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PROXY SUPPORT FOR
STREAMING ON THE INTERNET

INTRODUCTION

With widespread penetration of the broadband
Internet, multimedia service is getting increas-
ingly popular among users and contributes a sig-
nificant amount of today’s Internet traffic. Media
objects can be accessed similar to conventional
text and images using a download-and-play
mode; but most users prefer to quickly initiate
and then continuously play back a media object
while it is being downloaded (i.e., to use a real-
time streaming mode). We have witnessed the
initial and incremental deployment of streaming
applications like RealNetworks RealPlayer and
Microsoft Windows Media Player in recent
years. The performance of such applications,
however, is still far from satisfactory, especially
during peak hours.

To reduce client-perceived access latencies as
well as server/network loads, an effective means
is to cache frequently used data at proxies close
to clients. This also enhances the availability of
objects and mitigates packet losses, as local
transmission is generally more reliable than
remote transmission. Proxy caching thus has
become one of the vital components in virtually
all Web systems. Streaming media, particularly
those prestored, could also gain significant per-
formance improvement from proxy caching,

given their static nature in content and highly
localized access interests. However, existing
proxies are generally optimized for delivering
conventional Web objects (e.g., HTML pages or
GIF images), which may not meet the require-
ments of steaming applications. In the following,
we list some important and unique features of
streaming media and discuss their implications
to proxy cache design.

Huge size: A conventional Web object is typi-
cally on the order of 1–100 kbytes. Hence, a
binary decision works well for proxy caching:
either caching an object in its entirety or not
caching. In contrast, a media object has a high
data rate and long playback duration, which
combined yield huge data volume. For illustra-
tion, a 1-h standard MPEG-1 video has a volume
of about 675 Mbytes; caching it entirely at a
Web proxy is clearly impractical, as several such
large streams would exhaust the capacity of the
cache. One solution is to cache only portions of
an object, in which case a client’s playback needs
joint delivery involving both the proxy and the
origin server. Which portions of which objects to
cache thus has to be carefully managed so that
the benefit of caching outweighs the synchro-
nization overhead of the joint delivery.

Intensive bandwidth use: The streaming
nature of delivery requires a significant amount
of disk and network I/O bandwidth, sustained
over a long period. Hence, minimizing band-
width consumption becomes a primary consider-
ation for proxy cache management, even taking
precedence over reducing access latencies in
many cases. Moreover, the bandwidth bottleneck
limits the number of clients a proxy can simulta-
neously support; employing multicast delivery
and cooperation among proxies thus become
particularly attractive for media streaming appli-
cations.

•High interactivity: The long playback dura-
tion of a streaming object also enables various
client-server interactions. As an example, recent
studies found that nearly 90 percent of media
playbacks are terminated prematurely by clients
[1]. In addition, during playback a client often
expects VCR-like operations, such as fast for-
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ward and rewind. This implies the access rates
might be different for different portions of a
stream, which potentially complicates cache
management.

Given these unique features of media objects,
novel caching algorithms have been developed in
the literature. The objective of this article is to
review the state-of-the-art caching techniques
dedicated to streaming media caching. We begin
with discussions of a generic proxy caching archi-
tecture and some protocol considerations. Next,
the caching strategies for streaming media are
classified, examined, and compared. We also
investigate some advanced issues. Finally, we
conclude the article.

ARCHITECTURE AND PROTOCOLS FOR
STREAMING CACHING

Streaming applications generally support diverse
client-server interactions and have stringent
demands on packet delay and jitter to ensure
discontinuity-free playback. To meet these
requirements, the Internet Engineering Task
Force (IETF) has developed the RTP/RTCP/
RTSP protocol suite. A generic system diagram
of proxy-assisted media streaming using this
suite is depicted in Fig. 1.

In this system, the basic functionalities for
data transferring are provided by the Real-Time
Transport Protocol (RTP), including payload
identification, sequence numbering for loss
detection, and timestamping for playback con-
trol. Running on top of UDP, RTP itself does
not guarantee quality of service (QoS), but relies
on its companion, the Real-Time Control Proto-
col (RTCP), to monitor network status and pro-
vide feedback for application-layer adaptation.
The Real-Time Streaming Protocol (RTSP)
coordinates delivery of media objects and
enables a rich set of controls for interactive play-
back. For proxy-assisted streaming, the proxy has
to relay these control messages between the
client and the server. The problem is particularly
involved if only part of a media object is cached
at a proxy. In this case, the proxy must reply to
the client PLAY request and initiate transmis-
sion of RTP and RTCP messages to the client
for the cached portion, while requesting the
uncached portion(s) from the server. Such fetch-

ing can be achieved through an RTSP Range
request specifying the playback points. The
Range request also enables clients to retrieve
different segments of a media object from multi-
ple servers or proxies if needed.

