
StableBuffer: Optimizing Write Performance for DBMS
Applications on Flash Devices

Yu Li, Jianliang Xu, Byron Choi, and Haibo Hu
Dept. of Computer Science

Hong Kong Baptist University
Hong Kong SAR, China

{yli, xujl, bchoi, haibo}@comp.hkbu.edu.hk

ABSTRACT
Flash devices have been widely used in embedded systems,
laptop computers, and enterprise servers. However, the poor
random writes have been an obstacle to running write-intensive
DBMS applications on flash devices. In this paper, we ex-
ploit the recently discovered, efficient write patterns of flash
devices to optimize the performance of DBMS applications.
Specifically, motivated by a focused write pattern, we pro-
pose to write pages temporarily to a small, pre-allocated
storage space on the flash device, called StableBuffer, instead
of directly writing to their actual destinations. We then
recognize and flush efficient write patterns of the buffer to
achieve a better write performance. In contrast to prior log-
based techniques, our StableBuffer solution does not require
modifying the driver of flash devices and hence works well for
commodity flash devices. We discuss the detailed design and
implementation of the StableBuffer solution. Performance
evaluation based on a TPC-C benchmark trace shows that
StableBuffer improves the response time and throughput of
write operations by a factor of 1.5−12, in comparison with
a direct write-through strategy.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Storage; H.2 [Database Management]: Physical Design

General Terms
Algorithms, Design, Performance

Keywords
Databases, write performance, flash devices

1. INTRODUCTION
Flash devices have been widely used in embedded systems

such as PDAs and smartphones for many years, and recently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 25–29, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

have been gaining increasing popularity in laptop comput-
ers and enterprise servers in the form of Solid State Drives
(SSDs). International Data Corporation (IDC) predicts that
the growing needs of large-scale Web-based and cloud com-
puting companies will drive up the sales of enterprise flash
devices by an average of 165% annually until 2013 [15]. It is
expected that more and more DBMS applications will run
on flash devices.

Compared with hard disk drives, flash devices offer a smaller
form factor, lighter weight, lower power consumption, and
higher shock resistance. Moreover, without mechanical mov-
ing parts, flash devices are faster in random reads. But they
are less competitive in writes, especially random writes, due
to an erase-before-write limitation. Thus, many research
studies have been carried out to optimize the write perfor-
mance of flash devices. One pioneer work is the in-page
logging technique [16]. The idea is to log changes made to
a data page in a reserved area of the flash block, instead of
updating the page directly. In this way, the in-page logging
technique turns random writes into change logs which are
sequentially written to the log area. When the log area is
full, the change logs are merged into their data pages. In
a more recent study [14], page-differential logging suggests
writing only the content difference between the original page
and the up-to-date page as so to reduce the page read over-
head incurred in in-page logging. In common, these two
techniques require modifying the driver or firmware of flash
devices, e.g., augmenting FTL1 with logging support. How-
ever, this may not be always possible for commodity flash
products as their hardware and software designs are often
proprietary. Thus, this requirement makes log-based tech-
niques have limited applications.

Recent studies on flash I/O performance [4][8] reveal that
the write performance of flash devices depends on not only
simple parameters such as access types (i.e., sequential or
random) and granularity (i.e., page size), but also write pat-
terns. More specifically, uFLIP [4] shows that a general
random write that writes pages randomly to the entire disk
space performs badly. However, there are several “less ran-
dom” write patterns that are indeed efficient by leveraging
write locality and write parallelism of flash devices. Among
these patterns, two are particularly interesting from an al-
gorithm designer’s perspective:

• The first pattern is“random writes limited to a focused
area”, or in short, focused writes. A focused area is a

1FTL (acronym for Flash Translation Layer) is an inter-
nal software layer in flash devices to support normal block-
device I/O functionalities.

Table 1: Write Response Time on Two SSDs (unit:
ms, page size: 32KB) [4]

SSD Brand/Model
Sequential Random Write

Write G F P
Mtron SATA7035-016 0.4 9 0.8 0.6

Samsung MCBQE32G5MPP 0.6 18 0.9 1.2

G: General Random Write
F : Focused Random Write within 8MB locality
P : Random Write with 4-Way Partition

small area of logical addresses. For instance, the space
inside a pre-allocated file smaller than 4MB can be
regarded as a focused area.

• The second pattern is partitioned sequential writes, or
simply partitioned writes. For example, a write se-
quence “1,50,2,51,3,52,· · · ”2 is an instance of parti-
tioned write pattern. The sequence appears similar to
random writes. In fact, it is a mixture of two sequen-
tial write sequences (i.e., “1,2,3,· · · ” and “50,51,52,
· · · ”), which correspond to two partitions of the ad-
dress space.

Table 1 gives the response time on the two write patterns,
together with sequential and random writes of two flash de-
vices evaluated in [4]. In brief, these flash devices possess
three efficient write patterns (i.e., sequential, focused, and
partitioned writes), in contrast to inefficient general random
writes.

In this paper, we exploit these unique write behaviors of
flash devices to optimize the performance of write-intensive
DBMS applications, such as OnLine Transaction Processing
(OLTP). Arising from small insert/delete/update requests,
the writes in OLTP are often random and scattered. As
a result, the (relatively) inefficient random writes can eas-
ily become a performance bottleneck on flash devices. By
taking advantage of the focused write pattern, we propose
to write pages temporarily to a small, pre-allocated stor-
age space on the flash device, called StableBuffer. We then
recognize and flush efficient write patterns of the buffer to
achieve a better overall performance.

