
LIGHT: A Query-Efficient Yet Low-Maintenance
Indexing Scheme over DHTs

Yuzhe Tang, Shuigeng Zhou, Member, IEEE, and Jianliang Xu, Senior Member, IEEE

Abstract—DHT is a widely used building block for scalable P2P systems. However, as uniform hashing employed in DHTs destroys

data locality, it is not a trivial task to support complex queries (e.g., range queries and k-nearest-neighbor queries) in DHT-based P2P

systems. In order to support efficient processing of such complex queries, a popular solution is to build indexes on top of the DHT.

Unfortunately, existing over-DHT indexing schemes suffer from either query inefficiency or high maintenance cost. In this paper, we

propose LIGhtweight Hash Tree (LIGHT)—a query-efficient yet low-maintenance indexing scheme. LIGHT employs a novel naming

mechanism and a tree summarization strategy for graceful distribution of its index structure. We show through analysis that it can

support various complex queries with near-optimal performance. Extensive experimental results also demonstrate that, compared with

state of the art over-DHT indexing schemes, LIGHT saves 50-75 percent of index maintenance cost and substantially improves query

performance in terms of both response time and bandwidth consumption. In addition, LIGHT is designed over generic DHTs and hence

can be easily implemented and deployed in any DHT-based P2P system.

Index Terms—Distributed hash tables, indexing, complex queries.

Ç

1 INTRODUCTION

DISTRIBUTED Hash Table (DHT) is a widely used
building block for scalable Peer-to-Peer (P2P) systems.

It provides a simple lookup service: given a key, one can
efficiently locate the peer node storing the key. The past
few years have seen a number of DHT proposals, such as
Chord [1], CAN [2], Pastry [3], and Tapestry [4]. By
employing consistent hashing [5] and carefully designed
overlays, these DHTs exhibit several advantages that fit in
a P2P context:

. Scalability and efficiency: In a typical DHT of
N peers, the lookup latency is OðlogNÞ hops with
each peer maintaining only OðlogNÞ “neighbors.”

. Robustness: DHTs are resilient to network dy-
namics and node failures that are common in
large-scale P2P networks.

. Load balancing: Load balance in DHTs can be
efficiently achieved thanks to uniform hashing.

As a result, several DHT services have been deployed in
real life, such as the OpenDHT project [6] and the Kademlia
DHT [7] for trackerless BitTorrent [8]. While DHTs are
popular in developing various P2P applications, such as
large-scale data storage [9], [10], [11], content distribution
[12], and scalable multicast/anycast services [13], [14], they
are extremely poor in supporting complex queries such as
range queries and k-nearest-neighbor (k-NN) queries. This

is primarily because data locality, which is crucial to
processing such complex queries, is destroyed by uniform
hashing employed in DHTs.

In this paper, we address a challenging problem of how
to efficiently support complex query processing in existing
DHT-based P2P systems. This problem is interesting to
many real-life P2P applications/services. For example,
some third-party developers may want to offer complex
query facilities over the public OpenDHT service [6]. For
another example, some P2P users may want the Kademlia
DHT deployed in BitTorrent networks to support such
range queries as “finding all trackers with torrents updated
in the last three days.”

To tackle the problem, an effective yet simple solution is to
build indexes on top of existing DHTs (known as over-DHT
indexing paradigm [15]). Several indexing schemes following
this paradigm have recently been proposed, including Prefix
Hash Trie (PHT) [15], [16], Range Search Tree (RST) [17], and
Distributed Segment Tree (DST) [18]. Compared to another
category of indexing schemes that entail development of new
locality-preserved overlays (known as overlay-dependent
indexing paradigm), over-DHT indexing schemes are more
appealing to our problem for several reasons. First, over-
DHT indexing schemes do not need to modify existing DHT
infrastructures, whereas overlay-dependent indexing
schemes would need to either change inner structures of
existing DHTs or build extra overlays from scratch, both of
which significantly increase the complexity of deployment.
Second, following the design principle of layering [16], over-
DHT indexing schemes are of great simplicity to design and
implement; index developers can focus on the design of
index structures only, while leaving system-related issues
(e.g., overlay structure changes due to peer joins/departures,
peer failure handling, and load balancing) to the underlying
DHT. Third, since over-DHT indexing schemes rely only on
the “put/get/lookup” interfaces of generic DHTs, they are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010 59

. Y. Tang and S. Zhou are with the School of Computer Science, Fudan
University and Shanghai Key Lab of Intelligent Information Processing,
Shanghai, China. E-mail: {yztang, sgzhou}@fudan.edu.cn.

