
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-009-9080-2

An autonomy-oriented computing approach
to community mining in distributed and dynamic
networks

Bo Yang · Jiming Liu · Dayou Liu

Springer Science+Business Media, LLC 2009

Abstract A network community refers to a special type of network structure that contains
a group of nodes connected based on certain relationships or similar properties. Our ability
to mine communities hidden inside networks will readily enable us to effectively understand
and exploit such networks. So far, various methods and algorithms have been developed to
perform the task of community mining, where it is often required that the networks are pro-
cessed in a centralized manner, and their structures will not dynamically change. However, in
the real world, many applications involve distributed and dynamically evolving networks, in
which resources and controls are not only decentralized but also updated frequently. It would
be difficult for the existing methods to deal with these types of networks since their global
topological representations are either not available or too hard to obtain due to their huge size,
decentralization, and/or dynamic updates. The aim of our work is to address the problem of
mining communities from a distributed and dynamic network. It differs from the previous
ones in that here we introduce the notion of self-organizing agent networks, and provide
an autonomy-oriented computing (AOC) approach to distributed and incremental mining of
network communities. The AOC-based method utilizes reactive agents that can collectively
detect and update community structures in a distributed and dynamically evolving network,
based only on their local views and interactions. While providing detailed formulations, we
present the results of our systematic validations using real-world benchmark networks as

A preliminary, brief version of this work was presented as a regular paper at the 1st IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO’07), MIT, July 9–11, 2007.

B. Yang · D. Liu
College of Computer Science and Technology, Jilin University, Changchun 130012, China
e-mail: ybo@jlu.edu.cn

D. Liu
e-mail: dyliu@jlu.edu.cn

J. Liu (B)
Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong
e-mail: jiming@comp.hkbu.edu.hk

123

Auton Agent Multi-Agent Syst

well as synthetic networks that include a distributed intelligent Portable Digital Assistant
(iPDA) network example.

Keywords Social networks · Distributed networks · Community mining ·
Autonomy-oriented computing · Self-organization · Agent networks ·
Multi-agent systems

1 Introduction

A network community mining problem (NCMP) refers to the problem of finding all com-
munities from a given network, within which the links are dense but between which they
are sparse [18], as illustrated in Fig. 1. A wide variety of applications can be formulated as
NCMPs, such as agent scheduling in distributed systems (Fig. 1), social network analysis
[7,19,20,23], biological network analysis [27], Web pages clustering [5,11,21], and image
segmentation [25]. Social network communities can be social groups within which people
share some common interests and have more contacts than those outside. Communities in
a protein-protein interaction network can indicate groups of proteins with similar functions.
On the other hand, communities in the World Wide Web (WWW) may consist of collections
of Web pages related to certain common topics.

So far, various methods and algorithms for solving the NCMP have been developed, which
can be generally divided into three main categories:

(1) Bisection methods spectral method [4,22,25], the Kernighan-Lin algorithm [10], the
Wu-Huberman algorithm [29], and the FEC algorithm [30].

B

A

G

C

D

E

F

14

0

2

21

11

23

24

16

30

17 22

5

12
29

13

31
15 27

3
9

18

33
34

1

4

828

10 25

19

32

6
7

20

35
26

Fig. 1 An illustration of network communities, as inspired by [9]. This example network describes the com-
munication relationships among 32 mobile agents running in an ad-hoc network containing seven portable
computers. Seven communities, as denoted by A–G, may be detected based on their communication rela-
tionships. Within each community, the communications between agents are frequent, whereas between two
communities, the communications are rare. In order to improve the efficiency of the entire network, those
agents belonging to the same communities should autonomously move to and/or share the same computers

123

Auton Agent Multi-Agent Syst

(2) Hierarchical methods agglomerative methods based on the similarity measure [24]
and divisive methods, such as the GN algorithm [7], the Tyler algorithm [26], and the
Radicchi algorithm [23];

(3) Methods for detecting Web communities the MFC algorithm [5], the HITS algorithm
[11], the SAE algorithm [21] as well as others [3,12].

A more detailed discussion of these algorithms can be found in [5,18].
In the above-mentioned methods for solving the NCMP, the networks concerned are cen-

tralized (i.e., they are processed in a centralized manner and with a global control) and static
(i.e., their structures are fixed) instead of being distributed and dynamic. However, in the real
world, many applications involve distributed and dynamically evolving networks, in which
resources and controls are not only decentralized but also frequently updated. These applica-
tions call for new approaches to a new type of NCMP, i.e., distributed NCMP (or d-NCMP)
that is concerned with finding communities from a distributed and dynamically evolving net-
work. The aim of this paper is to address this problem by presenting a new autonomy-oriented
computing (AOC) method [13–15]. This method has the following distinct features.

First, the AOC-based method is applicable in situations where (1) the network to be
processed is distributed and/or decentralized by nature, and its complete topological repre-
sentation is either not available or too hard to obtain, such as WWW, and (2) computation
is distributed and/or decentralized because a centralized control is not suitable for some dis-
tributed networks, such as P2P networks, in which nodes are computational entities carrying
out their tasks autonomously and asynchronously. In this paper, we will present a distrib-
uted method, in which a group of autonomous computational agents (called entities) are
dispatched into a distributed network and they collectively cluster the entire network into
communities based only on their respective local views.

Second, the AOC-based method is suitable for mining dynamically evolving networks.
Most of the existing methods and algorithms are off-line or non-incremental, that is, they are
designed to deal with static networks rather than dynamic ones. When a clustered network is
locally changed (e.g., due to local interactions), the entire network has to be re-processed once
again by those algorithms. On the other hand, in our work, we will present an incremental
algorithm that works in both distributed and incremental way, locally modifying community
structures based on the dynamic updates of a network.

In the literature, there are some works related to ours in certain aspects, such as the meth-
ods of “distributed finding maximal cliques” [2,8] and “autonomously clustering sensor
networks” [1,17,28]. In what follows, we will take a look at those related methods and
compare them with ours.

The maximal clique finding problem is the problem of finding the largest clique (i.e., fully
connected subgraph) in a given graph, which is a well-known NP hard problem. It is not
expected to be a polynomial-time algorithm, and thus efforts have been made to come up
with efficient approximations including parallel and/or distributed algorithms. For examples,
Jennings and Motyskovd [8] have presented a distributed algorithm for finding the maximal
clique in a graph, in which they adopted a divide-and-conquer strategy to recursively discover
all “bipartite cliques” through message passing among distributed nodes. Bui and Rizzo [2]
have provided a distributed ant colony optimization (ACO) algorithm to address this prob-
lem, where a group of ants work together to find an approximately maximal clique in a given
network based on the local knowledge of each and a predefined pheromone distributing and
sharing mechanism.

Recent research on sensor networks has addressed the problem of autonomous cluster-
ing, as an attempt to reduce the energy consumption of sensors or to easily control a group

123

Auton Agent Multi-Agent Syst

of homogenous sensors. For instance, Bae and Yoon have proposed an algorithm that can
autonomously cluster geographically adjacent sensors into groups and specify a head for
each group at the same time [1]. Other related studies can be found in [17,28], which are
concerned with clustering a sensor network into groups, where the variables monitored by
sensors, such as the temperature and pressure of different sites on ocean surface, show sim-
ilar changing patterns. Based on these clusters, remote users can discriminatively distribute
different commands to sensors in different clusters.

The basic ideas behind the above-mentioned methods are similar to ours in the sense
that all of them aim to find some global patterns of networks, such as cliques, clusters or
communities, based on the local knowledge of distributed computational units. However, the
AOC-based method to be introduced in this paper differs from them in the following key
aspects:

(1) The motivation is completely different. The objective of our method is to detect all com-
munities of a given network defined by the linkage relationships among nodes, rather
than the cliques defined as fully connected subgraphs or the clusters of sensor networks
defined in terms of the spatial locations of nodes.

(2) In addition, the problem solving mechanism adopted by our method, an AOC-based
self-organization and self-aggregation paradigm [13–15], is completely distinct from
those used by the above-mentioned methods, such as divide-and-conquer strategy [8],
pheromone-based ACO system [2], self-declaration and self-pruning [1], asynchronous
signaling [17], or quorum sensing [28].

The remainder of the paper is organized as follows: Sect. 2 gives a formal definition of a
distributed NCMP (or d-NCMP) and the basic ideas behind our method. Section 3 presents
an AOC-based method for solving the d-NCMP. In Sect. 4, we validate the method using
some benchmark and synthetic networks, and examine its performances in detail. Section 5
presents an incremental AOC method for dynamically evolving networks. Finally, Sect. 6
concludes the paper by highlighting the important results of our work as well as some future
research work.

2 Formal definition of a distributed NCMP

A distributed NCMP (or d-NCMP) is an NCMP where the nodes of a network and the links
associated with them are distributed among a group of autonomous agents at different loca-
tions. The objective of solving the d-NCMP is to find all communities hidden in a distributed
network based on the local views and interactions (computations) of agents. Formally, the
problem can be stated as follows:

Definition 2.1 Let N = (V, A) be a distributed network, where V = {v1, . . . , vn} is the set
of nodes (also called vertices) and A = {<vi , v j , wi j >|1 ≤ i, j ≤ n} is the set of directed
links (also called arcs) that connect a pair of nodes with weightwi j . N is distributed among m
autonomous agents, and the view of each agent p, where 1 ≤ p ≤ m,is made up of (Vp, Ap),
satisfying with following conditions:

(1) Vp ⊆ V ;
(2) ∪

1≤ p≤m
Vp = V ;

(3) Ap = {<vi , v j , wi j >|<vi , v j , wi j > ∈ A ∧ vi ∈ Vp}.