Our solution can be implemented as an add-on module
of any existing DBMS buffer manager. It is optimized for
flash devices that exhibit efficient focused write patterns. It
is also transparent to the underlying flash technology which
may often be proprietary. On the other hand, we note that
StableBuffer is not proposed as a substitute to the log-based
techniques such as [16] and [14], rather a complement that
can work with them when modifications to the device driver
or firmware are allowed.

There are several issues and challenges in the design of
StableBuffer: (i) how to organize and manage the space in-
side the StableBuffer; (ii) how to recognize efficient write
patterns in the StableBuffer at a low cost; and (iii) how to
decide when and which write patterns to be flushed from the
StableBuffer to their destinations on the flash device. We
present the detailed design of StableBuffer and propose so-
lutions to address these issues in this paper. To summarize,
the contributions we make in this paper are as follows:

• We propose a StableBuffer solution for optimizing the
performance of write-intensive DBMS applications run-
ning on flash devices. It does not need to modify the

2For simplicity, we use a small integer to denote the logical
address of a page.

driver or firmware of flash devices; and it is orthogonal
to other log-based optimization techniques.

• We present two write pattern recognition methods,
namely on-demand and incremental recognition. The
former improves the throughput of database applica-
tions, while the latter aims at a shorter response time
by incrementally maintaining some auxiliary structures
in the StableBuffer.

• We design two strategies for deciding when to flush
pages inside the StableBuffer, namely passive and proac-
tive page flushing. These strategies attempt to achieve
different levels of tradeoffs between the throughput
and response time.

• We conduct a performance evaluation of StableBuffer
on several real flash devices. The results demonstrate
that StableBuffer improves the response time and through-
put of write operations by a factor of 1.5−12, in com-
parison with a direct write-through strategy, and re-
veal interesting observations on the performance im-
provements with different types of flash devices.

The rest of this paper proceeds as follows. We present
the design and implementation of StableBuffer in Sections 2
and 3, respectively. We evaluate StableBuffer and analyze
the experimental results in Section 4. The related work is
surveyed in Section 5. Finally, we conclude the paper in
Section 6.

2. STABLEBUFFER
This section presents the proposed solution — StableBuffer.

An overview is given in Section 2.1. Section 2.2 describes
the data structures used to support StableBuffer. Finally,
we detail the read/write/flush operations of StableBuffer in
Section 2.3.

2.1 Overview
To take advantage of the efficient write patterns of flash

devices (i.e., sequential, focused, and partitioned write pat-
terns), one idea is to allocate a write buffer in main memory.
It buffers (random) writes temporarily and subsequently
outputs them to the flash device following efficient patterns.
That is, the write buffer serves as a “hub” to collect writes
and reorder their sequence for performance optimization.
However, this approach has two limitations. First, it needs
to take up a considerable amount of buffer space that would
be otherwise allocated for the DBMS. This would obviously
sacrifice the read performance and complicate the buffer
management. Second, the main memory is volatile. Thus,
with a force buffer policy, writes that are buffered have to be
forced to the stable storage when a transaction is commit-
ted. On the other hand, with a no-force buffer policy, some
additional mechanism (e.g., logging) has to be provided to
achieve write durability.

Fortunately, as reported in [4], random writes to a focused
area (sized 4MB∼16MB) are almost as fast as sequential
writes for most flash devices. Thus, to address the above
issues, we propose StableBuffer to buffer writes on some
pre-allocated space on the (stable) flash device. To achieve
efficient write performance, the size of the StableBuffer is
limited to that of a focused area. As shown in Figure 1, the
existing DBMS architecture is not changed except that after

Figure 1: Overview of StableBuffer

the writes are output by the DBMS buffer, they will be tem-
porarily stored in the StableBuffer, instead of directly writ-
ing to their actual locations. When the StableBuffer collects
enough writes (e.g., when it becomes full), we identify some
instances of efficient write patterns and then flush them to
their actual locations. To do so, each page of the identified
instance will be read out of the StableBuffer and written to
its actual destination. Since all writes involved follow an
efficient write pattern, they are expected to perform well in
the overall performance.

To show the potential benefit of employing the Stable-
Buffer, let us consider a single page write on an Mtron de-
vice. To flush a page to its destination through the Stable-
Buffer, as discussed, there are two writes following efficient

write patterns and one random read. Based on the mea-
surements of Table 1, the worst cost of two efficient-pattern
writes is estimated as 0.8 + 0.8 = 1.6 ms. The random read
generally costs less than a sequential write (i.e., < 0.4 ms).
Thus, the total cost is estimated as 1.6 + 0.4 = 2.0 ms. On
the other hand, if we directly flush the page to the flash de-
vice, it is very likely to be a general random write, whose cost
is as high as 9 ms. Clearly, although the StableBuffer writes
the same page twice, by following efficient write patterns,
its overall performance is improved 4.5X against the direct
write-through strategy. We remark that the StableBuffer
is a logical area and the intensive writes to it would not
cause an endurance issue with the support of wear-leveling
techniques [7]. Moreover, the long write endurance of flash
devices today makes the doubled writes of StableBuffer an
acceptable compromise. For example, the lifetime of some
enterprise-class flash devices already reaches 140 years at a
rate of 50GB writes per day [2]; even with doubled writes,
the lifetime can still reach 70 years.

Discussions. In DBMS, it is possible that a transaction
updates a series of sequential pages. A wise DBMS buffer
manager should avoid to write such pages through the Sta-
bleBuffer, since they already form an efficient write patten.
It would be the responsibility of buffer manager to identify
these transactions and decide how to efficiently respond their
read/write requests. In the literature, research work like
DBMIN [10] has demonstrated that it is possible to capture
such transactions within the DBMS buffer manager. There-
fore, collaborating with advanced DBMS buffer managers,
the possible performance degradation on processing sequen-
tial writes through the StableBuffer could be avoided. In
practice, transactions that update a large number of sequen-
tial pages, such as loading data to tables and transforming
data columns, are not likely to mix with OLTP processing.
In this paper, to simplify the discussion, we assume that the

DBMS buffer manager would efficiently process the transac-
tions that update sequential pages.