. J. Xu is with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong. E-mail: xujl@comp.hkbu.edu.hk.

Manuscript received 19 May 2008; revised 17 Nov. 2008; accepted 22 Jan.
2009; published online 6 Feb. 2009.
Recommended for acceptance by D. Papadias.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-05-0271.
Digital Object Identifier no. 10.1109/TKDE.2009.47.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



applicable to any DHT-based P2P system. This is particularly
appreciated given the fact that today’s DHTs in use or in
research differ significantly in their overlay structures [1], [3],
[4]. In addition, to support multiple P2P applications, the
over-DHT indexing paradigm allows for building multiple
indexes on a single DHT infrastructure, thereby minimizing
the overall system maintenance cost.

Two issues are critical to the performance of an over-DHT
indexing scheme: query efficiency and index maintenance cost.
In conventional applications where queries are more
frequent than data updates, achieving query efficiency is
considered the first priority. However, in P2P systems, peer
joins and departures usually result in data insertions and
deletions to/from the system; and the peer join/departure
rate can be as high as the query rate [19], [20]. Such data
updates incur constant index updates. Thus, the cost of
index maintenance becomes a non-negligible factor in
evaluating system performance. This perspective, however,
is not realized in existing over-DHT indexing schemes. On
the contrary, existing schemes improve query efficiency by
sacrificing index maintenance cost as a trade-off. More
specifically, in a distributed context, each peer maintains a
local view of the global index; in order to achieve a better
query performance, the common idea is to enlarge the local
view and let each peer know more about the global index.
For example, in PHT [15], each leaf node has direct access to
its siblings. In DST [18], the index structure remains static
and is made known globally. However, this static design
inherently goes against the dynamic nature of P2P systems
and easily leads to load imbalance. As an alternative, RST
[17] allows for dynamic tree growth/contraction and further
employs a broadcasting mechanism to maintain its global
view. However, the index maintenance cost is prohibitively
high as a single node split causes a broadcast to all other
nodes, which may render the whole P2P system unscalable.

In this paper, we propose LIGhtweight Hash Tree
(LIGHT)—a low-maintenance yet query-efficient scheme
for data indexing over DHTs. Two novel techniques
contribute to the superior performance of LIGHT: a clever
naming mechanism that gracefully distributes the index
structure over the underlying DHT, and a tree summarization
strategy that offers each peer a scalable local view without
incurring extra maintenance cost. LIGHT can efficiently
support various complex queries, including range queries,
min/max queries, and k-NN queries. As an over-DHT index,
LIGHT requires no modification of the underlying DHT and
hence possesses the virtues of simplicity and adaptability.

The contributions made in this paper can be summarized
as follows:

. We propose LIGHT to address both query effi-
ciency and maintenance efficiency for data indexing
over DHTs.

. We develop efficient algorithms to process range
queries, min/max queries, and k-NN queries based
on the LIGHT index. We show through analysis that
most of these queries can be supported with near-
optimal performance (i.e., at most three more DHT-
lookups than the optimum).

. We present two enhancements to LIGHT: an
extensible technique for indexing unbounded data

domains and a double-naming strategy for improv-
ing system load balance. To the best of our knowl-
edge, LIGHT is the first over-DHT indexing scheme
with such flexibility.

. We conduct extensive experiments to evaluate the
performance of LIGHT. Compared with state-of-the-
art indexing schemes, namely PHT [15], [16] and
DST [18], LIGHT saves 50-75 percent of maintenance
cost and substantially improves query performance
in terms of both response time and bandwidth
consumption.

The rest of this paper proceeds as follows: Section 2
surveys related work. Section 3 presents the LIGHT index
structure, followed by a description of its lookup operation
in Section 4. How to update the LIGHT index is explained
in Section 5. Section 6 gives the algorithms for processing
various complex queries based on the LIGHT index.
Section 7 experimentally evaluates the performance of
LIGHT. Enhancements to LIGHT are discussed in Section 8.
Finally, Section 10 concludes this paper.

2 RELATED WORK

P2P data indexing has recently attracted a great deal of
research attention. Existing schemes can be classified into
two categories: over-DHT indexing paradigm and overlay-
dependent indexing paradigm. While over-DHT indexing
schemes treat data indexing as an independent problem
free from the underlying P2P substrates, overlay-dependent
indexing schemes are intended to closely couple indexes
with the overlay substrates.

In this section, we start with a brief overview of DHT
overlays, followed by a detailed survey of existing P2P
indexing schemes. Here, only structured P2P networks
are considered.