123

Auton Agent Multi-Agent Syst

14

0

2

21

11

23

24

16

30

17 22

5

12
29

13

31

15
27

3
9

18

33
34

1

4

828

10 25

19

32

6

7

20

35

26

Agent 1

Agent 2
Agent 3

Agent 4

Agent 5

Fig. 2 A schematic representation of the d-NCMP. The network shown in Fig. 1 is distributed among five
agents at different locations. Each of them only has a local view of the entire network including the nodes
they control and the links going out from these nodes. The task of the d-NCMP is to find all seven network
communities denoted by A to G as shown in Fig. 1 through the collaborations among the five agents based on
their respective local views

Let NC(vi) ⊆ V be the community containing node vi . Thus, a d-NCMP can be defined
as follows: for each agent p, where 1 ≤ p ≤ m, how to compute NC(vi) for all vi ∈ Vp

based on its view (Vp, Ap).

From the above definition, we can see the essential distinction between a typical NCMP
and a d-NCMP. In former case, we wish to find all communities of a given network correctly
and efficiently based on its given global topological structure. While in later case, we are
especially interested in how to find such communities of a distributed network based only on
a set of separated local views of the network.

Example 2.1 As an example, let us observe the network shown in Fig. 1, which is supposed
to be distributed among five agents, as illustrated in Fig. 2.

The local view of agent p is denoted by (Vp, Ap). For example, the local view of agent 2
is represented as (V2, A2), where:

V2 = {8, 10, 25, 28};
A2 = {<28, 4>,<28, 1>,<28, 8>,<28, 10>,<28, 25>,<8, 4>,<8, 28>,

<8, 25>,<10, 1>,<10, 28>,<10, 25>,<25, 10>,

<25, 28>,<25, 8>,<25, 7>}.
Note that each element <vi , v j , wi j > in A2 is abbreviated as <vi , v j > since all weights of
the network are equal to 1.

The objectives of the five agents are to discover all the community members for their
respectively governed nodes. For example, agent 1 manages to compute all NC(vi) for each
vi ∈ V1 = {0, 2, 11, 21, 23, 34, 4, 1} based on its local view (V1, A1). As shown in Fig. 1,
the objective of agent 1 is to find:

123

Auton Agent Multi-Agent Syst

NC(0) = NC(2) = NC(21) = NC(11) = NC(23) = {0, 2, 11, 21, 23, 24, 16};
NC(1) = NC(4) = {1, 4, 8, 28, 10, 25};
NC(34) = {3, 9, 18, 34, 33}.

One immediate approach to solving such a d-NCMP is to introduce an administrative
agent, who will reconstruct a global view of the entire distributed network based on the
patched local views provided by all other agents. After that, the administrative agent will
apply one of the algorithms designed for the NCMP to discover all communities hidden in
the network. The final results will then be sent to each agent from this administrative agent.
Obviously, this strategy is not distributed, and will have several inherent limitations in deal-
ing with the huge sizes, decentralized distributions, dynamic features or privacy protecting
of networks, as discussed in the introduction. Additionally, this strategy will inevitably be
inefficiency in that a whole network will be heavily flooded by too many messages as required
to get an integrated structural view of the network.

Due to the above considerations, we will, in this paper, present a fully distributed approach
to addressing those raised issues based on the methodology of AOC [13–15].

Generally speaking, an AOC system can be viewed a multi-agent system (MAS), however,
with an explicit account of the characteristics of self-organization, self-organized computabil-
ity, interactivity, and computational scalability in solving large-scale computationally-hard
problems or modeling complex systems. As presented by Liu [13], AOC tackles a computing
problem by defining and deploying a system of local autonomy-oriented agents or entities;
the entities can be “light-weight” and they may not necessarily be cognitive decision-making
entities. The entities spontaneously interact with their local environments and self-organize
their structural relationships as well as behavioral dynamics, with respect to some specific
control settings. Such a capability is referred to as the self-organized computability of auton-
omous entities. Several general behavioral principles underlying an AOC system have been
identified. First, it is necessary for the system to manifest diversification and aggregation.
The short- and long-range exploratory actions of entities are useful for achieving comput-
able diversity, whereas positive feedback-based accelerated aggregations are necessary for
emerging macroscopically dominant patterns. Second, the entities should embody collective
regulation. In order to achieve desired macroscopic patterns or a desired global solution,
the autonomy of entities needs to be collectively regulated in their deliberative or reactive
interactions.

For the clarity of description, in the following presentation of our AOC-based method, we
will assume that each agent controls only one node. Note that this assumption will not lower
the degree of difficulty of a d-NCMP, and our method described based on the assumption
can readily be modified to suit for more general cases, where each agent controls multiple
nodes, as stated in Definition 2.1.

3 AOC-based method for solving a distributed NCMP

A typical AOC system is made up of three main elements: a group of autonomous agents,
an environment where agents reside, and the system objective [13–15]. A d-NCMP can be
instantiated as an AOC system, named AOC-0, as follows:

(1) The environment of the AOC-0 system is the distributed network to be processed;
(2) For each node of the distributed network, there is one autonomous agent residing on it;

123

Auton Agent Multi-Agent Syst

(3) The system objective of the AOC-0 system is to find the solution of the d-NCMP, that
is, to discover all communities hidden in its environment through the self-organization
and self-aggregation of autonomous agents.

In this section, we will describe the basic formulations and algorithms of the AOC-0
system for solving the d-NCMP.

3.1 Environment of the AOC-0 system

The environment of the AOC-0 system, E, is defined as a distributed network in which a
group of nodes are distributed. The information about the network is distributed among its
nodes, and each node only stores the relations associated to its direct neighbors. Formally,
each node of E is defined as a tuple <ID,NL,MP,DP>, where the components denote the
identifier of a node (ID), the identifiers of its adjacent neighbors (NL), the message pool on
the node (MP), and the data pool on the node (DP), respectively.

Given a distributed network N = (V, A), where V = {v1, . . . , vn} and A = {<vi , v j , wi j >
|1 ≤ i, j ≤ n}, node vi of E is initialized as follows:

vi .ID = i;
vi .NL = {<i, j, wi j >|<vi , v j , wi j > ∈ A};
vi .MP = vi .DP = {}.

The identifier of a node is also used to denote the address of the location, in which the
node situates. After knowing the identifier of a node, agents in the environment E can send
messages to it. All messages received by a node will be stored in its messages pool MP. The
data produced by agents will be stored in the data pools of the nodes that they respectively
control. We assume that in the environment E, there exists a message passing mechanism
which guarantees that each message be delivered to its destination; this can be implemented
by one of the reliable transfer protocols.

3.2 System objective of the AOC-0

The system objective of the AOC-0, �, is defined as follows:

� = ψ1 ∪ · · · ∪ ψn

where n is the total number of agents in the AOC-0, and ψp is the objective of agent p that
is defined as:

ψp = NC(vp)

where vp is the node controlled by agent p. The system objective of the AOC-0 will be
achieved if the distributed agents autonomously and asynchronously achieve their respective
objectives.

3.3 Agent model of the AOC-0

The agent of the AOC-0 is characterized by five attributes, including: identifier, clock, objec-
tive, view, and actions, denoted as <ID, t, ψ, view(t), actions>. There is only one agent
residing on each node of the environment E. The agent on node vp is initialized as follows:

123

Auton Agent Multi-Agent Syst

agent.ID = vp.ID = p;
agent.t = 0;
agent.ψ = NC(vp);
agent.view(0) = vp.NL;
agent.actions = <get_view, evaluate_view, shrink_view,

enlarge_view, balance_view, sleep>.

The variable t denotes the clock maintained by agent p, which is used to implement the
synchronization between agent p and other agents. After taking each action, agent p will
adjust its clock by t ← t + 1. Agent p will become inactive, when its clock reaches the final
time T, which is preset by the AOC-0.

As stated in Definition 2.1, the view of agent p (also denoted as agentp) on an entire net-
work is denoted as (Vp, Ap), which represents the set of nodes controlled by the agent and
the set of links going out from these nodes. In the AOC-0, the view of agentp is abbreviated
as Ap , because one agent controls only one node, and hence we have Vp = {vp}.

Agent view is a critical concept in our purposed AOC-based method, in which agents
update their respective views autonomously and asynchronously by taking some predefined
actions. agent.view(t) denotes the view of an agent at time t. Initially, the view of each agent,
agent.view(0), is set to the NL value of the node it controls; that is to say, at the beginning,
each agent can only see the adjacent area of the node. Then, each agent starts to update (e.g.,
shrink or enlarge) its own view based on the information it gathers from its environment,
until it finds that its view cannot be changed any more. During the course, for agentp , the
nodes belonging to the network community NC(vp) will be added into its view one by one.
In contrast, those nodes not belonging to NC(vp) will be gradually excluded out of its view.
At the time T, or when the agent view has converged, all the nodes that remain in the view of
agentp, agentp.view(T), are regarded as the members of the network community NC(vp).
In other words, we have:

agentp.ψ = NC(vp) = {vi |<p, i, wpi > ∈ agentp.view(T)} ∪ {vp}.

3.3.1 Getting views from other agents

Agent p takes the action agentp.get_view(q, t) to get the view of agent q at time t, i.e.,
agentq .view(t). From the viewpoint of implementation, this action will be accomplished
through the cooperation between both sides as follows.