2.2 Data Structures
The StableBuffer is a small pre-allocated area on the flash

device. It could be implemented on some space reserved in-
side the DBMS storage, or simply as a pre-allocated tem-
porary file if the DBMS storage is organized based on files.
We format the StableBuffer into a number of slots, each of
which can accommodate a disk page. For example, given a
4MB StableBuffer and a page size of 4KB, 1,024 slots are
allocated in the StableBuffer.

To support the operations of the StableBuffer, several
main-memory data structures are needed (Figure 2):

• StableBuffer Translation Table. It is an in-memory
table that maintains the mappings between the slot
number of the StableBuffer space and the page desti-
nation address. For example, if a page with destination
address 0x123456ab is stored in the 32nd slot of Sta-
bleBuffer, a mapping entry <0x123456ab, 32> will be
maintained in the StableBuffer Translation Table. To
support efficient page lookup based on destination ad-
dress, this table is implemented as a hash table whose
key is the destination address.

• Bitmap for Free Slots. To keep the list of free slots
in the StableBuffer, a bitmap is used. Each bit in the
bitmap represents the status of a StableBuffer slot: “1”
means that the corresponding slot is free; “0” means
that the slot is occupied. Furthermore, to facilitate the
lookup of free slots, a free-slot pointer is maintained to
point to the next free slot, if available.

These data structures are maintained in main memory.
It is noted that their size can be insignificant. Consider a
1,024-slot StableBuffer. Suppose each mapping entry takes
8 bytes (4 bytes for each element), the size of the Stable-
Buffer Translation Table is # of slots × mapping entry size

= 8KB and the size of the bitmap is # of slots / 8 bytes =
128 bytes only.

Recovery. Since the main memory is volatile, some extra
metadata (i.e., the destination address and the timestamp)
is kept with each page stored in the StableBuffer, so that the
data can be recovered in case of a system crash. Specifically,
before writing a page to the StableBuffer, the actual desti-
nation address and the timestamp will be embedded in the
page header. After a system crash, we use these information
to rebuild the StableBuffer Translation Table. In detail, we
scan the StableBuffer space slot by slot. For each page in
slot O whose destination address is D, we compare its times-
tamp tsO to the latest update time tsD of the current page
at destination D. If tsO ≤ tsD, the page must have been
flushed to its actual destination. Hence, we mark the O-th
slot of the StableBuffer as free. Otherwise, tsO < tsD, which
indicates that the page is not yet written to its destination
before the crash. Thus, we mark the slot as occupied and
insert an entry, <D, O>, to the StableBuffer Translation
Table.

2.3 Page Operations
As illustrated in Figure 2, the StableBuffer Manager con-

sists of three main components: Reader, Writer, and Flush

Manager. They support operations in the granularity of

Figure 2: Architecture of StableBuffer Manager

Input : Read Request(Destination D)
Output: Page requested

look up StableBuffer Translation Table (SBTT) for
destination D ;
if an entry <D, O> is found then

read page P from slot O and return ;
else

read page P at D and return;

Algorithm 1: Read Through StableBuffer

pages, i.e., page read, page write, and page flush, respec-
tively. Upon receiving a read request for the page with des-
tination D, the Reader looks up the StableBuffer Transla-
tion Table by hashing (see Algorithm 1). If there is an entry
<D, O> found, we read in the page stored in slot O of the
StableBuffer. Otherwise, we issue a normal read request to
the flash device. Note that in either case, only one flash I/O
is incurred. The only overhead is the table lookup. Thanks
to hashing, such overhead would be negligible.

For page writes, upon receiving a dirty page with desti-
nation D evicted by the DBMS buffer manager, the Writer
first adds some metadata to the page header as discussed
above. Then, it looks up the StableBuffer Translation Ta-
ble. If the page destination D is found in some slot O of the
StableBuffer, we update the page. Otherwise, the Writer at-
tempts to locate a free slot in the StableBuffer. This is done
by checking the free-slot pointer. In case the free-slot pointer

is null (i.e., the StableBuffer is full), a flushing procedure
(to be detailed in Section 3.2) will be invoked to free some
slot(s). After a free slot O′ is located, the page is written to
slot O′, and a new entry, <D, O′>, is inserted to the Sta-
bleBuffer Translation Table. Finally, the free-slot pointer is
advanced to the next free slot, if available, in the bitmap;
otherwise it is set to null. The write operation is summa-
rized in Algorithm 2. Again, only one flash I/O is incurred
in writing a new page, but some additional I/Os might be
needed to free space in the StableBuffer.

Finally, the Flush Manager is responsible for flushing the
pages temporarily stored in the StableBuffer to their actual
destinations following efficient write patterns. Two crucial

Input: Write Request(Page P , Destination D)

embed D & current time into page P ;
look up StableBuffer Translation Table (SBTT) for
destination D ;
if an entry <D, O> is found then

write page P to slot O ;
respond to the requester and return ;

else
if free-slot pointer == null then

wait the flush manager to free slot(s) ;
set free-slot pointer to a free slot ;

O′ := no. of slot pointed by free-slot pointer ;
write page P to slot O′ ;
respond to the requester ;
insert an entry <D, O′> into SBTT ;
mark O′ as occupied in the slot bitmap ;
count := 1 ;
while the slot pointed by free-slot pointer is not free

do
if count == bitmap size then

free-slot pointer := null ;

free-slot pointer := (free-slot pointer + 1) mod
bitmap size ;
count := count + 1 ;

return ;

Algorithm 2: Write Through StableBuffer

issues here are how to recognize efficient write patterns and
when to flush pages. We will present in the next section sev-
eral solutions with different performance tradeoffs between
the throughput and response time.