2.1 Scalable DHT Overlays

In the design of DHT overlays, the primary concern is
topological scalability in terms of two aspects: the diameter,
which determines the bound of the hops of a lookup
operation, and the degree, which determines the size of the
routing table. Many proposed DHT overlays, including
Chord [1], Pastry [3], Tapestry [4], and Bamboo [21], are
based on the Plaxton Mesh [22], which achieves a
diameter of ð� � 1Þ log� N and a degree of log� N . Here,
� indicates the base of the DHT identifier space, for
example, � ¼ 2 in Chord. Another classical DHT, CAN [2],
leverages the d-torus topology, which bears a diameter of
1
2 dN

1
d and a degree of 2d. From a graph-theory viewpoint,

given diameter k and degree d, the number of nodes in a
graph, N , is bounded by the Moore bound [23], that is,
N � 1þ dþ d2 þ � � � þ dk. However, the Moore bound is
not generally achievable. To move toward this optimal
bound, several DHT overlays were inspired from the
topologies of de Bruijn graphs [24], [25], butterfly graphs
[26], and Kautz graphs [27]. A more thorough analysis of
DHTs regarding scalability and fault tolerance can be
found in [25].

2.2 Over-DHT Indexing Paradigm

In the over-DHT indexing paradigm, the DHT and data are
loosely coupled by the keys (called DHT keys) generated

60 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010



from data records. Thus, a critical issue in the design of an
over-DHT index is how to generate the DHT keys regarding
data locality. In this category, the PHT [15], [16] is a
representative solution for range queries, and is the most
relevant scheme to our proposed LIGHT. Thus, below we
first introduce PHT in detail. After that, we present other
indexing schemes that support various queries for database
and information retrieval applications.

PHT. As the first over-DHT index proposal, PHT
supports indexing bounded one-dimensional data. Essen-
tially, PHT partitions the indexing space with a trie (prefix
tree) structure, where all data records are stored on leaf
nodes. The trie structure is materialized over the DHT in a
straightforward way—all tree nodes, including internal
nodes and leaf nodes, are mapped into the DHT by directly
hashing their labels of binary representation. A splitting/
merging process is triggered for PHT whenever overload/
underload occurs on leaf nodes. During the splitting
process, two children with new labels are generated and
hence all data records in the parent node need to be
relocated according to the new labels. On the contrary, all
data records in the children nodes would be relocated
according to the parent’s label during a merging process.
The range query processing in PHT involves forwarding the
query from the root to all candidate leaf nodes in parallel.
To facilitate traversing candidate leaf nodes, PHT further
maintains links between neighboring leaves, which how-
ever incur extra index maintenance overhead. Due to its
simplicity and adaptability, PHT has been deployed in real-
world applications [16]. RandPeer [28] applied PHT to a
specific scenario—indexing membership data for QoS-
sensitive P2P applications.

Other indexing schemes for range/k-NN queries.

Several other studies have also investigated data indexing
for range and k-NN queries, with their major focus being
how to improve query latency by data replication. DST [18]
replicates data records across all ancestors of a leaf node in
the trie structure. To process a range query, DST decom-
poses the range into several subranges, each corresponding
to an internal node. Since the trie structure is static and
globally known, the internal nodes can be located by a single
DHT-lookup, rendering the range query solved in Oð1Þ
time. However, due to data replication in all ancestors, some
high-level tree nodes could easily be overloaded. To address
this issue, RST [17] employs a novel data structure, called
Load Balancing Matrix (LBM), which organizes overloaded
tree nodes into a matrix by further replication/partition.
The nodes in LBM are mapped into the underlying DHT by
hashing the internal labels as well as the matrix coordinates.
As for query processing, due to query skewness, range
queries are usually distributed only on a portion of the
internal nodes (called query band). Based on this observation,
a dynamic RST is proposed to adapt the tree structure to the
current query band, making the index more efficient and the
query load more balanced. To maintain a global view of this
dynamic index, however, it relies on a broadcasting
mechanism, which is bandwidth consuming and unscalable
in terms of index maintenance cost.

To support multidimensional query processing, a naive
solution is to employ multiple indexes, one for each

dimension, as in RST. However, this solution not only
increases index maintenance overhead but also complicates
query processing. A later version of PHT [16] leverages
space-filling curves to reduce dimensions. PRISM [29]
employs reference vectors to generate DHT keys for
multidimensional data. Following the tree maintenance
method of RST, DKDT [30] embeds the k-d tree to support
2d similarity search. Chen et al. [31] suggested a framework
for range indexing and proposed various strategies for
mapping tree-based index structures into DHTs. Tanin et al.
[32] superimposed the quadtree over the DHT for spatial
indexing and querying. Each quadtree node is mapped into
the DHT by hashing its centroid. While this paper focuses
on one-dimensional data indexing, our proposed LIGHT
scheme can nevertheless be extended to multidimensional
data indexing by employing, for instance, dimension
reduction techniques through space-filling curves [16].