On the side of agent p: First, it sends a request message <p, q, t> to node vq . Then, it
suspends its current execution and waits for the reply from node vq . After receiving the reply,
it will resume its execution from the last interruption.

On the side of agent q: It will periodically process its message pool. First, it picks up a
message <p, q, t> from its MP. Then, it matches the message with the data stored in its data
pool. If it finds the right datum, agentq .view(t), in its DP, it will send it to agent p and delete
the message <p, q, t> from its MP.

3.3.2 Evaluating agent view

Agent p on node vp takes the action agentp.evaluate_view(t) to evaluate its current view
at time t. In other words, to compute the similarities between node vp and other nodes in
its current view. The nodes with larger similarity values are more likely to belong to the

123

Auton Agent Multi-Agent Syst

community NC(vp). In the following actions, based on such similarity values worked out
in this action, agent p will determine which nodes will be kept in, and which ones will be
excluded from, its current view.

In an unweighted and undirected network, the similarity of node vi and node v j can be
defined as:

si j = |K (i) ∩ K (j)|
|K (i)| · |K (i) ∩ K (j)|

|K (j)| (3.1)

where K (i) is the set of neighbors of node vi .
The main idea behind this definition is inspired from the human society where two indi-

viduals sharing more acquaintances are more likely in the same social circle. si j actually
computes the probability of two individuals belonging to the same community. This can
readily be understood based on the following random talking model.

Considering two persons, i and j, who are freely talking about their respective acquain-
tances to each other. The probability that the one randomly talked about by person i is also
known by person j is:

p(i, j) = |K (i) ∩ K (j)|
|K (i)| . (3.2)

Similarly, the probability that the one randomly talked about by person j is also known by
person i is:

p(j, i) = |K (i) ∩ K (j)|
|K (j)| . (3.3)

In both cases, the function K (·) denotes the acquaintance set of a given person. The prob-
abilities of p(i, j) and p(j, i) measure the degree of one person knowing the other, thus
the probability of p(i, j)p(j, i)measures the degree of two persons knowing each other. As
illustrated in Fig. 3a, b, the higher the value of p(i, j)p(j, i), the denser the links appearing
among node i, node j, and their respective neighbors, and thus the more likely these nodes
belong to the same community due to their highly clustered relationships.

Based on Eq. 3.1, we can define the similarity between two nodes in a weighted, directed,
and distributed network.

Definition 3.1 Let vp and vq be two nodes in a distributed network. Agents p and q are on
nodes vp and vq , respectively. The similarity between nodes vp and vq at time t is defined as
follows:

st
pq = S(agentp.view(t), agentq .view(t))

=
∑

k∈K p(t)∩Kq (t) w
∗
pk

∑
k∈K p(t) w

∗
pk

·
∑

k∈K p(t)∩Kq (t) w
∗
qk

∑
k∈Kq (t) w

∗
qk

(3.4)

where Ki (t) = {i} ∪ {k|<i, k, wik> ∈ agenti .view(t)} and w∗ik = agenti .view(t).<i, k,
wik>.wik .

The action agentp.evaluate_view(t) is defined in Table 1, in which symbol “←” denotes
“assigned to”. In Step 7, agent p submits its current view agentp.view(t + 1) to the data
pool on node vp .

123

Auton Agent Multi-Agent Syst

(a) (b) (c)

ji ji i j

Fig. 3 The mutually linked relationship between two talkers in the random talking model. In a and b, talkers i
and j are more likely in the same community with a high probability of si j = 0.73 and si j = 0.45, respectively,
In c, the probability si j obtained by Eq. 3.1 is 0, which will isolate talker i from others, while this probability
obtained by Eq. 3.4 is 0.17, which is more feasible

Table 1 The definition of the
action agentp .evaluate_view(t)

1. agentp .view(t + 1)← {};
2. for ∀< p, q, wpq > ∈ agentp .view(t)

3. agent_q_view_t ← agentp .get_view(q, t);
4. st

pq ← S(agentp .view(t), agent_q_view_t);
5. agentp .view(t + 1)← agentp .view(t + 1) ∪ {<p, q, st

pq >};
6. end

7. vp .D P ← vp .D P ∪ agentp .view(t + 1);

Example 3.1 Considering the distributed network shown in Fig. 1, in which there are total
36 agents on 36 nodes. At the beginning, i.e., t = 0, the views of all agents are listed as
follows:

agent0.view(0) = {<0, 11, 1>};
agent1.view(0) = {<1, 23, 1>,<1, 28, 1>,<1, 10, 1>};
… …
agent35.view(0) = {<35, 20, 1>,<35, 26, 1>,<35, 14, 1>}.
After each agent p takes the action agentp.evaluate_view(0), the views of all agents at

time 1, i.e., t = 1, are obtained, as listed as follows:

agent0.view(1) = {<0, 11, 0.17>};
agent1.view(1) = {<1, 23, 0.07>,<1, 28, 0.27>,<1, 10, 0.44>};
… …
agent35.view(1) = {<35, 20, 0.6>,<35, 26, 0.6>,<35, 14, 1>}.
For the sake of description, let us represent the views of all agents using a matrix, called

agent view matrix at time t or AVM(t), which is defined as follows:

AVM(t)(i, j) =
{
w∗i j ,

0,
if <i, j, wi j > ∈ agenti .view(t)
else

(3.5)

where w∗ik = agenti .view(t).<i, k, wik>.wik .

We note that the AVM(0) is, in fact, the adjacency matrix of a network. After each agent p
completes the action agentp.evaluate_view(0), we have the AVM(1) of the network updated

123

Auton Agent Multi-Agent Syst

Fig. 4 The agent view matrices and corresponding agent networks in the AOC-0. a Agent view matrix at time
1, AVM(1), with respect to the network shown in Fig. 1. b Agent network at time 1, AN (1), with respect to the
network shown in Fig. 1

123

Auton Agent Multi-Agent Syst

Table 2 The definition of the
action agentp .shrink_view(t)

1. agentp .view(t + 1)← {};
2. µt

p =
∑

q agentp .view(t).<p,q,wpq >.wpq
|agentp .view(t)| ;

3. σ t
p =

(∑
q (agentp .view(t).<p,q,wpq >.wpq−µt

p)
2

|agent.view(t)|
)1/2

;

4. for ∀<p, q, wpq > ∈ agentp .view(t)

5. if wpq ≥ ω1 · (µt
p + ω2 · σ t

p) then

6. agentp .view(t + 1)← agentp .view(t + 1) ∪ {<p, q, wpq >};
7. end

8. end

9. vp .D P ← vp .D P ∪ agentp .view(t + 1);

with similarity-valued relationships. As an example, the AVM(1) of such an updated network,
with respect to the original network of Fig. 1, is given in Fig. 4a.

In what follows, we will refer to the network whose adjacency matrix is given by AVM(t)

as an agent network at time t, denoted as AN (t), where each node denotes an agent and the
links describe the relationships among these agents in terms of the similarity measure as
mentioned earlier. Corresponding to the AVM(1) of Fig. 4a, the agent network AN (1) for the
network of Fig. 1 is shown in Fig. 4b, from which we observe that the similarities between
the nodes belonging to different communities are much less than those belonging to the same
communities.

The time complexity of the action agentp.evaluate_view(t) is O(d2
t), where dt is the

average degree of the agent network at time t. Let d p
t = |agentp.view(t)| be the degree of

agent p at time t, then we have dt = 1
n

∑n
p=1 dt

p , where n is the total number of agents.

3.3.3 Shrinking agent view

Agent p on node vp takes the action agentp.shrink_view(t) to exclude those nodes that may
not belong to the network community NC(vp) from its current view at time t. The action
agentp.shrink_view(t) is defined in Table 2, in which ω1 and ω2 are two constants, µt

p and
σ t

p are the mean and the standard deviation of the view of agent p, respectively.
The time complexity of the action is O(dt), where dt is the average degree of the agent

network at time t, i.e., AN (t).

3.3.4 Enlarging agent view

Agent p on node vp takes the action agentp.enlarge_view(t) to incorporate those nodes that
may belong to the network community NC(vp) into its current view at time t. This action
is inspired by the human society in which an individual is likely to make new friends out of
his/her old friends’ friends. The action agentp.enlarge_view(t) is defined in Table 3, where
the denotations, such as ω1, ω2, µ

t+1
p , and σ t+1

p , are the same as those introduced in Table 2.
The function rand(S) will randomly select one element from the set S and return it.

The time complexity of the action is O(dt), where dt is the average degree of the agent
network at time t, AN (t).

Example 3.2 Considering the network shown in Fig. 5a, in which there are in total seven
agents on seven nodes. At time t, the view of agent i is:

agenti .view(t) = {<i, 1, 0.3>,<i, j, 0.5>,<i, 5, 0.15>}.