3. STABLEBUFFER MANAGEMENT
Having presented the design of the StableBuffer, we now

focus on its page management. The problem can be de-
scribed in terms of when and how to (i) detect and (ii) flush
efficient write patterns. In Section 3.1, we address the first
issue with on-demand and incremental methods for write
pattern recognition. In Section 3.2, we discuss the second
issue with passive and proactive strategies for page flushing.

3.1 On-Demand v.s. Incremental Write Pat-
tern Recognition

We present two alternative methods to recognize efficient

write patterns. In a nutshell, an on-demand recognition
method determines the efficient write patterns in the Sta-
bleBuffer upon a page flush request, whereas an incremental

recognition method maintains auxiliary information about
write patterns with each write operation to the flash device.
Upon receiving a page flush request, the auxiliary informa-
tion is used to determine the efficient write patterns.

On-Demand Method. The on-demand method can be
easily implemented with a sorted scan on the StableBuffer
Translation Table. We provide its details for different write
patterns as follows:

• Sequential Writes. Sequential writes can be rec-
ognized by sorting and scanning the destination ad-
dresses maintained in the StableBuffer Translation Ta-
ble. The write operations that form the longest con-
tinuous address sequence are identified.

• Partitioned Writes. Partitioned writes can also be
recognized by a scan on sorted destination addresses.
Each continuous address sequence forms a partition.
The partitions of the same size are grouped. The group
with the most number of write operations is then iden-
tified.

• Focused Writes. Focused writes can be detected by
scanning the sorted page destination addresses with a
sliding window. The size of the sliding window is iden-
tical to the size of the focused area of the flash device.
When scanning, we maintain (i) the start address of
the sliding window and (ii) the number of destination
addresses that reside inside the sliding window. Fi-
nally, the start address with the densest destination
addresses is identified.

Recall that the StableBuffer Translation Table is imple-
mented with a hash table. Hence, the scans mentioned above
can be implemented in O(nlogn) time, where n is the num-
ber of pages in the StableBuffer.

Incremental Method. The objective of the incremental
method is to efficiently amortize the computation of deter-
mining efficient write patterns over voluminous write oper-
ations. It maintains some auxiliary data structures for in-
crementally recognizing candidate instances of efficient write
patterns. Whenever a page is inserted into/deleted from the
StableBuffer, the auxiliary data structures will be updated.
With the help of these auxiliary data structures, the effi-
cient write patterns can be found immediately at any time.
In detail, each write pattern is incrementally maintained as
follows:

• Sequential Writes. We maintain a set SL = {S1, S2,
· · · , Si, · · · } of continuous address ranges, where Si =
(addrmin, addrmax) is defined as a range represent-
ing the addresses from addrmin to addrmax. The set
SL is sorted in ascending order of addrmin of each Si.
Whenever we insert (or delete) an address addr, we
invoke a binary search on SL for the closest Si to addr
(or the Si covering addr). For an insertion, we may
merge addr into the closest Si if a longer range can be
formed; otherwise a new address range with addr only
will be created. For a deletion, the Si covering addr
will be split into two. It is easy to see that each Si is
a candidate instance of sequential write pattern.

• Partitioned Writes. To incrementally recognize can-
didate instances of partitioned write pattern, we main-
tain an extra data structure {P1, P2, · · · , Pl, · · · } based
on the set SL (used for sequential writes), where Pl

keeps track of all Si’s in SL that have a size of l. For
instance, P2 contains a set of pointers pointing to the
Si’s with a size of 2. Each Pl represents a candidate
instance of partitioned write pattern. Upon a page in-
sertion/deletion, after updating the SL, we continue
to update the affected Pl’s.

• Focused Writes. For the focused write pattern, we
maintain a set FL = {F1, F2, · · · , Fi, · · · } of focused
write clusters, where Fi = (addrmin, addrmax, setaddr)
is defined as a set of addresses setaddr falling in the
range [addrmin, addrmax]. The distance between addrmin

and addrmax is less than the size of the focused area

of the flash device. Thus, each Fi is a candidate in-
stance of focused write pattern. Fi’s are sorted in as-
cending order of their addrmin addresses. When in-
serting a new address addr, we invoke a binary search
on FL to find the closest cluster Fi. We then merge
addr into the found Fi if possible, or otherwise create
a new Fi with addr. In contrast, a deletion will re-
move the address from the corresponding cluster. Note
that here the focused write clusters are recognized in
a greedy manner, which minimizes the computational
overhead but could sacrifice the quality of clustering
results. Nevertheless, as we will see in the performance
evaluation, this compromise works well in practice for
balancing the throughput and response time.

The time complexity of updating the data structures for
each page insertion/deletion is bounded by O(logn), where n
is the number of pages stored in the StableBuffer. The space
complexity of each data structure is O(n). Since the size
of the StableBuffer is usually small, the space requirement
would be acceptable.

Discussions. Compared with the on-demand method, the
incremental method identifies an efficient write pattern more
quickly upon a page flush request. Thus, the incremental
method may achieve a shorter write response time. However,
the incremental method introduces a certain overhead into
each write operation. The overall computation of the incre-
mental method is often higher than that of the on-demand
method. Moreover, the incremental method recognizes in-
stances of focused write pattern with local information only,
and it may not return results as good as the on-demand
method that has global information available at the time of
the page flush request. As such, we expect that the through-
put of the incremental method would be lower than that of
the on-demand method.

