.47 10.86 10.13 

SmoothQuant 
(A8W8) 

14.82 12.50 10.86 10.14 

TABLE VI: COMPARISON OF PERPLEXITY METRICS ON WIKITEXT-
2 FOR FP16 AND SMOOTHQUANT (A8W8) 

PPL Llama-2 
7B 

Llama-2 
13B 

Llama-2 
70B 

FP16 5.47 4.88 3.32 

SmoothQuant 
(A8W8) 

5.515 4.929 3.359 

VI. CONCLUSION

In conclusion, as the demand for LLM applications grows, 
efficient deployment strategies become increasingly critical. 
Quantization stands out as a key solution, enabling significant 
reductions in computational and memory overhead while 
addressing the pressing concerns of cost, environmental impact, 
and data privacy at the edge. By exploring and implementing 
advanced quantization techniques like AWQ, SmoothQuant, 
and Block Quantization, we can unlock the full potential of 
large language models in resource-constrained environments. 

Along with quantization techniques, choosing quality data 
based on the intended end-use can greatly improve performance. 
This presentation will provide valuable insights into the 
practical application of these techniques, highlighting their 
benefits and trade-offs and ultimately guiding the path toward 
more sustainable and efficient GenAI deployments. 
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