123

Auton Agent Multi-Agent Syst

Table 3 The definition of the
action agentp .enlarge_view(t)

1. agentp .view(t + 1)← agentp .view(t);

2. q ← rand({i |<p, i, wpi > ∈ agentp .view(t + 1)});
3. agent_q_view_t ← agentp .get_view(q, t);

4. wpq ← agentp .view(t + 1).<p, q, wpq >.wpq ;

5. for ∀<q, i, wqi > ∈ agent_q_view_t

6. if <p, i, wpi > ∈ agentp .view(t + 1) then

7. wpi ← agentp .view(t + 1).<p, i, wpi >.wpi ;

8. else

9. wpi ← 0;

10. end

11. spi ← max(wpi , wpq · wqi);

12. agentp .view(t + 1)← agentp .view(t + 1)− {<p, i, wpi >}
∪{<p, i, spi >};

13. end

14. for ∀<p, q, wpq > ∈ agentp .view(t + 1)

15. if wpq <ω1 · (µt+1
p + ω2 · σ t+1

p) then

16. agentp .view(t + 1)← agentp .view(t + 1)− {<p, q, wpq >};
17. end

18. end

19. vp .D P ← vp .D P ∪ agentp .view(t + 1);

(a) (b) (c)

0.5 3

0.4

0.
6

0.3

0.5

0.4

4

ji

5

1 2

0.5 3

0.
6

0.3

0.5

0.4

4

ji

5

1

0.2

0.
3

0.3

2

0.15

0.
3

0.15

0.25

0.5 3

0.
6

0.3

0.5

0.4

4

ji

5

1

0.
3

2

0.3

0.25

Fig. 5 The schematic illustration of the action enlarge_view. a presents the original network in which agent i
will apply the action. First, agent i randomly selects one neighbor out of its three neighbors, denoted as agent
j. Then, agent i chooses all the neighbors of agent j as its new neighbors, as illustrated in (b), where the dashed
lines denote the newly created links. Finally, agent i evaluates its current neighbors and abandons those with
low similarity values, as illustrated in (c)

After agent i completes the action, the view of agent i at time t +1 is listed as follows, where
two new nodes, nodes 2 and 4, are added to the agent view, and at the same time, node 5 is
deleted:

agenti .view(t + 1) = {<i, 1, 0.3>,<i, 2, 0.3>,<i, j, 0.5>,<i, 4, 0.25>}.

123

Auton Agent Multi-Agent Syst

Table 4 The definition of the
action agentp .balance_view(t)

1. agentp .view(t + 1)← ∅; (i.e., null)

2. for ∀<p, q, wpq > ∈ agentp .view(t)

3. agent_q_view_t ← agentp .get_view(q, t);

4. if <q, p, wqp> ∈ agent_q_view_t then

5. spq ← (wpq + wqp)/2;

6. else

7. spq ← wpq/2;

8. end

9. agentp .view(t + 1)← agentp .view(t + 1) ∪ {<p, q, spq >};
10. end

11. vp .D P ← vp .D P ∪ agentp .view(t + 1);

3.3.5 Balancing agent view

Finally, let us take a look at the action agentp.balance_view(t) as performed by agent p on
node vp . This action will enable the agent to average the similarity values between vp and
the nodes in its view at time t (Table 4).

The time complexity of the action is O(d2
t), where dt is the average degree of the agent

network at time t, AN (t).

3.3.6 The life-cycle of an agent

Based on the actions discussed above, the life-cycle of agent p on node vp is given in Table 5.
The life-cycle of the agent in the AOC-0 is divided into three main phases: initialization

phase (Steps 1–3), active phase (Steps 4–13), and inactive phase (Steps 14 and 15).
In the initialization phase, agent p initializes itself by setting its starting clock and its

initial view, and putting the view into the data pool of the node it resides on.
In the active phase, agent p takes its actions, as a sequence of evaluate_view, shrink_view,

enlarge_view, and balance_view, to repeatedly update its view until it becomes stabilized or
its clock reaches a predefined threshold. After the view of agent p become stabilized, i.e.,
its current view is identical to its previous view, we say that a convergent view has been
reached. At this time, the current value of t is denoted as tc, and the current view is called
the convergent view of agent p. For agent p, its convergent view becomes:

agentp.view(tc) = {<p, q1, 1>, . . .<p, ql , 1>}
where l denotes the number of elements in its convergent view. Note that all weights in the
convergent view are equal to 1.

When the clock is equal to tc or T, agent p will stop updating. At this time, agent p finds all
members belonging to the network community NC(vp) based on its convergent view, i.e.,

agentp.ψ = NC(vp) = {vi |(p, i, wpi) ∈ agentp.view(t)} ∪ {vp}
where t = min{tc, T }. Now, the agent has accomplished its objective, and becomes inactive
and sleeps.

123

Auton Agent Multi-Agent Syst

Table 5 The life-cycleof agentp /* initialization phase */

1. agentp .t ← 0;

2. agentp .view(0)← vp .N L;

3. vp .D P ← vp .D P ∪ agentp .view(0);

/* active phase */

4. while agentp .t< T do

5. agentp .evaluate_view(agentp .t);

6. agentp .shrink_view(agentp .t + 1);

7. agentp .enlarge_view(agentp .t + 2);

8. agentp .balance_view(agentp .t + 3);

9. agentp .t ← agentp .t + 4;
10. if agentp .view(agentp .t) = agentp .view(agentp .t − 4) then

11. goto 14;

12. end

13. end

/* inactive phrase */

14. agentp .ψ = {vi |<p, i, wpi > ∈ agentp .view(agentp .t)} ∪ {vp};
15. agentp .sleep;

3.4 AOC-based method for solving a distributed NCMP

In this section we summarize the AOC-based method for solving a d-NCMP, and discuss its
characteristics. For the sake of notation, the method is named the AOC-d algorithm.

3.4.1 A summary of the AOC-based method

A given d-NCMP can be modeled as an AOC system, in which a distributed network in
NCMP is considered as the environment of the AOC system, and the solution of the NCMP
is the objective of the AOC system. The nodes in the distributed network are controlled by a
group of autonomous agents running autonomously and asynchronously. The collaborations
and asynchronizations between them are implemented with the aid of a distributed clock
mechanism, in which each agent maintains its own clock. Each agent only has a local view of
the entire environment where it resides. During its life-cycle, each agent repeatedly updates
its view by taking some predefined actions as shown in Table 5. After the updating process
terminates, the final view of each agent contains exactly the members belonging to the net-
work community that the agent aims to find. The agents that have achieved their objectives
suspend their actions and become inactive. The objective of the AOC system is thus achieved
when all its agents become inactive.

Example 3.3 In this example, we show how to mine network communities hidden in the
distributed network shown in Fig. 1 using the AOC-d algorithm. We will focus on a single
agent and observe its view at different time steps during its entire life-cycle. In this case, we
choose agent 0, and three parameters involved are set as follows: T = 100, ω1 = 0.4, and
ω2 = 0.3.

123

Auton Agent Multi-Agent Syst

First, agent0 initializes itself. The time of its clock is set to 0, and its view at time 0 is
set to:

agent0.view(0) = {<0, 11, 1>}.
Then, agent0 starts its active phase. After taking the action evaluate_view in Step 5, its

view at time 1 becomes:

agent0.view(1) = {<0, 11, 0.17>}.
After the action shrink_view in Step 6, its view at time 2 becomes:

agent0.view(2) = {<0, 11, 0.17>}.
After the action enlarge_view in Step 7, its view at time 3 becomes:

agent0.view(3) = {<0, 11, 0.17>,<0, 24, 0.08>}.
After the action balance_view in Step 8, its view at time 4 becomes:

agent0.view(4) = {<0, 11, 0.17>,<0, 24, 0.04>}.
Next, in Step 9, agent0 updates its clock; the time of its clock is 4.
In Step 10, agent0 checks whether it has reached a convergent view by comparing its cur-

rent view, agent0.view(4), with its previous view, agent0.view(0). Because agent0.view(4)
is not equal to agent0.view(0) and the current time is less than T, agent0 goes to Step 4
and starts a new iteration. After finishing the second iteration, agent0.t = 8, and the view of
agent0 at time 8 becomes:

agent0.view(8) = {<0, 2, 0.26>,<0, 21, 0.26>,<0, 23, 0.25>,<0, 11, 0.51>,<0, 24, 0.51>,

<0, 16, 0.26>}.
As agent0.view(8) is not equal to agent0.view(4) and the current time is less than

T, agent0 goes to Step 4 and starts the third iteration. After finishing the third iteration,
agent0.t = 12, and the view of agent0 at time 12 becomes:

agent0.view(12) = {<0, 2, 1>,<0, 21, 1>,<0, 23, 1>,<0, 11, 1>,<0, 24, 1>,<0, 16, 1>}.
Once again, agent0.view(12) is not equal to agent0.view(8) and the current time is still

less than T. agent0 goes to Step 4 and starts the fourth iteration, after which the view of
agent0 at time 16 becomes:

agent0.view(16) = {<0, 2, 1>,<0, 21, 1>,<0, 23, 1>,<0, 11, 1>,<0, 24, 1>,<0, 16, 1>}.
In this case, agent0 has reached its convergent view since agent0.view(16) is exactly

equal to agent0.view(12). So, it quits the cycle of view updating.
In the inactive phase, agent0 obtains all the members belonging to the network community

NC(0) by taking the action in Step 14:

agent0.ψ = {i |(p, i, wpi) ∈ agent0.view(16)} ∪ {0}
= {2, 21, 23, 11, 24, 16, 0}
= NC(0).

Finally, agent0 becomes inactive by taking sleep in Step 15.
Similarly, we can observe the activities of other agents. Using the concept of agent network,

as introduced in Sect. 3.3.2, we can easily visualize the dynamic process of view updating

123

Auton Agent Multi-Agent Syst

of all agents in the AOC system, as shown in Fig. 6. Figure 6a–h, respectively, present the
snapshots of the dynamically updated agent networks at different time steps, in which circular
nodes denote active agents and triangular nodes denote inactive agents. At time 24, i.e., after
six iterations, all agents in the AOC system find their respective network communities and
become inactive.