3.2 Passive v.s. Proactive Page Flushing
The second issue of page management is to decide when

and how to flush pages from the StableBuffer to their actual
destinations. A straightforward method is to flush pages of
the best write pattern instance when there is no available
space in the StableBuffer for a write operation. We call this
a passive method. An alternative method is to proactively

flush write pattern instances when it is qualified to maintain
some free space during any write operations.

Passive Method. Upon being triggered, the passive method
selects an instance of some write pattern from a set of can-
didates and then flush the pages contained in the selected
instance. With the on-demand write pattern recognition
method, the candidate instances are formed on-the-fly by
scanning the StableBuffer Translation Table; with the in-
cremental write pattern recognition method, the candidate
instances have been incrementally maintained and are im-
mediately available for the selection. Denote each candidate
by WP x

i , where x represents the type of the write pattern
(i.e., sequential, partitioned, or focused writes). Suppose
that the average time for writing a page of write pattern x
is Tx, which can be observed from the benchmark results
such as uFLIP [4]. We select to flush the instance with the

largest value of
|WP x

i
|

Tx
, which is the longest instance that

is expected to be written fastest. Intuitively, this selection

criterion strikes a balance between the amount of space re-
claimed and the page flushing speed.

Proactive Method. In the proactive method, the flush
manager keeps running in background to detect good enough
instances of efficient write patterns. It naturally requires the
pattern recognizer working in an incremental fashion. The
flush manager is triggered whenever there is a change to any
write pattern instance that is dynamically maintained. We
check whether the affected write pattern instance is qualified

for flushing. In particular, the qualification of an instance
is determined based on its size and the type of write pat-
tern. Specifically, for each type of write pattern x, a flushing
threshold θx is used and only the instances with a size larger
than θx are qualified for flushing. In case more than one af-
fected write pattern instances become qualified at the same
time, we select the best one according to the selection crite-
rion used in the passive method.

Deciding θx with Benchmark Results. We start our
discussion with the sequential write pattern. Consider a se-
quential write instance consisting of m pages each sized ℓ.
Since all pages in the instance are sequentially addressed,
we estimate the cost of writing these m pages by the cost of
writing a large page sized m·ℓ. For example, for a sequential
write instance consisting of 8 pages each sized 4KB, the cost
of writing them is estimated by the cost of writing a single
page of size 8×4KB=32KB. With a conservative estimation,
we may think that writing pages sized m·ℓ is a random oper-
ation. When m is small, the time of writing a random page
sized m · ℓ may vary in a wide range, which is influenced by
possible flash erasure operations. When m is large enough,
the write time becomes more stable since the erasure op-
erations are more uniformly distributed. This observation
motivates us to decide the flushing threshold as follows. We
consider the random write performance and note down the
minimal page granularity ℓmin after which the worst write
performance is about to become stable. Then the flushing
threshold θseq is calculated as ℓmin/ℓ. This makes the page
flushing performance more predictable.

Next, we derive the flushing thresholds for other write
patterns from θseq. Let Tseq, Tpar, and Tfocus be the av-
erage time to write a page in a sequential write pattern, in
a partitioned write pattern, and in a focused write pattern,
respectively. To make the instances of other write patterns
as efficient as sequential write instances, we set their thresh-
olds in direct proportion to that of the sequential write. In
detail, we set the threshold for flushing partitioned writes
as θpar = θseq · Tpar/Tseq, and set the threshold for focused
writes as θfocus = θseq · Tfocus/Tseq.

As an example, we show how to decide the flushing thresh-
olds for an Mtron SSD based on the uFLIP benchmark re-
sults [4]. First, we take the benchmark test results for ran-
dom writes with different page granularities.3 We observe
that when the page granularity is larger than 32KB, the
write performance becomes stable. Hence, ℓmin = 32KB.
Given a page size of 4KB, we have θseq = 32KB / 4KB = 8.
As reported in [4], the time of a partitioned write is about
1.5 times of that of a sequential write, and the time of a

3The results are available online at http://uflip.inria.fr/
∼uFLIP/results/index.php?device=mtron16&mb=Granular-
ityRW& show=results.

 0

1G

2G

3G

4G

5G

6G

7G

8G

39900 40,000

P
ag

e
A

dd
re

ss

Sequence Number

Figure 3: A Segment of Traced Write Requests

focused write is about twice of that of a sequential write.
Thus, θpar = 1.5θseq = 12, θfocus = 2θseq = 16.

4. PERFORMANCE EVALUATION

4.1 Experiment Setup
We have developed a simulator to evaluate the perfor-

mance of StableBuffer. The simulator can access a trace
file and process read/write requests archived in the file. In
the simulator, the StableBuffer is implemented as a pre-
allocated temporary file which is accessible through a page-
oriented interface. We implemented three combinations of
pattern preconization and page flushing methods, i.e., onde-

mand+passive, incremental+passive and incremental+proactive.
For comparison, we also implemented the direct write-through
strategy (denoted as direct) which writes pages directly to
their actual destinations.

We conducted performance evaluation on a Windows desk-
top PC with an Intel-Core 2 Quad Q6600 CPU. The evalu-
ation replayed a write trace on three different flash devices
— an SSD (Mtron MSD-SATA-3525, 16GB), a USB flash
memory (Toshiba, 8GB), and an SD card (Kingston SDHC,
Class 4, 8GB). The write trace was obtained by running the
TPC-C benchmark [1] on PostgreSQL 8.4 with default set-
tings. The TPC-C benchmark simulates online transaction
processing of record insertions, deletions and updates in an
enterprise database. We ran the benchmark with 20 ware-
houses and 20 clients for over 30 minutes, and collected a
trace of 122,150 write I/O requests. The page destination
addresses of the write requests range from 0 to 7GB. Fig-
ure 3 shows a small segment of these write requests. As can
be observed, the writes exhibit a random distribution in a
short time period but are clustered in a relatively long time
period.