Join and keyword queries. Join queries have attracted
considerable research attention in P2P database systems
[33], [34], [35]. While focusing on different types of equi-
joins (e.g., two way versus multiway, snapshot versus
continuous joins), they generally allocate data records by
hashing both the names and values of join attributes, and
aim to map the joining records (the records with the same
value on the join attributes) to the same DHT node. For
these P2P database systems, LIGHT can be seamlessly
integrated by indexing the join columns to support general
range-based joins, since the essence of such joins consists of
range queries in a two-level nested loop.

While databases cope with structured data, there are
other systems that deal with semistructured or unstruc-
tured data such as XML, RDF, and text. In these systems,
processing effective keyword queries is essential. To
support them over DHTs, a typical solution is to employ
the Distributed Inverted Index (DII) [36]. In DII, the
inverted index is superimposed over the DHT by directly
hashing indexed keywords, and posting lists are intersected
for conjunctive keyword search. The major problems of DII
are that due to the Zipf distribution of text keywords, direct
keyword hashing results in load imbalance, and due to
destroyed data locality (particularly the keyword correla-
tion) by hashing, intersecting posting lists consumes lots of
bandwidth. To address these problems, many techniques
have been proposed [36], [37], [38]. Following the frame-
work of DII, Cai and Frank [39] and Galanis et al. [40] have
also studied RDF and XML data indexing over DHTs.

2.3 Overlay-Dependent Indexing Paradigm

In the overlay-dependent indexing paradigm, the overlay
substrate directly bears data locality. The existing schemes
generally follow two approaches: Locality-Sensitive Hash-
ing (LSH) and indexable overlays.

LSH-based indexing. Rather than using uniform hash-
ing, LSH-based indexing employs locality-sensitive hashing
to map data into the overlay in a locality-preserved way. By
this means, some DHT overlays can directly support efficient
range query processing [41], [42], [43], [44], [45]. Gupta et al.
[46] applied LSH to DHT-based range indexing and
provided approximate range query answers. For efficient
similarity queries in P2P systems, LSH Forest [47] refined the
traditional LSH by eliminating its data dependence. For

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 61



keyword search, Joung et al. [48] proposed a novel indexing
scheme, in which uniform hashing is replaced with Bloom
filtering, and the underlying overlay is modeled as a
multidimensional hypercube. To conduct keyword search,
the hypercube is partially traversed by following a spanning
binomial tree. Based on this framework, KISS [49] was
developed to support prefix search. While preserving data
locality, LSH-based indexing corrupts the uniform key
distribution, which leads to load imbalance [50].

Indexable overlays. Indexable overlays make no use of
full-fledged DHTs, but instead redesign the overlay from
scratch and map data into it directly. The existing schemes
in this category are based on various data structures. Skip
graph [51] answers range queries based on a distributed
structure originated from skip lists. PTree [52] and PRing
[53] are based on distributed B-trees. BATON [54] is an
overlay organized as a balanced binary tree. These overlays
support one-dimensional data indexing. VBI-Tree [55] is a
general framework that aims to map any existing index tree
into BATON. It can index multidimensional data and
support multidimensional range queries and k-NN queries.
As a similar solution, SD-Rtree [56] uses a distributed
balanced binary tree for spatial indexing. Mercury [57] uses
a hierarchical ring structure to index multidimensional data.
In these nonhash schemes, data locality is well preserved at
the cost of deteriorated load balance. In recent years, many
sophisticated balancing strategies have been proposed [58],
[53], [59]. The basic idea is to first locate a light-loaded peer
when overload occurs, and then to transfer load between
them. These explicit balancing strategies cost much more in
maintenance than the DHT hashing methods. In order to
correctly locate a light-loaded peer, they typically require an
extra overlay, say another skip graph, to index peer load
information, which could double the overall overlay
maintenance cost. In addition, the load transfer could also
be consuming. By contrast, the DHT hashing methods are
maintenance free—once data are allocated by uniform
hashing, load balance is statistically guaranteed.