3.4.2 Self-organizing agent network and positive feedback mechanism

It can be noted that in the AOC-0 system, there are two types of networks, which form a
two-layer structure. The bottom layer is the distributed network (i.e., physical network) to
be mined, and the top layer is the agent network (i.e., conceptual network) consisting of the
views of all agents upon the bottom layer. The agent network is dynamically updated as the
views of agents keep on evolving during their life-cycles. When agent p appears in the view
of agent q, a new link from q to p will be added to the agent network. In contrast, when
agent p is excluded from the view of agent q, the existing link from q to p will be deleted
from the agent network. As directed by the predefined actions, the agent network evolves
continuously, from an old structure to a new one, similar to such dynamic systems as human
societies and ecosystems.

The evolving process of the agent network is, in fact, a positive feedback process, in
which the links between agents corresponding to the nodes in the same network commu-
nities will gradually emerge, while the links between agents corresponding to the nodes
in different network communities will gradually disappear. Based on the positive feedback
mechanism, agents self-organize themselves into a number of separated groups; each group
corresponds to one network community of the distributed network in question. The finally
evolved agent network comes into being when all its agents become inactive, which is made
up of a set of separated cliques, and each of them corresponds to one network commu-
nity. For example, in Fig. 6i, there are seven cliques in the finally evolved agent network,
each of which corresponds to a network community of the distributed network as shown in
Fig. 1.

Example 3.4 In this example, we will examine the positive feedback mechanism of the AOC-
d algorithm with the aid of the agent view matrix, AVM, as introduced in Sect. 3.3.2.

The network to be discussed here is a synthetic random network, which is commonly used
to test the performance of algorithms for mining a community structure [7,19,20,23]. The
community structure of the random network is known beforehand. But, it is stochastic in
other respects as regulated by parameters. The network is specified as G(c, n, k, pin), where
c is the number of communities in the network; n is the number of nodes in each community;
k is the average degree of each node; pin is the probability of each node connecting other
nodes in the same community. Obviously, as pin → 0, the community structure of a random
network becomes increasingly ambiguous.

In this example, the random network to be processed is G(4, 64, 30, 0.5), and we set
T = 50, ω1 = 0.3 and ω2 = 0.2. Figure 7a presents the agent view matrices for the random
network at different time steps, in which each dot “.” denotes a non-zero element, i.e., a
non-zero weight associated with a link between two agents. The nodes belonging to the same
community are arranged together. We can see four dense areas along the diagonal line in
these matrices. Each of them corresponds to a community. The evolving process of the agent
network converges after 28 time steps, as shown in Fig. 7a–h. From them we can see that as
the agent network evolves, the links between communities (the dots out of the four dense

123

Auton Agent Multi-Agent Syst

Fig. 6 The updating of an agent network with respect to the distributed network as shown in Fig. 1. a Agent
network at time t = 1, b agent network at time t = 2, c agent network at time t = 3, d agent network at time
t = 4, e agent network at time t = 8, f agent network at time t = 12, g agent network at time t = 16, h agent
network at time t = 20 and t = 24

123

Auton Agent Multi-Agent Syst

Fig. 7 Examining the positive feedback mechanism of the AOC-d algorithm, in terms of a series of evolving
agent view matrices, with respect to the random network G(4, 64, 30, 0.5). a AVM(0); b AVM(4); c AVM(8);
d AVM(12); e AVM(16); f AVM(20); g AVM(24); h AVM(28)

areas) gradually disappear, while those within communities (the dots within the four dense
areas) gradually increase. Finally, the agent network evolves into a new network containing
four separated cliques, each of which corresponds to a community of the random network,
as shown in Fig. 7h.

3.4.3 Time complexity of the AOC-d algorithm

Let n be the number of nodes in a distributed network in question. So, there are in total n
agents running asynchronously in the AOC-0 system. The time complexity of the life-cycle
of each agent, as listed in Table 5, is:

min{(tc−3)/4,(T−3)/4}∑

t=0

(
O(d2

4t
)+ O(d4t+1)+ O(d4t+2)+ O(d2

4t+3
)
)
≤ O(T · d2

T)

where tc is the time when an agent finds its convergent view, and dt is the average degree of
the agent network at time t.

When T is considered as a constant, the time in the worst case required by each agent
to run through its life-cycle is O(d2

T). Let k be the number of communities in the distrib-
uted network in question. So, in the finally evolved agent network, there will be k separated
cliques, and we have:

dT = 2 · mT

n
= 2 · k · n

k
·
(n

k
− 1

)
· 1

2n
= O(n/k)

where mT denotes the number of links in the agent network at time T.
So, for each agent in the AOC-0, the time required to complete its task in the worst

case is:

W T = O(d2
T) = O(n2/k2).

123

Auton Agent Multi-Agent Syst

In the case of k n, i.e., the number of communities in the distributed network is very small
and k can be considered as a constant, we have:

W T = O(d2
T) = O(n2/k2) = O(n2).

While in the case of k ≥ √n, i.e., the number of communities in the distributed network
is quite large, we have:

W T = O(d2
T) = O(n2/k2) = O(n).

That is to say, each agent will quickly complete its task within a constant time.
From the above analysis, we can see that given a network, the efficiency of the AOC-d algo-

rithm is related to the community structure of the network. Generally, the more communities
the network contains, the more efficient the AOC-d algorithm is.

4 Evaluation of the AOC-d algorithm

4.1 Validation of the AOC-d algorithm

In this section, we will validate the AOC-d algorithm using some benchmark networks that are
commonly used in related work. Although these networks are given as centralized represen-
tations, for the purpose of testing our distributed method, here we treat them as distributed
networks, i.e., we consider that their nodes and links are distributed (e.g., over different
sources, or geographical locations).

4.1.1 Karate network

Figure 8a shows the karate club network. This network corresponds to the observation made
by Wayne Zachary [31] on the social interactions between members of a karate club at an
American university. During his study, it was noticed that a dispute arose between the club’s
administrator and its principal karate teacher. As a result, the club split into two roughly
equal-sized clubs: One was led by the administrator, represented by squares, and the other by
its teacher represented by circles, as shown in Fig. 8a. In this experiment, we setω1 = 0.2 and
ω2 = 0.2. The process of agent network updating converges after 24 time steps. Figure 8b
presents the result as obtained by the AOC-d algorithm, which is presented by the finally
evolved agent network. As compared with the actual division shown in Fig. 8a, only node 10
is misclassified.

Fig. 8 Mining communities from the karate club network using the AOC-d algorithm

123

Auton Agent Multi-Agent Syst

Now, let us observe agent 17, which is on node 17 belonging to the community B. Its
initial view, convergent view and objective are listed as follows:

agent17.view(0) = {<17, 6, 1>,<17, 7, 1>};
agent17.view(24) = {<17, 4, 1>, <17, 3, 1>, <17, 11, 1>,<17, 2, 1>, <17, 7, 1>, <17, 12, 1>,
<17, 6, 1>, <17, 18, 1>, <17, 8, 1>, <17, 22, 1>, <17, 10, 1>, <17, 1, 1>, <17, 13, 1>,
<17, 5, 1>, <17, 14, 1>, <17, 20, 1>};
agent17.ψ = {4, 3, 11, 2, 7, 12, 6, 18, 8, 22, 10, 17, 13, 5, 14, 20, 1}.

4.1.2 Football network

As another test, we turn to the network of US college football association in the 2000 season,
which was previously used by Girvan and Newman [7]. This network contains 115 nodes and
616 links, which correspond to football teams and games among those teams, respectively.
The 115 teams were grouped into 12 conferences; games between members of the same
conference would be more frequent than between those of different conferences. In this case,
each conference can be naturally considered as one community of the network. Figure 9a
is the adjacency matrix of the initial foot association network, in which Name (ID) on the

Fig. 9 Mining communities from the football association network. a The adjacency matrix of the football
network, b the enlarged view of the rectangular area in (a), c the agent view matrix of the finally evolved agent
network, d the enlarged view of the rectangular area in Fig. 9c

123

Auton Agent Multi-Agent Syst

left of each row denotes the name of a football team and the ID of the conference it belongs
to. In this experiment, we set ω1 = 0.3 and ω2 = 0.2. The updating of the agent network
converges after 28 time steps.

Figure 9d shows the final agent view matrix for the football network, in which 12 cliques
are formed, and each of them corresponds to one conference, respectively. As compared with
real communities, most associations are detected correctly except for a few teams, such as
five teams of IA Independents (No. 5), teams 28 and 58 of Western Athletic (No. 11), and
team 110 of Texas Christian (No. 4). The reason for misclassification is that these teams play
more matches with teams in other associations than with those in their own associations.

4.1.3 Dolphin network

Figure 10a presents the dolphin network that represents the social relationships of 62 bottle-
nose dolphins living in Doubtful Sound of New Zealand. This network was introduced by
Lusseau [16] based on his observations of these dolphins for seven years. As he observed, the
dolphins were, for some reasons, divided into two groups, as shown in Fig. 10a, b presents the
final agent view matrix as obtained by the AOC-d algorithm, in which two groups, A and B,
are correctly divided. Furthermore, four latent subdivisions of group B are also predicted by

Fig. 10 Mining communities from the dolphin network. a The dolphin network, b the final agent view matrix,
c the enlarged view of the left-top rectangular area in Fig. 10b

123

Auton Agent Multi-Agent Syst

Fig. 11 An illustrative iPDA network distributed at a certain time in terms of communications between indi-
viduals, where the weight of an edge denotes the frequency of communications. The right-hand-side panel is
the agent view matrix of the finally-evolved agent network

the algorithm. In this experiment, we set ω1 = 0.25 and ω2 = 0.2, and the evolving process
converges after 36 time steps.