Besides this classical client/server paradigm,
peer-to-peer streaming and other overlay stream-
ing paradigms have also attracted much atten-
tion recently; these will be discussed later.

CACHING STRATEGIES FOR
STREAMING MEDIA

Due to the aforementioned features of stream-
ing media objects, media caching has many dis-
tinct focuses from conventional Web caching.
On one hand, since the content of a media object
is rarely updated, management issues like cache
consistency and coherence are less critical in
media caching. On the other hand, given high
resource requirements of media objects, effec-
tive management of proxy cache resources (i.e.,
space, disk I/O, and network I/O) becomes more
challenging. In this section we survey the state-
of-the-art media caching strategies for both
homogenous clients and heterogeneous clients,
with an emphasis on how the strategies minimize
resource demands.

STREAM CACHING FOR
HOMOGENEOUS CLIENTS

Most existing caching algorithms focus on homo-
geneous clients that have identical or similar
configurations and capabilities behind a proxy.
As such, a single version of an object would
match the bandwidth and format demands of all
requests to the object. Nevertheless, what to
cache (which portions of which objects) and how
to manage cache (e.g., cache placement and
replacement) at the proxy remain challenges.
According to the selection of the portions to
cache, we classify existing algorithms into four
categories: sliding-interval caching, prefix caching,
segment caching, and rate-split caching.

Sliding-Interval Caching [2] — This algorithm
caches a sliding interval of a media object to
exploit sequential access of streaming media.
For illustration, given two consecutive requests

� Figure 1. A generic system diagram of proxy-assisted media streaming using RTP/RTCP/RTSP.
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for the same object, the first request may access
the object from the server and incrementally
store it into the proxy cache; the second request
can then access the cached portion and release it
after the access. If the two requests arrive close
in time, only a small portion of the media object
needs to be cached at any time instance, and yet
the second request can be completely satisfied
from the proxy (Fig. 2). In general, if multiple
requests for an object arrive in a short period, a
set of adjacent intervals can be grouped to form
a run, of which the cached portion will be
released only after the last request has been sat-
isfied.

Sliding-interval caching can significantly
reduce network bandwidth consumption and
start-up delay for subsequent accesses. However,
as the cached portion is dynamically updated
with playback, sliding-interval caching involves
high disk bandwidth demands; in the worst case,
it would double the disk I/O due to the concur-
rent read/write operations. In addition, its effec-
tiveness diminishes with increased access
intervals. If the access interval of the same object
is longer than the duration of the playback, the
algorithm is degenerated to the unaffordable
full-object caching. To address these issues, it is
preferable to retain the cached content over a
relatively long time period. Most of the caching
algorithms to be discussed in the rest of this sec-
tion fall into this category.

Prefix Caching [3] — This algorithm caches
the initial portion of a media object, called the
prefix, at a proxy. Upon receiving a client request,
the proxy immediately delivers the prefix to the
client, meanwhile fetching the remaining por-
tion, the suffix, from the server and relaying to
the client (Fig. 3). As the proxy is generally clos-
er to the clients than the origin server, the start-
up delay for a playback can be remarkably
reduced.

To ensure discontinuity-free playback with a
start-up delay of s, the proxy has to store a pre-
fix of length max{dmax – s,0}, where dmax is the
maximum delay from the server to the proxy. If
cache space is abundant, the proxy can also
devote some space to assist in performing work-
ahead smoothing for variable bit rate (VBR)
media [3]. With this smoothing cache, the proxy
can prefetch large frames in advance of each
burst to absorb delay jitter and bandwidth fluctu-
ations of the server-to-proxy path. The delay of
prefetching can be hidden by prefix caching.
Similar to sliding-interval caching, the content of
the smoothing cache is dynamically updated with
playback. However, the purposes are different:
the former is to improve cache hit for subse-
quent requests, while the latter is to facilitate
workahead smoothing.