For the system setting, the default page size is 4KB, and
the StableBuffer size on each flash device is set based on
their respective benchmark results.4 On the SSD, the Sta-
bleBuffer size is set at 4MB (i.e., 1, 024 slots). On the USB
flash memory and the SD card, the StableBuffer size is set
at 2MB (i.e., 512 slots).

4.2 Performance Results

4.2.1 Performance Comparison With Direct Writes
Figure 4 shows the evaluation results of throughput and

response time on the three flash devices. The throughput

4We used uFLIP [4] as the benchmark tool.

Direct

Incremental+Proactive

Ondemand+Passive

Incremental+Passive

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

T
hr

ou
gh

pu
t (

W
rit

e
R

eq
ue

st
/s

)

SSD

 0

 20

 40

 60

 80

 100

 120

 140

USB Flash Memory

 0

 20

 40

 60

 80

 100

 120

 140

SD Card

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

R
es

po
ns

e
T

im
e

(m
s)

SSD

 0

 5

 10

 15

 20

 25

 30

 35

USB Flash Memory

 0

 10

 20

 30

 40

 50

 60

 70

 80

SD Card

(b) Response Time

Figure 4: Throughput & Response Time under De-
fault Setting

is calculated as dividing the number of completed write re-
quests by the total execution time. For the response time,
we collect the response time of each write request and report
the average value. The response time includes both the I/O
time and the CPU time.

We can see that, compared with the direct write-through
strategy, the write performance is significantly improved by
using the StableBuffer in terms of both performance met-
rics. For the SSD, the throughput is increased by 132%
(employing incremental+proactive) to 159% (employing on-
demand+passive), and the response time is reduced by 67%
(employing ondemand+passive) to 71% (employing incre-
mental+proactive). For the USB flash memory, the through-
put is increased by 317% (incremental+proactive) to 624%
(ondemand+passive), and the response time is reduced by
77% (incremental+proactive) to 87% (incremental+passive).
For the SD card, the throughput is increased by 49% (incre-
mental+proactive) to 1,256% (ondemand+passive), and the
response time is reduced by 33% (incremental+proactive) to
97% (incremental+passive). Overall, the incremental+passive
method achieves the best balance between the throughput
and response time.

It is seen from Figure 4 that the relative performance of

the incremental+proactive method for the USB flash mem-
ory and SD card is not as good as that for the SSD. To
investigate the reason, we designed a test for measuring the
parallel write performance on these devices. The test accepts
write streams and outputs them to the flash device in two
different modes: (1) serial : processing the write streams one
by one in a single thread; (2) parallel : using two threads to
process the write streams in parallel, with each write stream
processed by one thread. The serial mode simulates the page
writing in the incremental+passive and ondemand+passive
methods, while the parallel mode simulates the page writ-
ing in the incremental+proactive method where the writ-
ing of StableBuffer and page flushing might be paralleled.
We feed the test with focused write streams and plot the
results in Figure 5. As can be seen, for the SSD, the par-
allel mode works almost twice as fast as the serial mode.
As a result, the incremental+proactive method is benefited
from this parallel ability of SSD to make up the degradation
caused by incremental write pattern recognition. For the
USB flash memory, the parallel mode works almost same as
the serial mode. Hence, the incremental+proactive method
is not benefited from parallel I/Os and suffers from the rela-
tively poor pattern recognition results. For the SD card, the
parallel mode is much worse than the serial mode. Allowing
parallel I/Os will deteriorate the I/O efficiency and can-
cel most benefits brought by the StableBuffer, making the
throughput of the incremental+proactive method close to
the direct-write strategy. Regarding the response time, the
incremental+proactive method performs even worse than
the passive methods for the USB flash memory and SD card.
This is mainly because of the lengthened waiting time of
write operations due to a low throughput.

We also observe in Figure 4 that the two passive methods
perform very close to each other on the USB flash mem-
ory and SD card, which is different from the case on the
SSD. To gain more insights, we look into the time spent in
I/O and CPU for the two passive methods. As shown in in
Figure 6, while 24.3% and 31.5% of time are spent in CPU
for the ondemand+passive and incremental+passive meth-
ods on the SSD, only 5.1% and 5.3% of time are spent in
CPU on the USB flash memory and only 4.2% and 5.5%
of time on the SD card. This indicates that the write re-
sponse time on the USB flash memory and the SD card is
dominated by the I/O cost. Consequently, the differences in
CPU time between the ondemand+passive and incremen-
tal+passive methods do not differentiate the overall perfor-
mance much.

We make some comments on the performance differences
between the two passive methods for the SSD (see the left-
most subfigure of Figure 6). The ondemand+passive method
spends less time in CPU. The reason is two-fold. First, the
StableBuffer is not large, so is the StableBuffer Translation
Table. Therefore, the write pattern recognition task can
be performed efficiently. Second, the incremental+passive
method spends more time on computation than the onde-
mand+ passive method, as it needs to incrementally recog-
nize efficient write patterns (discussed in Section 3.1). By
sacrificing some CPU time and throughput, the incremen-
tal+passive method achieves a shorter write response time
than the ondemand+passive method (see the leftmost sub-
figure of Figure 4(b)).