To summarize, the above over-DHT and overlay-
dependent indexing schemes all have trade-offs in query/
load balancing performance and practical deployment
considerations. Although over-DHT indexing schemes are
generally less efficient in query performance than overlay-
dependent indexing schemes, by following the layering
design principle, they are advantageous in terms of
simplicity of deployment/implementation/maintenance
and inherited load balancing as discussed previously. In
practice, these issues are equally important to query
performance [16]. Over-DHT indexing schemes are parti-
cularly favorable to the applications in which concerns
about ease of implementation, deployment, and mainte-
nance dominates the need for high query performance. The
LIGHT index proposed in this paper follows the over-DHT
indexing paradigm and outperforms all existing over-DHT
indexing schemes.

3 THE LIGHT INDEX STRUCTURE

In this section, we describe the LIGHT index structure and
its mapping strategy to the underlying DHT. We remark
that LIGHT is proposed to support complex queries over

some existing DHTs, while exact-match queries can be
directly and efficiently answered by the existing DHT
infrastructure.

3.1 Overview

In the LIGHT index, a data unit is called a record, and each
record is identified by a data key (denoted by �).1 We assume
that the data keys to be indexed fall into a bounded one-
dimensional space.2 Without loss of generality, the space is
set to ½0; 1� in this paper, and � can be any floating number
in it. On the other hand, to assign the records in the
underlying DHT, each data record is associated with
another key, called DHT key (denoted by �). For a given
DHT key �, it is mapped to the peer whose identifier is less
than but closest to hashð�Þ. In a naive indexing scheme, one
may set the DHT key directly to be the data key. However,
this would destroy data locality, as mentioned earlier, and
lead to inefficient support to complex queries. Thus, similar
to other over-DHT indexing schemes, the main challenge of
LIGHT is to find a mapping from data keys to DHT keys
such that data locality is preserved with minimal main-
tenance cost. Fig. 1 gives an overview of the mapping
operation in LIGHT. First, LIGHT employs a space partition
tree to index data keys. Then, after the partition tree is
decomposed and summarized in a data structure called a
leaf bucket, LIGHT uses a novel naming function to map leaf
buckets to DHT keys. In the following, we explain these two
procedures in detail.

3.2 Space Partition Tree

As the name implies, the space partition tree (or simply
partition tree for short) recursively partitions the data space
into two equal-sized subspaces until each subspace contains
fewer than �split data keys. Only leaf nodes store data
records (or just data entries with pointers pointing to actual
data records). Fig. 2 gives an example, where the data
frequency histogram is shown at the bottom. We remark
that here a space is always equally partitioned, regardless of
the data distribution. This strategy makes the space indexed
by each node known globally, which is essential to

62 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

1. A data record could contain the actual data item or the data entry
consisting of the data key and a reference to the actual item, depending on
whether LIGHT is the primary index.

2. The extension to an unbound space will be discussed in Section 8.

Fig. 1. LIGHT Indexing Architecture.



distributed query processing. Basically, the space partition
tree is a binary tree with structural properties listed below:

. Double Root. Unlike a conventional binary tree, the
space partition tree has two roots. The additional
root, termed virtual root, is a virtual node above the
ordinary one.

. Completeness. Every tree node, except the virtual
root and leaf nodes, has two children, that is, every
internal node has two children.

These two properties collectively guarantee that the
number of leaf nodes equals the number of nonleaf nodes.
Each node in the tree is assigned a unique label. The virtual
root is labeled with a special character “#” in this paper.
Each tree edge is labeled with a binary number, 0 (or 1) for
the edge connecting the left (or right) child. As a special
case, the edge between the virtual root and the ordinary
root is labeled with 0. Then for any tree node, its label is the
concatenation of the binary numbers on the path from the
virtual root to itself (see Fig. 2). To facilitate our further
discussions, we define some notations for the partition tree:
� denotes the label of a leaf node, while ! denotes the label
of an internal node; � denotes the set of the leaves’ labels,
that is, � ¼ f�g, while � denotes the set of the internal
nodes’ labels, that is, � ¼ f!g.

3.3 Local Tree Summarization

Recall that data records are stored in leaf nodes; we need to
map only leaf nodes to the underlying DHT. On the other
hand, a bare leaf node lacks the knowledge of the overall
tree structure, which, as we will see, is critical to complex
query processing. Thus, we propose a distributed data
structure, termed leaf bucket, to store data records and
summarize the partition tree’s structural information.