4.1.4 An application of the AOC-d algorithm in iPDA

iPDAs (intelligent Portable Digital Assistants) carried by people form a distributed network in
which people communicate with each other through calls or messages, as shown in Fig. 11.
One useful function of such an iPDA would be to find and recommend new friends with
similar interests or promising partners in research or business to its owners, in terms of the
accumulated communication records during a certain period. To implement that, each iPDA
does three things: (1) selecting people who have communicated at least a certain number of
times (i.e., above a threshold) as its initial local view; (2) finding the community containing
its owner based on the AOC-d algorithm; (3) reporting new persons to its owner. For exam-
ple, for the network shown in Fig. 11, 16 communities have been detected, with ω1 = 0.3
and ω2 = 0.4. For the user named Neumann in the circled community, its iPDA will rec-
ommend five new people to him/her as new partners, including Gao, Zhou, Zhu, Yu, and
Roberts.

4.2 Performance analysis of the AOC-d algorithm

4.2.1 Emergent small-world property

Like the small-world model, the clustering coefficient of the agent network produced by the
AOC-d algorithm increases during the updating process, and the finally evolved agent net-
work can be highly clustered. From Fig. 12, we note that the clustering coefficient of different
agent networks increases during their updating, and finally arrives at 1, corresponding to a
set of separated cliques. In this experiment, we set ω1 = 0.3 and ω2 = 0.2 for all networks.

However, unlike the small-world model, in which an entire network is considered as one
small world with high clustering coefficients, the agent network from the AOC-d algorithm
is made up of a set of small worlds that are formed and separated gradually during the course

123

Auton Agent Multi-Agent Syst

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

t

cl
us

te
rin

g
co

ef
fic

ie
nt

the network shown in Fig.1

karate club network

football association network

dolphin network

random network

Fig. 12 Clustering coefficients of different evolving ANs

of updating. In the finally evolved agent network, multiple isolated small-world networks
emerge, each of which is a clique with the highest clustering coefficient equal to 1. Such
small-world networks are the network communities that we try to find.

4.2.2 Testing the clustering accuracy

Figure 13 presents a comparison of clustering accuracy among three algorithms, including:
GN algorithm [7,20], Newman algorithm [19], and the AOC-d algorithm. The experimental
network is G(4, 32, 16, pin), a benchmark network that has been commonly used by many
papers [7,19,20,23]. In this network, each node has zin edges connecting it to the members of
the same group, and zout edges to the members of other groups, with the sum zin + zout = 16.
The graphs with zout = k+ 0.5 are those in which half of nodes have k between-community
links and half have k + 1. Algorithm is considered to be successful if each node is classified
in the right community, and the four communities are not further subdivided. In Fig. 13,
y-axis denotes the fraction of nodes correctly identified by these three algorithms, and each
point in the curves is obtained by running corresponding algorithm over 200 graphs. In this
experiment, we set ω1 = 0.25 and ω2 = 0.2.

From Fig. 13, we can see that all algorithms work very well when zout ≤ 5.5, correctly
identifying more than 95% of nodes. In the case of 6 ≤ zout ≤ 8, the classification accuracy
of the AOC-d algorithm is much better than the GN algorithm and the Newman algorithm.

4.2.3 Discussion on the parameters of the AOC-d algorithm

Two main parameters,ω1 andω2, are involved in the AOC-d algorithm, which are used to con-
trol the granularity of communities. More communities with smaller sizes will be obtained
under larger values of ω1and ω2. Otherwise, fewer communities with larger sizes will be
obtained. Figure 14 illustrates this fact using two networks, in which the z-axis denotes the
number of communities obtained under different values of the two parameters. From this fig-
ure, we can see that the number of communities obtained by the AOC-d algorithm is related
to but not sensitive to parameters when 0.2 ≤ ω1, ω2 ≤ 0.6. In Fig. 14a, the number of com-
munities obtained in the football association network falls into the interval of [25,30], and its

123

Auton Agent Multi-Agent Syst

0 1 2 3 4 5 6 7 8

0.4

0.5

0.6

0.7

0.8

0.9

1

Zout

cl
us

te
rin

g
ac

cu
ra

cy

GN algorithm

Newman algorithm

AOC-d algorithm

Fig. 13 Clustering accuracy of three algorithms

(a) (b)

0.2
0.3

0.4
0.5

0.6

0.2
0.3

0.4
0.5

0.6
4
6
8

10
12
14
16

w1w2

T
he

 n
um

be
r

of
 c

om
m

un
iti

es

0.2
0.3

0.4
0.5

0.6

0.2
0.3

0.4
0.5

0.6
1

2

3

4

5

6

w1
w2

T
he

 n
um

be
r

of
 c

om
m

un
iti

es

Fig. 14 The number of communities obtained by the AOC-d algorithm with different parameters. a The
football association network, b G(4, 16, 16, 0.6)

average is 13, very close to the actual number of football teams. In Fig. 14b, the number of
communities obtained in a random network with four communities varies within the interval
of [23,27], and its average is 4.

4.2.4 Modularity evaluation

As presented by Newman [19,20], the concept of modularity has been used to evaluate the
quality of a particular division of a network. Let us consider a particular division of a network
into k communities. The modularity Q of this division is defined as follows:

Q =
∑

i

(eii − a2
i) (4.1)

where e is a k × k symmetric matrix whose element ei j is the fraction of all edges in the
network that link the nodes in community i to the nodes in community j, and ai =∑

j ei j . As
pointed out by Newman, a higher modularity value indicates a better division for a network.

123

Auton Agent Multi-Agent Syst

(b)(a)

0.2
0.3

0.4
0.5

0.6

0.2
0.3

0.4
0.5

0.6

0.4

0.5

0.6

w1
w2

m
od

ul
ar

ity

0.2
0.3

0.4
0.5

0.6

0.2
0.3

0.4
0.5

0.6
0.2

0.3

0.4

0.5

w1w2

m
od

ul
ar

ity

Fig. 15 The modularity obtained by the AOC-d algorithm with different parameters. a The football association
network, b the dolphin network

From Fig. 15 in which the z-axis denotes the Q-value of the divisions obtained under
different parameters, we can see that the modularity obtained by the AOC-d algorithm is
related to but not sensitive to parameters when 0.2 ≤ ω1, ω2 ≤ 0.6. In Fig. 15a, the obtained
modularity of the football association network falls into the interval of [0.52, 0.603], and
gets 0.601 at ω1 = 0.3 and ω2 = 0.2, as used in the experiment shown in Fig. 9. In Fig. 15b,
the obtained modularity of the dolphin network falls into the interval of [0.43, 0.525], and
gets 0.521 at ω1 = 0.25 and ω2 = 0.2, as used in the experiment shown in Fig. 10.

5 Incremental AOC-based method for mining dynamic networks

5.1 Problem definition

Usually, the network in a d-NCMP is dynamic, i.e., its structure will be updated periodically
depending on new local updates (e.g., local interactions). Suppose N is a dynamic distributed
network, and its updating process is represented by a discrete time series as follows:

N0, N1, . . . , Nt , · · ·
where Nt denotes the updated network at time t. Let C S(Nt) = {NC1, . . . NCk} be the
community structure of Nt , where NCi (1 ≤ i ≤ k) denotes the i-th network community
and k is the total number of communities. Now, the problem is how to efficiently compute
C S(Nt+1) after the network Nt is transformed into Nt+1.

The problem can be directly solved using the AOC-d algorithm as discussed in Sect. 3.4.
Essentially, the method can be formalized as a mathematical function F, defined as:

C S(N) = F(N). (5.1)

For a given network N , F can figure out its community structure C S(N). So, after each
update of the dynamic network, its new community structure can be computed as follows:

C S(Nt+1) = F(Nt+1). (5.2)

Obviously, the strategy of re-calculating the entire network after each local update (e.g.,
interaction) is not efficient, especially when we process large-scale, locally-interacting, or
highly-dynamic networks.

123

Auton Agent Multi-Agent Syst

In this section, we hope to find an incremental function F∗, which can figure out the new
community structure of a dynamic network based on its incremental update or change each
time and its previous community structure that has been discovered. Formally, F∗ can be
defined as:

C S(Nt+1) = F∗(�Nt+1,C S(Nt)) (5.3)

where �Nt+1 = Nt+1 − Nt denotes the incremental change of the dynamic network N at
time t+1.

5.2 Incremental AOC-based method

In the AOC-d algorithm, to find the community structure of a distributed network is to
obtain a finally evolved agent network. In the incremental AOC-based method, named AOC-i
algorithm, in which the network to be mined is dynamically changing (e.g., with local interac-
tions), the evolution of the agent network will be evoked periodically. After each new update
of the dynamic network, a new evolution of the agent network will be triggered to detect the
new community structure of the updated network. Thus, the process of mining a dynamic
network using the AOC-i algorithm is actually an iterative process consisting of a series of
discrete evolutionary cycles, formalized as follows:

evolutionary cycle 0: C S(N0) = F(N0);
evolutionary cycle 1: C S(N1) = F∗(�N1,C S(N0));
… …
evolutionary cycle l: C S(Nl) = F∗(�Nl ,C S(Nl−1));
… …

In each evolutionary cycle, the new community structure can be quickly derived based on
the incremental change and the old community structure as obtained in the previous cycle.
The life-cycle of agent p in the AOC-i algorithm is given in Table 6.
vp.N L(l) denotes the neighbor configuration of node vp in the evolutionary cycle l. If

the incremental change, �Nl , happens to node vp , we have vp.N L(l) �= vp.N L(l − 1).
Otherwise we have vp.N L(l) = vp.N L(l − 1). In the former case, the view of agent p will
be initialized as vp.N L(l), the new neighbor configuration of node vp . While in the latter
case, the view of agent p will be initialized as its final view in the previous evolutionary
cycle. agentp.ψ(l) denotes the objective obtained in the evolutionary cycle l. Except for the
initialization phase, the life-cycle of an agent in the AOC-i algorithm is almost the same as
that in the AOC-d algorithm, as shown in Table 5.