Segment Caching [1, 4–6] — Segment caching
generalizes the prefix caching paradigm by parti-
tioning a media object into a series of segments,
differentiating their respective utilities, and mak-
ing a caching decision accordingly (Fig. 4). Vari-

� Figure 2. An illustration of sliding-interval caching. The object consists of nine frames, each requiring one
unit time to deliver from the proxy to a client. Requests 1 and 2 arrive at times 0 and 2, respectively. To
serve request 2, only two frames need to be cached at any time instance: a) time 0: request 1 arrives; b) time
1–2: frames 1 and 2 accessed by request 1 and cached; request 2 arrives; c) time 2–3: frame 3 accessed by
request 1 and cached; frame 1 read by request 2 and released.
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ous segment caching algorithms have been pro-
posed in the literature by employing different
segmentations and utility calculations. Wu et al.
[4] suggested grouping the frames of a media
object into variable-size segments, with the
length increasing exponentially with the distance
from the start of the media; that is, the size of
segment i is 2i–1, which consists of frames 2i–1,
2i–1 + 1, …, 2i – 1. The motivation is that a proxy
can quickly adapt to the changing access pat-
terns of cached objects by discarding big chunks
as needed. The utility of a segment is calculated
as the ratio of the segment reference frequency
over its distance from the beginning segment,
which favors caching the initial segments as well
as those with higher access frequencies. Chen et
al. [1], however, argued that neither the use of a
predefined segment length nor the favorable
caching of the initial segments is the best strate-
gy for reducing network traffic. They suggested
postponing segmentation as late as possible
(called lazy segmentation), thus allowing the
proxy to collect a sufficient amount of access
statistics to improve the effectiveness.

A salient feature of segment-based caching is
its support of VCR-like operations, such as ran-
dom access, fast forward, and rewind. As an
example, Fahmi et al. [6] proposed to cache
some key segments of a media object, called
hotspots, which are identified by content pro-
viders. When a client requests the object, the
proxy first delivers the hotspots to provide an
overview of the stream; the client can then
decide whether to play the entire stream or
quickly jump to some specific portion introduced
by a hotspot. Furthermore, in fast forwarding
and rewinding operations, only the correspond-
ing hotspots are delivered and displayed, while
other portions are skipped. As such, the load of
the server and backbone network can be greatly
reduced, but the client will not miss any impor-
tant segments in the media object.

Rate-Split Caching [7] — While all the afore-
mentioned caching algorithms partition a media
object horizontally along the time axis, the rate-
split caching partitions it vertically along the rate
axis: the upper part will be cached at the proxy,
whereas the lower part will remain stored at the
origin server (Fig. 5). This type of partitioning is
particularly attractive for VBR streaming, as
only the lower part of a nearly constant rate has
to be delivered through the backbone network.
For a QoS network with resource reservation,
the bandwidth reserved should be equal to the
peak rate of a stream; caching the upper part at
the proxy clearly reduces the rate variability and
improves the backbone bandwidth utilization. A
critical issue here is how to select the cutoff rate
or, equivalently, the size of the upper part for
caching. Zhang et al. [7] studied the impact of
the cutoff rate for a single stream through empir-
ical evaluation, and found that significant band-
width reduction can be achieved with a
reasonably small cache space. They also formu-
lated the multiple-stream case as a knapsack
problem with two constraints, disk bandwidth
and cache space, and developed several heuris-
tics (e.g., caching popular objects only, or
caching those with high bandwidth reduction).

Summary and Comparison — Table 1 sum-
marizes the caching algorithms reviewed for
homogeneous clients. While these features and
metrics provide a general guideline for algorithm
selection, the choice of a specific streaming sys-
tem also largely depends on a number of practi-
cal issues, especially the complexity of the
implementation. In fact, only a few simple algo-
rithms have been employed in commercial sys-
tems, although recently built prototypes have
practically demonstrated the viability and superi-
ority of the intelligent algorithms, such as lazy
segmentation [1].

In addition, we emphasize that these algo-
rithms are not necessarily exclusive with each
other, and a combination of them may yield a
better performance. For example, segment
caching combined with prefix caching of each
segment can reduce start-up latency for VCR-
like random playback from any key segment.
Combination with conventional data caching
algorithms has also been examined.

STREAM CACHING FOR
HETEROGENEOUS CLIENTS

Owing to diverse network models and device
configurations, clients behind the same proxy
often have quite different requirements on the
same media object, in terms of streaming rates
or encoding formats. To accommodate such het-
erogeneity, a straightforward solution is to pro-
duce replicated streams of different rates or
formats, each targeting a subset of clients.
Although widely used in commercial streaming
systems, the storage and bandwidth demands of
this approach can be prohibitively high [8]. An
alternative is to transcode a media object from
one form to another of a lower rate or a differ-
ent encoding format on demand [9]. The inten-
sive computation overhead of transcoding,
however, prevents a proxy from supporting a
large diverse client population.