Each leaf bucket corresponds to a leaf node in the tree.
As illustrated in Fig. 3a, a bucket consists of two fields: leaf
label, which maintains the label � of the leaf node, and record
store, which keeps all data records of the leaf node. For each
leaf bucket, the label � provides a local view of the partition
tree, which is called a local tree. As shown in Fig. 3b, the
local tree of leaf node #0100 consists of all its ancestors and
their direct children (termed branch nodes). The label of any
node in the local tree can be inferred directly from �: the
label of each ancestor is a prefix of �, and the label of each
branch node can be obtained by inverting the ending bit of a
prefix of �. According to the completeness property of the

partition tree, all branch nodes must exist in the tree. Some
branch nodes may contain a subtree, called the neighboring
subtree, as depicted by shaded triangles in Fig. 3b. The
structures of these neighboring subtrees are unknown in the
current local tree, but are maintained by some other leaves’
local trees.

From a global viewpoint, the local trees of all leaves
together guarantee the partition tree’s integrity. In other
words, the leaf buckets collectively maintain the tree’s
structural information. Thus, the remaining issue is how to
map each leaf bucket as an atomic unit to the DHT key,
which is achieved by a novel naming function.

3.4 Naming Function

For a leaf bucket with label �, the naming function fnð�Þ
generates its DHT key, that is, � ¼ fnð�Þ.
Definition 1. For any leaf label � 2 �, the naming function is

fnð�Þ ¼
p0; if � ¼ p011�;
p1; if � ¼ p100�;
#; if � ¼ #00�;

8<
:

where p ¼ #0½0j1� � .3 That is, if � ends up with consecutive
0s, fnð�Þ truncates all the 0s in the end. Otherwise, it
truncates all the 1s. For example, fnð#01100Þ ¼ #011 and
fnð#01011Þ ¼ #010.

In a tree’s view, each � represents a leaf node, and
interestingly, each fnð�Þ represents a distinct internal node.
Fig. 4 illustrates the intuition, in which each leaf bucket � is
“named” to an internal node fnð�Þ by a dotted arrow, for
instance, fnð#01111Þ ¼ #0. This nice property originates
from the double-root and completeness properties of the
partition tree. Recall that � and � represent the sets of labels
for internal nodes and leaf nodes, respectively. We obtain
the following theorem:

Theorem 3.1. fnð�Þ is a bijective mapping from � to �.

Proof. We first prove that fnð�Þ is indeed a mapping from �
to �, and then prove that fnð�Þ is bijective.

For 8� 2 �; fnð�Þ is a prefix of �. By the labeling
strategy, any prefix of � represents an ancestor of the
corresponding leaf, which in other words is an internal
node. Therefore, fnð�Þ is a mapping from � to �.

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 63

Fig. 2. An example of a space partition tree.
Fig. 3. Leaf bucket of the node #0100. (a) Data structure. (b) Local tree

of #0100.

3. We here use the regular expression in which ½0j1� means 0 or 1, and �
means repeating zero or more times.



As for the bijection, we prove a more concrete
proposition: for 8! 2 �, there is one and only one �
mapped to it. First consider the special case where ! is the
virtual root; by definition, the leaf mapped to the virtual
root is the leftmost leaf (i.e., the leaf labeled as #0 � ). For
any other internal node !, there are two cases: ! ends up
with a 0 (i.e., ! ¼ !00), or with a 1 (i.e., ! = !01). For the
first case, the leaf that is mapped to ! must be labeled as
!11�, because fnð!11�Þ ¼ fnð!0011�Þ ¼ !00 ¼ !. By the
labeling strategy, for a specific !, there is one and only
one leaf in � labeled as !11�, that is, the rightmost leaf in
the subtree rooted at !. Similarly, for the second case, it is
the leaf labeled as !00� mapped to !, because
fnð!00�Þ ¼ fnð!0100�Þ ¼ !01 ¼ !. Therefore, fnð�Þ is a
bijective mapping from � to �. tu

Since fnð�Þ serves as the DHT key, Theorem 3.1 implies

that the naming function actually organizes the internal

structure of the partition tree in the DHT key space.

4 LIGHT LOOKUP

A fundamental service in LIGHT is the lookup operation:4

given a data key �, a LIGHT lookup returns the correspond-

ing DHT key. Essentially, this is to find �ð�Þ, the label of the

leaf bucket that covers �, upon which we can apply the

naming function fnð�Þ to obtain the DHT key.
Recall that � is a floating number in the range of [0, 1].

With the binary space partition tree, �ð�Þmust be a prefix of

� in binary representation. For example, the binary

representation of 0.4 is 0:01100 � � � , then �ð0:4Þ must be a

prefix of #001100 � � � , and in Fig. 2, �ð0:4Þ ¼ #001. Intui-

tively, �ð�Þ is the longest prefix that corresponds to an

existing (leaf) node in the space partition tree. Furthermore,

if the maximal height of the tree is known,5 denoted by D,

the length of a possible prefix ranges from 2 to Dþ 1. We

denote the binary string by �ð�;DÞ and the set of possible

prefixes of � by �ð�Þ or �ð�;DÞ. The lookup problem

becomes how to find the longest label �ð�Þ corresponding to

an existing (leaf) node among the D candidate prefixes in

�ð�Þ. This is equivalent to finding the node that stores a leaf

bucket covering �.