Example 5.1 In this example, we will show how to mine a simple dynamic network using
the AOC-i algorithm. The network discussed here is the network shown in Fig. 1. What is
different in this experiment is that the network is considered as a dynamic network that
grows gradually. In each update of the network, five new nodes and the links from them
are added. The entire process contains eight evolutionary circles. Figure 16a–h present the
snapshots of the agent network after each evolutionary cycle, respectively. In the figures,
triangular nodes denote inactive agents. The final agent network from the entire process
is shown in Fig. 16h, from which we can see that the community structure found by the
AOC-i algorithm is exactly the same as that found by the AOC-d algorithm, as shown in
Fig. 6h.

123

Auton Agent Multi-Agent Syst

Table 6 The life-cycle of
agentp in the evolutionary
cycle l

/* initialization phase */

1. vp .D P ← {};
2. agentp .t ← 0;

3. if vp .N L(l) = vp .N L(l − 1) then

4. agentp .view(0)← {<p, q, 1>|q ∈ agentp .ψ(l − 1) ∧ q �= p};
5. else

6. agentp .view(0)← vp .N L(l);

7. end

8. vp .D P ← vp .D P ∪ agentp .view(0);

/* active phase */

9. while agentp .t < T do

10. agentp .evaluate_view(agentp .t);

11. agentp .shrink_view(agentp .t + 1);

12. agentp .enlarge_view(agentp .t + 2);

13. agentp .balance_view(agentp .t + 3);

14. agentp .t ← agentp .t + 4;
15. if agentp .view(agentp .t) = agentp .view(agentp .t − 4) then

16. goto 19;

17. end

18. end

/* inactive phase */

19. agentp .ψ(l) = {vi |(p, i, wpi) ∈ agentp .view(agentp .t)} ∪ {vp};
20. agentp .sleep;

In the same way, we have validated the AOC-i algorithm using all benchmark net-
works as discussed in Sect. 4, and are able to find the correct community structures in all
cases.

5.3 Performance analysis of the AOC-i algorithm

Let tp be the time steps required by agent p to go through its life-cycle in the evolutionary
cycle l. The total time steps required by all agents in this cycle can be calculated as follows:

Gl =
n∑

p=1

tp (5.4)

where n is the number of agents.
As discussed in Sect. 3.4.3, each agent will take O(tp ·d2) time to run through its life-cycle,

where d is the average degree of the agent network at certain time. So the total time required
by one evolutionary cycle is O(Gl ·d2). That is, we can approximately evaluate the efficiency
of the AOC-i algorithm using Gl . Smaller value of Gl indicates that less time is required in
the evolutionary cycle l.

Based on this idea, we validate the performance of the AOC-i algorithm using several
benchmark networks. In the experiments, for each network, we use two different strategies
to find out its community structures. The first one is based on Eq. 5.2, i.e., after a network
is updated, the new network, including the original part and the incremental change, will be

123

Auton Agent Multi-Agent Syst

Fig. 16 The process of mining a dynamic network using the AOC-i algorithm. a Evolutionary cycle 0: n = 5,
b evolutionary cycle 1: n = 10, c evolutionary cycle 2: n = 15, d evolutionary cycle 3: n = 20, e evolutionary
cycle 4: n = 25, f Evolutionary cycle 5: n = 30, g evolutionary cycle 6: n = 35, h evolutionary cycle 7:
n = 36

123

Auton Agent Multi-Agent Syst

(c) (d)

(a) (b)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

evolutionary cycle

G
G-value of AOC-d
average G-value of AOC-d
G-value of AOC-i
average G-value of AOC-i

0 5 10 15 20 25 30
0

50

100

150

200

250
G-value of AOC-d
average G-value of AOC-d
G-value of AOC-i
average G-value of AOC-i

G

evolutionary cycle

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

evolutionary cycle

G

G-value of AOC-d
average G-value of AOC-d
G-value of AOC-i
average G-value of AOC-i

0 10 20 30 40 50 60
0

50

100

150

200

250

evolutionary cycle

G

G-value of AOC-d
average G-value of AOC-d
G-value of AOC-i
average G-value of AOC-i

Fig. 17 Validating the performance of the AOC-i algorithm. a The network shown in Fig. 1, b the karate club
network, c the football association network, d the dolphin network

input into the AOC-d algorithm to re-calculate it once again. The second one is based on
Eq. 5.3, i.e., after a network is updated, its new community structure will be detected by the
AOC-i algorithm based on the incremental change and the previously discovered community
structure.

Again, all networks used here are considered as dynamic ones, which grow gradually by
adding one new node and its associated links in each update. The experimental results are
given in Fig. 17. From the results, we can see that as compared with the AOC-d algorithm
without the incremental feature, the AOC-i algorithm works efficiently and requires much
less time to deal with the new network after each update.

It should be mentioned that the process of mining a dynamic network using the AOC-i
algorithm is essentially an iterative process consisting of a series of evolutionary cycles. If the
updating speed of a dynamic network is matched with the average convergent speed of each
evolutionary cycle, the performance of the AOC-i algorithm will be good without any delay.
Otherwise, updates will be aggregated and be processed as a batch in the next cycle, which
can result in some delay. We have tested the average convergent speed of each evolutionary
cycle with the benchmark networks, as shown in Fig. 17. From these figures, we can see that
in all cases, the average convergent speed of each cycle is less than 50 d2. With these figures,
we can quantitatively analyze how fast a network can update without strong negative effects
(delays) on the performance of the AOC-i algorithm.

123

Auton Agent Multi-Agent Syst

300

v

(a) (b)

(c)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

50

100

150

200

250

vertex index

tw
o

ty
pe

s
of

 v
er

te
x

ce
nt

ra
lit

ie
s

cc-value of vertex
average cc-value of vertices
betweenness of vertex
average betweenness of vertices

administrator coach

1 6 11 16 21 26 31 3636
0

50

100

150

600

vertex index

tw
o

ty
pe

s
of

 v
er

te
x

ce
nt

ra
lit

ie
s

1 11 21 31 41 51 61

500

400

61
0

100

200

300

vertex index

tw
o

ty
pe

s
of

 v
er

te
x

ce
nt

ra
lit

ie
s

sn100

sn89 dn63 sn9

oscar
beescrach

knit web

pl

400

1 11 21 31 41 51 61 71 81 91 101 111
0

50

100

150

200

250

300

350

tw
o

ty
pe

s
of

 v
er

te
x

ce
nt

ra
lit

ie
s

vertex index

(d)

Fig. 18 Clustering centrality and betweenness centrality of nodes in different networks. a The karate club
network, b the dolphin network, c the football association network, d the network shown in Fig. 1

5.4 The centrality-of-node problem

Now, let us take a look at a centrality-of-node problem. Given a network, we first find its
community structure using the AOC-d algorithm. Then, we select one node, and delete it and
its associated links from the network. Finally, we re-classify the remained network using the
AOC-i algorithm. Through experiments, we note that some nodes that play special roles in
the original network will bring greater disturbance to the network, once they are taken away
from the network, and thus it will take more efforts to find the new community structure of
the remained network.

As inspired by this observation, we now use the AOC-i algorithm to approximately eval-
uate the influence of a particular individual on the structural stability of the entire network.

5.4.1 The clustering centrality

The clustering centrality of a node v, denoted as cc(v), is defined as the total time steps
required by all agents in a new evolutionary cycle evoked by deleting it and its associated
links from a network that has been clustered using the AOC-d algorithm.

Figure 18 presents the clustering centrality of each node in four networks. In the experi-
ments, we set ω1 = 0.25 and ω2 = 0.3 for all networks. From these figures, we can see that
nodes with higher cc-values above the average are likely the centers or the brokers of the
communities, while those with lower cc-values below the average are likely the peripheral
ones. Brokers are those nodes that are situated at the common boundaries between different
communities.

123

Auton Agent Multi-Agent Syst

For example, in Fig. 18a, the two individuals with the highest cc-values are, respectively,
the centers of two communities of the karate club network as shown in Fig. 8a. Other 14
individuals with higher cc-values above the average are all brokers of the network except
for 6, 7, and 25. All of the 18 individuals with lower cc-values below the average are the
peripheral nodes of the network.

For another example, the brokers of the dolphin network as shown in Fig. 10a are sn100,
oscar, sn89, sn9, pl, knit, dn63, beescratch, and web. As shown in Fig. 18b, most of them get
higher cc-values above the average except for knit and pl. The nodes with lower cc-values
below the average, such as 0_five, 1_smn5, 7_vau, 14_cross, 19_fork, 20_whitetip, 28_ripp-
lefluke, 53_tr82, 57_zig, and 59_quasi, are the peripheral ones of the network. From Fig. 18c
and d, we can also make similar observations in the cases of the football association network
and the network of Fig. 1.

Brokers usually play bonding roles in maintaining the stability of the community structure
of a network. If main brokers with the highest clustering centrality are destroyed, the entire
network will be broken down with a high probability. For example, as argued by Lusseau
[16], the dolphin network was split into two parts due to the disappearance of the dolphin
SN100, the individual with the highest cc-values, as shown in Fig. 18b.