A more efficient approach to this problem is
the use of layered encoding and transmission. A
layered coder compresses a raw media object
into several layers: the most significant, the base
layer, contains the data representing the most
important features of the object, while additional
enhancement layers contain data that can pro-

� Figure 5. An illustration of rate-split caching.
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gressively refine the quality. Thus, a client can
subscribe to a subset of cumulative layers to
reconstruct a stream commensurate with its
capability. For layered caching, Kangasharju et
al. [10] assumed that the cached portions are
semi-static and only completed layers are cached.
To maximize the total revenue, they developed
effective heuristics based on an analytical
stochastic knapsack model to determine the
cache content. In their model the client popula-
tion and the distribution of their capacities are
known a priori. For layered streaming under
dynamic conditions, Rejaie et al. [11] studied
segment-based cache replacement and prefecting
policies to achieve efficient utilization of cache
space and available bandwidth (Fig. 6a). The
main objective is to deal with the congestion
problem for individual clients. To this end, the
proxy keeps track of popularities of each object
on a per layer basis. When the quality of the
cached layers is lower than the maximum deliv-
erable quality to an interested client, the proxy
sends requests to the server for missing segments
within a sliding prefetching window. On cache
replacement, a victim layer is identified based on
popularities, and its cached segments are flushed
from the tail until sufficient space is obtained.

A critical drawback of the existing layered
streaming systems is that the number of layers is
pretty small, typically only two or three; hence,
their adaptation granularity remains coarse. For-
tunately, recent development in the coding area
has demonstrated the possibility of fine-grained
post-encoding rate control. An example is the
MPEG-4 Fine-Grained Scalable (FGS) coder
with bitplane coding. FGS generates embedded
streams containing several bitplanes, each of
which can be partitioned at any specific rate. As
such, for narrowband clients the proxy can
reduce the streaming rate using a bitplane filter;
for wideband clients the proxy can fetch some
uncached portion (i.e., higher-order bitplanes)
from the server and assemble it with the cached
portion to generate a high-rate stream. As illus-
trated in Fig. 6b, the available bandwidth of a
client can be almost fully utilized, and, more
importantly, both the filtering and assembling

operations in FGS can be done with fast
response. Hence, we envision FGS-based stream-
ing and caching as a very promising solution to
media steaming over the Internet comprising
highly heterogeneous end systems. Several
caching algorithms have been proposed to mini-
mize bandwidth consumption and/or improve
client utility [8].

ADVANCED ISSUES
So far we have considered a standalone proxy
with only unicast delivery. While it can notice-
ably reduce access latencies and backbone band-
width demands, the scalability and robustness of
this simple architecture are still restricted. We
now discuss two effective enhancements, multi-
cast and proxy cooperation; we also address the
role of proxy in the recently popularized overlay
communication paradigms.

COMBINING PROXY CACHING WITH
MULTICASTING

Like caching, multicasting also explores the tem-
poral locality of client requests. Specifically, it
allows a media server to accommodate concur-
rent client requests with shared channels through
batching, patching, or periodic broadcast. How-
ever, multicast delivery suffers from two impor-
tant deficiencies. First, to save more bandwidth,
it is better to accommodate more requests in
one multicast channel by using a large batch-
ing/patching window; however, this leads to long
start-up latencies. Second, while IP multicast is
enabled in virtually all local area networks, its
deployment over the global Internet remains
limited in scope and reach. Hence, it is unlikely
that a multicast streaming protocol can be used
for geographically dispersed servers and clients.

Interestingly, both deficiencies can be alleviat-
ed through the use of proxies. Specifically, a
request can be instantaneously served by a cached
prefix while waiting for the data from a multicast
channel [12, 13], and proxies can bridge unicast
networks with multicast networks (i.e., employing
unicast for server to proxy delivery while batch-

� Table 1. Comparisons of the caching algorithms for homogeneous clients.

Sliding-interval Prefix Segment Rate-split
caching [2] caching [3] caching [1, 4–6] caching [7]

Cached portion Sliding intervals Prefix Segments Portion of higher rate

VCR-like support No No Yes No

Resource Disk I/O High Moderate Moderate Moderate

Demand Disk space Low Moderate High High

Sync overhead Low Moderate High High

Performance Bandwidth High1 Moderate Moderate Moderate
improvement reduction

Start-up latency High1 High High2 Moderate
reduction

1 There is no reduction for the first request in a run.
2 Assume the initial segment is cached.
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ing and/or patching local accesses). Wang et al.
[13] derived the optimal length of the prefix to
be cached for most typical multicast protocols,
and showed that a careful coupling of caching
and multicasting can produce significant cost sav-
ings over using the unicast service, even if IP
multicast is supported only at local networks.