For efficient lookup, LIGHT employs a binary search
algorithm, as illustrated in Algorithm 1. First, a LIGHT
client initiates an interval for the lengths of candidate
prefixes, between 2 and Dþ 1 (line 2). In each loop iteration,
it computes the median of the interval (line 4) and performs
a DHT-get for the corresponding DHT key (line 6). If the
DHT-get fails, meaning that the current prefix x corre-
sponds to a nonexisting node and thus is too long, the client
decreases the upper bound (line 8). Note that the prefixes
between the DHT key fnðxÞ and the current prefix x are all
mapped to fnðxÞ in the DHT key space. Thus, to speed up
the search, the upper bound is set at fnðxÞ to avoid
redundant checking. If the DHT-get succeeds and the
returned bucket covers �, the algorithm returns the current
DHT key fnðxÞ (line 10); otherwise, if the returned bucket
does not cover � (line 12), meaning that x represents an
ancestor of the target leaf and thus is too short, the lower
bound is then increased to fnnðx; �Þ, as defined below:

Definition 2. For 8x 2 �ð�Þ, the next_naming function
fnnðx; �Þ is

fnnðx; �Þ ¼
p00 � 1 2 �ð�Þ; if x ¼ p0;
p11 � 0 2 �ð�Þ; if x ¼ p1;

�

where p ¼ #0½0j1� � . Intuitively, fnn locates the first bit in the
suffix of � (with respect to x) that differs from x’s ending bit; the
value fnnðx; �Þ is then the prefix of �, which ends up with this
located bit. For example, fnnð#001;#0011100Þ ¼ #001110.

Note that the prefixes between x and fnnðx; �Þ all share
the same DHT key, namely fnðxÞ. In the above example,
fnð#001Þ ¼ fnð#0011Þ ¼ fnð#00111Þ ¼ #00. Thus, there is
no point in searching the prefixes #0011 and #00111, since
#001 has been checked.

Algorithm 1. LIGHT-lookup(data key �)

1: � binary-convert(�)

2: lower  2, upper  Dþ 1

3: while lower � upper do

4: mid  (lower+upper)=2

5: x  �.prefix(mid)

6: bucket_label  DHT-get(fn(x))

7: if bucket_label=NULL then {a failed DHT-get}

8: upper  fn(x).length

9: else if bucket_label covers � then {reach the target

leaf bucket}

10: return fn(x)

11: else {x is an ancestor of the target leaf node}
12: lower  fnn(x,�).length

13: return NULL

An example. Consider a lookup of 0.9 with D ¼ 14.
Suppose LIGHT is as shown in Fig. 2 and the target bucket
is the leaf #01110. Note that �ð0:9; 14Þ ¼ #01110011001100.
Initially, the lower bound is 2 and the upper bound is 15.
LIGHT first tries the prefix of half length, that is, #0111001,
and performs a DHT-get for fnð#0111001Þ ¼ #011100.
Since the node responsible for #011100 does not exit, the
DHT-get returns NULL, and the upper bound is decreased
to 7 (the length of #011100). In the next try, a DHT-get is
issued for fnð#011Þ ¼ #0. The node responsible for #0 is

64 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 4. Naming function and LIGHT.

4. In this paper, we may refer to LIGHT lookup as “lookup” for short,
and for clarity the DHT-lookup remains its full name.

5. As done in PHT [15] and another range query scheme [60], D can be
obtained by estimating the size and distribution of the indexed data set.



then found, on which the leaf bucket label #01111 is stored

(note that fnð#01111Þ ¼ #0). Thus, the DHT-get returns the

leaf label #01111, which does not cover 0.9. In this case, the

lower bound is increased to fnnð#011;#01110011001100Þ ¼
#01110, while the upper bound remains at #011100. The

next try is a DHT-get for fnð#01110Þ ¼ #0111, which

reaches the target. This exemplar process is illustrated as

in Fig. 5.
We analyze the complexity of the binary search algo-

rithm in terms of the number of DHT-lookups. Here DHT-

lookup is incurred by DHT-get only. Note that each DHT-

get (in line 6) corresponds to a distinct fnðxÞ, which is an

element in the set fnð�ð�ÞÞ. Since the cardinality of fnð�ð�ÞÞ
is averagely the half the cardinality of �ð�Þ (i.e., D