4.2.2 The Impact of StableBuffer Size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
T

hr
ou

gh
pu

t (
W

rit
e

R
eq

ue
st

/s
)

SSD

 0

 50

 100

 150

 200

 250

USB Flash Memory

 0

 50

 100

 150

 200

 250

SD Card

Serial
Parallel

Figure 5: Parallel Write Test Results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

O+P I+P

T
im

e
(s

ec
on

ds
)

SSD

 0

 20

 40

 60

 80

 100

O+P I+P

USB Flash Memory

 0

 20

 40

 60

 80

 100

O+P I+P

SD Card

IO
CPU

O+P : Ondemand+Passive; I+P : Incremental+Passive

Figure 6: IO v.s. CPU Time under Default Setting

Next, we investigate the impact of the StableBuffer size on
the overall performance. The results are plotted in Figure 7.
We vary the StableBuffer size from 25% of the default size
(1MB for the SSD and 512KB for the USB flash memory
and SD card) to four times of the default size (16MB for the
SSD and 8MB for the USB flash memory and SD card).

First, we observe that when the Stable Buffer size is at
either extreme, the performance of the StableBuffer meth-
ods degrades (i.e., the throughput drops and the response
time increases). This can be explained as follows. When the
StableBuffer size is too small, the quality of write patterns
recognized is not good enough. Hence, optimizing write pat-
terns to improve write performance becomes less effective.
On the other hand, when the StableBuffer size is too large,
writing to the StableBuffer itself may no longer be focused
writes. Thus, it takes more time to write a page to the Sta-
bleBuffer, which cancels out the time saved in optimizing
write patterns from the StableBuffer to the flash device.

Second, as with Figure 4, the incremental+proactive method
does not perform well on the USB flash memory and SD
card. Regarding the SSD, its performance remains more
stable after the StableBuffer size exceeds the default one.
When we select a size larger than the default one, as the
flush manager in the incremental+proactive method proac-
tively recognizes write pattern instances and flushes them
out, the ratio of the utilized space in the StableBuffer re-

mains low. In this experiment, we observed that when the
StableBuffer size is 16MB, the utilization ratio is only 27%
(about 4.3MB) on average. Since there are a lot of free slots
in the StableBuffer, the time for locating a free slot is fast,
and the writes to the StableBuffer are very likely to be se-
quentialized. As a result, the overall system performance
remains good.

We also remark that the results above justify the setting
of StableBuffer size to that of the focused area. For a general
flash disk device, the latter parameter can be obtained either
through microbenchmarks such as uFLIP[4] or from the flash
disk manufacturers in the future.

5. RELATED WORK
Database management on flash-based storage media has

attracted increasing research attention in recent years. Early
work focused on assembling flash chips to simulate tradi-
tional hard disks [6][11][13] and enhancing the write en-
durance [5][7]. Recent research has investigated opportuni-
ties to optimize DBMS performance by exploiting the unique
characteristics of flash devices. In view of the asymmet-
ric read/write speed and the erase-before-write limitation,
Wu et al. [25] proposed a log-based indexing scheme for
flash memory. To improve this scheme for read-intensive
workloads, Nath and Kansal [20] developed an adaptive in-
dexing method that is aware of the workload and storage
device. Lee and Moon [16] studied the erase-before-write
limitation of DBMS storage and designed a novel in-page
logging (IPL) technique. More recently, Kim et al. [14]
proposed a page-differential logging technique to overcome
the page read overhead of IPL. The basic idea is to write
only the difference between the original page in flash mem-
ory and the up-to-date page in main memory. Stoica et al.
[23] proposed a flash-aware data layout called “append and
pack”, which enhances transactional DBMS performance by
eliminating random writes. Whereas these techniques of op-
timizing write performance require modifying the driver or
firmware of flash devices, our proposed StableBuffer solution
does not have this requirement and works well for commod-
ity flash devices.

Bouganim et al. [4] proposed uFLIP as a microbench-
mark to help researchers systematically understand the I/O
patterns of flash devices. Through benchmarking on vari-
ous flash storage devices, they discovered several good page-
writing practices for algorithm designers. Chen et al. [8]
also conducted intensive experiments and measurements on
different types of state-of-the-art SSDs. They observed sev-
eral unanticipated performance issues and dynamics of SSDs
(e.g., fragmentation could cause dramatic performance degra-
dation). Our work has been inspired by these interesting
flash performance reports.

For flash-based database applications, Lee et al. investi-
gated how the performance of standard DBMS algorithms
is affected when a magnetic disk is replaced by an SSD [17].
By exploiting fast random reads and sequential writes on
SSDs, efficient DBMS scanning and joining algorithms have
been reexamined in [19] and [24]. Observing that small se-
quential writes are well supported by flash devices, Chen [9]
suggested improving the synchronous logging performance
by using USB devices. In addition, novel index structures
have been proposed to support efficient query processing on
flash devices [3][18]. New buffer management policies (e.g.,
[12][21][22]) have also been proposed for flash devices. To

Direct Incremental+Proactive Ondemand+Passive Incremental+Passive

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1MB 2MB 4MB 8MB 16MB

T
hr

ou
gh

pu
t (

W
rit

e
R

eq
ue

st
/s

)

StableBuffer Size

(a) SSD Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1MB 2MB 4MB 8MB 16MB

R
es

po
ns

e
T

im
e

(m
s)

StableBuffer Size

(b) SSD Response

 0

 20

 40

 60

 80

 100

 120

 140

512K 1MB 2MB 4MB 8MB

T
hr

ou
gh

pu
t (

W
rit

e
R

eq
ue

st
/s

)

StableBuffer Size

(c) USB Memory Throughput

 0

 5

 10

 15

 20

 25

 30

 35

512K 1MB 2MB 4MB 8MB

R
es

po
ns

e
T

im
e

(m
s)

StableBuffer Size

(d) USB Memory Response

 0

 20

 40

 60

 80

 100

 120

512K 1MB 2MB 4MB 8MB

T
hr

ou
gh

pu
t (

W
rit

e
R

eq
ue

st
/s

)

StableBuffer Size

(e) SD Card Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

512K 1MB 2MB 4MB 8MB

R
es

po
ns

e
T

im
e

(m
s)

StableBuffer Size

(f) SD Card Response

Figure 7: Throughput & Response Time v.s. StableBuffer Size

address the read-write asymmetry, they divide the buffer
pool into a clean pool and a dirty pool, and give priority
to choosing clean pages as victims over dirty pages. These
policies are designed for main-memory buffers. In contrast,
our proposed StableBuffer resides on the flash device so that
it achieves write durability effortlessly. It works efficiently
by exploiting the efficient write patterns that were recently
discovered in [4][8].