5.4.2 The betweenness centrality

Betweenness is another centrality measure widely used, which was introduced by Freeman
[6] to measure the influence of individuals over the information flow in a network. By mea-
suring the betweenness centrality, we know that some nodes with higher values will be passed
through by more information than the others.

Figure 18 presents the measures of the clustering and betweenness centralities for each
node in four networks, from which we observe that the two measures are related, to some
extent, but different in essence. Their interrelation can be quantitatively analyzed by calcu-
lating their correlation coefficient. By standard definition, the correlation coefficient of two
measures, X and Y, is given as follows:

ρ(X, Y) = Cov(X, Y)√
DX · √DY

= E((X − E X)(Y − EY))√
DX · √DY

(5.5)

where −1 ≤ ρ ≤ 1. If the two measures have a higher correlation coefficient, then they are
more likely to be correlated to each other. Table 7 gives the correlation coefficients between
the two centrality measures in different networks.

From Table 7, we can see that the two measures are highly correlated in the karate club
and dolphin networks, i.e., two networks that represent the interactions between social indi-
viduals. In other words, for an individual in such networks, if it has a higher/lower value of
one centrality, it will also have a higher/lower value of another centrality, accordingly.

Table 7 The correlation
coefficients between two
centrality measures

Networks ρ(cc, betweenness)

Karate club network 0.71

Dolphin network 0.61

Football association network 0.32

Network shown in Fig. 1 0.42

123

Auton Agent Multi-Agent Syst

Based on this observation, a reasonable proposition can be made, that is, the distribution
of information flow in such societies is not even but highly related to the underlying social
structures. Usually the density of information flow in the centers or the common boundaries
of communities is much higher than that in other areas.

6 Conclusions

In this paper, we have presented a distributed network community mining problem (called
d-NCMP), and have demonstrated how an AOC-based method can be effectively developed
and applied in solving d-NCMPs. In this method, the nodes and links of distributed networks
are distributed among a group of autonomous agents, who are responsible for finding all
communities hidden in distributed networks based on their respective local views. Agents in
the AOC-based method act asynchronously without any global control, while being able to
collectively achieve their objectives based on some autonomy-oriented, self-organized com-
puting principles, such as positive feedback. For further discussions on the basic constructs,
desirable characteristics, and necessary and sufficient conditions of scalable, self-organized
computing with an AOC system, readers are referred to [13].

Furthermore, we have described how the AOC-based method can be extended to a more
efficient incremental AOC-based method for mining communities from dynamic and distrib-
uted networks. We have validated these methods using several commonly used benchmark
networks as well as some synthetic, distributed and dynamic networks as generated by sim-
ulations. Our experimental results have shown their effectiveness and good performances. In
addition to autonomous mining of network communities, we have also used the AOC-based
method to evaluate the centrality of network nodes, and have found a very interesting corre-
lation between the distribution of information flow in some networks and their community
structures.

Several extensions can readily be pursued based on our present work. For instance, consid-
ering the applications of our AOC-based method to solving large-scale, real-world problems,
it would be desirable to study how the local communication cost involved can be further
minimized, and how stable and robust community structures can be collectively found and
maintained in a distributed and dynamic environment (e.g., where communications may not
always be reliable). On the theoretical side, it would be interesting to further study the gen-
eral models and principles of autonomy-oriented, self-organized computing (e.g., [13–15]),
answering such questions as: how to asynchronously and autonomously self-organized glob-
ally optimal solutions, i.e., most utility/cost-aware, stable, and/or robust structural patterns
or emergent behaviors in open or dynamic environments, how to efficiently do so with light-
weight reactive agents, whose behaviors may be dynamically evolved or organized, and what
are the roles of short- and long-range exploration and collective regulation (without global
information).

Acknowledgements This work was supported in part by the National Natural Science Foundation of China
Grants (60873149, 60503016, and 60496321) and the National High-Tech Research and Development Plan
of China (2006AA10Z245), and in part by a Hong Kong Baptist University FRG grant (06-07-II-66).

References

1. Bae, K., & Yoon, H. (2005). Autonomous clustering scheme for wireless sensor networks using coverage
estimation-based self-pruning. IEICE Transactions on Communications, E88-B(3), 973–980.

123

Auton Agent Multi-Agent Syst

2. Bui, T. N., & Rizzo, J. R. (2004). Finding maximum cliques with distributed ants. In Proceedings of the
conference on genetic and evolutionary computation (pp. 24–35). Springer.

3. Chakrabarti, S., Van Der Berg, M., & Dom, B. (1999). Focused crawling: A new approach to topic-spe-
cific web resource discovery. In Proceedings of the eighth international conference on world wide web
(pp. 1623–1640). ACM Press.

4. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovakian Mathematical Journal, 23(2),
298–305.

5. Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. M. (2002). Self-organization and identification of
web communities. IEEE Computer, 35(3), 66–71.

6. Freeman, L. C. (1977). A set of measures of centrality based upon betweenness. Sociometry, 40(1), 35–41.
7. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks.

Proceedings of National Academy of Science (PNAS), 99(12), 7821–7826.
8. Jennings, E., & Motyckova, L. (1992). A distributed algorithm for finding all maximal cliques in a network

graph. In Proceedings of the first Latin American symposium on theoretical informatics (pp. 281–293).
Springer.

9. Jünger, M., & Mutzel, P. (2003). Graph drawing software (mathematics and visualization). Springer.
10. Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System

Technical, 49(1), 291–307.
11. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of ACM, 46(5),

604–632.
12. Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (1999). Trawling the web for emerging cyber-

communities. In Proceedings of the eighth international conference on world wide web (pp. 1481–1493).
ACM Press.

13. Liu, J. (2008). Autonomy-Oriented Computing (AOC): The nature and implications of a paradigm for
self-organized computing. In Proceedings of the fourth international conference on natural computation
(Keynote talk) (pp. 3–11). IEEE Computer Society.

14. Liu, J., Jin, X. L., & Tsui. K. C. (2004). Autonomy oriented computing. Springer/Kluwer Academic
Publishers.

15. Liu, J., Jin, X. L., & Tsui. K. C. (2005). Autonomy oriented computing (AOC): Formulating computa-
tional systems with autonomous components. IEEE Transactions on Systems, Man, and Cybernetics, Part
A: Systems and Humans, 35(6), 879–902.

16. Lusseau, D. (2003). The emergent properties of a dolphin social network. Proceedings of the Royal Society
of London—Series B, 270(Suppl. 2), S186–S188.

17. Meka, A., & Singh, A. K. (2006). Distributed spatial clustering in sensor networks. In Proceedings of the
tenth international conference on extending database technology (pp. 980–1000). Springer.

18. Newman, M. E. J. (2004). Detecting community structure in networks. European Physical Journal B,
38(2), 321–330.

19. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review
E, 69(6), 066133.

20. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical Review E, 69(2), 026113.

21. Pirolli, P., Pitkow, J., & Rao, R. (1996). Silk from a sow’s ear: Extracting usable structures from the web.
In Proceedings of the ACM conference on human factors in computing systems (pp. 118–125). ACM
Press.

22. Pothen, A., Simon, H., & Liou, K. P. (1990). Partitioning sparse matrices with eigenvectors of graphs.
SIAM Journal of Matrix Analysis and Application, 11(3), 430–452.

23. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of National Academy of Science (PNAS), 101(9), 2658–2663.

24. Scott, J. (2000). Social network analysis: A handbook (2nd ed.). Sage Publications.
25. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligent, 22(8), 888–904.
26. Tyler, J. R., Wilkinson, D. M., & Huberman, B. A. (2003). Email as spectroscopy: Automated discovery

of community structure within organizations. In Proceedings of the first conference on communities and
technologies (pp. 81–96). Kluwer Academic Publishers.

27. Wilkinson, D. M., & Huberman, B. A. (2004). A method for finding communities of related genes.
Proceedings of National Academy of Science (PNAS), 101(1), 5241–5248.

28. Wokoma, I., Shum, L. L., Sacks, L., & Marshall, I. (2005). A biologically-inspired clustering algorithm
dependent on spatial data in sensor networks. In Proceedings of the second European workshop on wireless
sensor networks (pp. 386–390). IEEE Computer Society.

123

Auton Agent Multi-Agent Syst

29. Wu, F., & Huberman, B. A. (2004). Finding communities in linear time: A physics approach. European
Physical Journal B, 38(2), 331–338.

30. Yang, B., Cheung, W. K., & Liu, J. (2007). Community mining from signed social networks. IEEE
Transactions on Knowledge and Data Engineering, 19(10), 1333–1348.

31. Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of
Anthropological Research, 33(4), 452–473.

123

	An autonomy-oriented computing approachto community mining in distributed and dynamic networks
	Abstract
	1 Introduction
	2 Formal definition of a distributed NCMP
	3 AOC-based method for solving a distributed NCMP
	3.1 Environment of the AOC-0 system
	3.2 System objective of the AOC-0
	3.3 Agent model of the AOC-0
	3.4 AOC-based method for solving a distributed NCMP

	4 Evaluation of the AOC-d algorithm
	4.1 Validation of the AOC-d algorithm
	4.2 Performance analysis of the AOC-d algorithm

	5 Incremental AOC-based method for mining dynamic networks
	5.1 Problem definition
	5.2 Incremental AOC-based method
	5.3 Performance analysis of the AOC-i algorithm
	5.4 The centrality-of-node problem

	6 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