COOPERATIVE PROXY CACHING
In general, proxies grouped together can achieve
better performance than independent standalone
proxies. Specifically, the group of proxies can
cooperate with each other to increase the aggre-
gate cache space, balance loads, and improve
system scalability [14, 15]. A typical cooperative
media caching architecture is MiddleMan [14],
which operates a collection of proxies as a scal-
able cache cluster. Media objects are segmented
into equal-sized segments and stored across mul-
tiple proxies, where they can be replaced at a
granularity of a segment. There are also several
local proxies responsible to answer client
requests by locating and relaying the segments.
Note that in cooperative Web caching, a critical
issue is how to efficiently locate Web pages with
minimum communication costs among the prox-
ies. This, however, is not a major concern for
cooperative media caching, as the bandwidth
consumption for streaming objects is orders of
magnitude higher than that for object indexing
and discovering. Consequently, in MiddleMan, a
centralized coordinator works well in keeping
track of cache states. On the other hand, while
segment-based caching across different proxies
facilitates the distribution and balance of proxy
loads, it incurs a significant amount of overhead
for switching among proxies to reconstruct a
media object. To reduce such effects as well as
to achieve better load balance and fault toler-
ance, Chae et al. [15] suggested a Silo data lay-
out, which partitions a media object into
segments of increasing sizes, stores more copies
for popular segments, but still guarantees at
least one copy stored for each segment.

STREAMING CACHING IN OVERLAY NETWORKS
So far, we have focused on the client/server
paradigm for media streaming, with proxies act-
ing as intermediaries between them. Generaliz-
ing the proxy functionalities into every end host
will shift the system to the recently popularized
overlay communication paradigms, such as peer-

to-peer communication or application-layer mul-
ticast. There have been many pioneering efforts
on overlay streaming, which have demonstrated
the superior scalability and deployability of these
overlay systems; the enormous buffer capacities
distributed in end hosts also enable efficient
client-side caching and sharing to improve con-
tent availability as well as support asynchronous
streaming [16–19].

Nevertheless, we are aware that, in contrast to
reliable and dedicated servers or proxies, loosely
coupled autonomous end hosts can easily crash,
leave without notice, or even refuse to share
their own data. Given that a media playback lasts
a long time and consumes huge resources, we
believe dedicated proxies will still play an impor-
tant role in building high-quality media streaming
systems; in particular, strategically placed proxies
may effectively assist the construction and main-
tenance of large-scale overlays. On the other
hand, we may also leverage the overlay paradigm
in proxy design. As an example, Guo et al. [20]
suggested a proxy and its clients be structured
into a peer-to-peer system to collaboratively
serve local streaming requests. Their work
focused on local area collaboration. We believe
that it can be extended to a two-level streaming
overlay: a cluster of proxies forms an overlay in
wide area networks while each proxy collaborates
with local client caches to form a local overlay.
These two overlays complement each other well.
The proxy-level overlay provides dedicated stor-
age and reliable service, while the local overlay
provides scalable storage for caching and signifi-
cantly reduces the load of the proxy.

CONCLUDING REMARKS
Proxy caching is an effective means to reduce
access latencies as well as resource consumption
for networked applications. Due to the unique
features of media objects like huge size and high
bandwidth demand, a number of novel stream-
ing caching solutions have been reported in the
literature. This article serves as a pioneer survey
in this field, although it by no means covers all
aspects. Plenty of research issues have yet to be
addressed, such as caching over the wireless
mobile Internet, for large-scale dynamic over-
lays, and with advanced video coding schemes
such as multiple description coding [18], as well
as security and privacy for cached media objects,

� Figure 6. Caching for layered streaming: a) coarse-grained layering; b) fine-grained layering.
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to name but a few. We envision streaming media
caching as a fertile area, and both theoretical
and practical solutions to the listed problems are
urged with rising demands on ubiquitous multi-
media services throughout the world.
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We envision that

streaming media

caching remains a

fertile area, and

both theoretical and

practical solutions to

the listed problems

are urged with

rising demands

on ubiquitous

multimedia services

throughout the

world.