6. CONCLUSIONS
In this paper, we have investigated how to overcome the

poor write performance of flash devices for DBMS applica-
tions. Inspired by recent findings on flash I/O performance,
we proposed a StableBuffer solution for flash devices that
exhibit efficient focused write patterns. This solution does
not require modifying the driver or firmware of the flash
device. The basic idea is to archive page writes into the
StableBuffer and then flush them to the actual destinations
following efficient write patterns. The detailed design and
implementation of the StableBuffer have been discussed. We
have also presented several write-pattern recognition and
flushing methods for managing the pages stored in the Sta-
bleBuffer. The performance evaluation based on a TPC-C
benchmark trace show that, by employing the StableBuffer,
both of the throughput and response time are improved by a
factor of 1.5−12, in comparison with a direct write-through
strategy. In particular, while the passive and proactive flush-
ing methods achieve different levels of tradeoffs between the
throughput and response time for the SSD that supports
parallel I/Os, the passive flushing methods are preferred for
the USB flash memory and SD card where parallel I/Os are
not well supported.

As for future work, we are going to optimize the write pat-
tern recognition and page flushing algorithms. In particular,
we are interested to investigate how to further improve the
online algorithm for clustering focused writes. We also plan
to theoretically model the page flushing problem in order to
study its optimal solution.

Acknowledgement
This work was supported by the Research Grants Council of
Hong Kong (Grants HKBU210808 and HKBU211510) and
Natural Science Foundation of China (Grant 60833005).

7. REFERENCES
[1] TPC Benchmark C: Standard Specification.

http://www.tpc.org/tpcc/spec/tpcc current.pdf.

[2] Solid State Drive MSD-SATA3035: 3.5-inch Product
Specification. Mtron Co. Ltd., Jan. 2008.

[3] D. Agrawal, D. Ganesan, R. Sitaraman, and Y. Diao.
Lazy-adaptive tree: An optimized index structure for
flash devices. In VLDB ’09, 2009.

[4] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP:
Understanding flash io patterns. In CIDR, 2009.

[5] L.-P. Chang. On efficient wear leveling for large-scale
flash-memory storage systems. In SAC ’07, pages
1126–1130, 2007.

[6] L.-P. Chang, T.-W. Kuo, and S. Lo. Real-time
garbage collection for flash-memory storage systems of
real-time embedded systems. ACM Trans. on

Embedded Computing Sys., 3(4):837–863, 2004.

[7] Y. Chang, J. Hsieh, and T.-W. Kuo. Endurance
enhancement of flash-memory storage systems: an
efficient static wear leveling design. In DAC ’07, pages
212–217, 2007.

[8] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In
SIGMETRICS ’09, pages 181–192, 2009.

[9] S. Chen. FlashLogging: Exploiting flash devices for
synchronous logging performance. In SIGMOD ’09,
pages 73–86, 2009.

[10] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database
systems. In VLDB ’85, pages 127–141. VLDB
Endowment, 1985.

[11] A. Kawaguchi, S. Nishioka, and H. Motoda. A
flash-memory based file system. In USENIX Winter,
pages 155–164, 1995.

[12] H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash storage.
In FAST ’08, 2008.

[13] H. Kim and S. Lee. A new flash memory management
for flash storage system. In COMPSAC ’99, 1999.

[14] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song.
Page-Differential Logging: An efficient and
dbms-independent approach for storing data into flash
memory. In SIGMOD ’10, 2010.

[15] S. Lawson. Cloud computing could be a boon for flash
storage. http://www.businessweek.com/technology/
content/aug2009/tc20090824 219491.htm, 2009.

[16] S.-W. Lee and B. Moon. Design of flash-based DBMS:
an in-page logging approach. In SIGMOD ’07, pages
55–66, 2007.

[17] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory ssd in enterprise
database applications. In SIGMOD, 2008.

[18] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi. Tree
indexing on solid state drives. In VLDB ’10, 2010.

[19] Y. Li, S. T. On, J. Xu, B. Choi, and H. Hu.
DigestJoin: Exploiting fast random reads for
flash-based joins. In MDM ’09, pages 152–161, 2009.

[20] S. Nath and A. Kansal. FlashDB: Dynamic self-tuning
database for nand flash. Technical Report
MSR-TR-2006-168, Microsoft Research, 2006.

[21] S. T. On, Y. Li, B. He, M. Wu, Q. Luo, and J. Xu.
FD-Buffer: A buffer manager for databases on flash
disks. In CIKM ’10, 2010.

[22] Y. Ou, T. Haerder, and P. Jin. CFDC—A flash-aware
replacement policy for database buffer management.
In DaMoN ’09, 2009.

[23] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write
performance on flash devices. In DaMoN ’09, 2009.

[24] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In SIGMOD ’09, pages 59–72,
2009.

[25] C.-H. Wu, T.-W. Kuo, and L.-P. Chang. An efficient
B-tree layer implementation for flash-memory storage
systems. ACM Trans. on Embedded Computing Sys.,
6(3):19, 2007.