2 ), the

worst complexity of a LIGHT lookup operation is

logðkfnð�ð�ÞÞkÞ � logðD2Þ DHT-lookups. We notice that the

binary search strategy is also applied in other over-DHT

indexes [15], [60], but at a complexity of logD. In

comparison, thanks to the clever naming function, LIGHT

makes an improvement of logD�logD=2
logD ¼ 1

logD .6

Lookup in presence of peer failures. In the presence of

severe peer failures where data availability cannot be

guaranteed by underlying DHTs,7 the binary search might

be misled by regarding a failed node as a nonexisting node.

In the previous example, the search range is [#;#011100]

right before the second DHT-get for fnð#011Þ ¼ #0. For

DHT-get(fnð#011Þ), if the peer responsible for #0 is

temporarily down, the algorithm will falsely consider the

current prefix too long and hence contract the search range

to the lower half [#;#0]. Thus, the algorithm would end up

with no leaf found to cover 0.9. In this case, an additional

recovery procedure can be invoked. The recovery proce-

dure will trace back to the most recently failed DHT-get,

which must be caused by a node failure, and adjust the

search range there from the lower half to the upper half. In

the above example, it will adjust the search range from

[#;#0] to [#01110;#011100]. Then the binary search will

be resumed over the new search range [#01110;#011100],

and finally reach the target leaf #01110. This recovery

procedure can be recursively invoked in the case of multiple

peer failures until the target leaf is found (as long as the

target leaf is not unavailable).

5 LIGHT MAINTENANCE

Unlike overlay-dependent indexes that would update their
structures with network structure changes caused by system
dynamics (i.e., peer joins/departures/failures), the LIGHT
index only needs to handle data updates while leaving
network structure changes to the underlying DHT. In this
section, we present the LIGHT index maintenance algo-
rithms for data insertions and deletions.

5.1 Data Insertion and Leaf Split

Inserting a data record into LIGHT involves a LIGHT
lookup and a possible leaf split process. More specifically,
for a data key �, LIGHT performs a lookup to locate the
target leaf bucket �ð�Þ, and then calls a DHT-put to place the
record there. However, if the leaf bucket �ð�Þ is already full
(i.e., containing �split or more records), the insertion will
split the bucket and generate two new leaves. In LIGHT,
one leaf bucket will stay on the current peer, denoted as the
local leaf, while the other one, denoted as the remote leaf, will
be pushed out to some other peer. The local leaf is not
pushed out and consumes no bandwidth overhead. This
nice property, which we call incremental leaf split, is
explained in Theorem 5.1.

Theorem 5.1. Consider a leaf labeled with �, which would be
split into two nodes, labeled with �0 and �1. The naming
function maps one still to fnð�Þ, and the other one to �.

Proof. We consider the case where � ends with 0 (the case
where � ends with 1 can be proved similarly). Without
loss of generality, we assume that � ¼ #0½0j1� � 100�.
After the split, the labels of the two new nodes, �0 and �1,
are #0½0j1� � 100 � 0 and #0½0j1� � 100 � 1, respectively.
Obviously, fnð�0Þ ¼ fnð#0½0j1� � 100 � 0Þ ¼ fnð#0½0j1� �
100�Þ ¼ fnð�Þ, and fnð�1Þ ¼ fnð#0½0j1� � 100 � 1Þ ¼ �. tu

Theorem 5.1 directly leads to incremental leaf split: by
LIGHT’s mapping strategy, the previous leaf bucket � is
mapped to the peer with identifier hashðfnð�ÞÞ. After
splitting, the local leaf bucket is still named to fnð�Þ and
thus remains on the same peer. The other one, which is
named to �, gets a new name and is mapped to some
remote peer. Such a process is illustrated in Fig. 6.

Algorithm 2 formally describes how the leaf bucket splits
in a distributed manner. The procedure leafsplitðbÞ is
invoked whenever a leaf bucket b is found containing �split
or more records during a data insertion. In order to split, it
first checks the value of the leaf label � (line 2) and
accordingly updates the labels of b and the remote leaf
bucket rb (lines 3-7). Since the data space is partitioned, the
records are reassigned into b and rb (line 8). After updating

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 65

Fig. 5. An example of binary search in lookup operation.

6. For indexing data sets of less than 1 billion records, the value of D is
usually smaller than 30, which makes 1

logD a non-negligible fraction.
7. In case of mild peer failures, DHTs can guarantee data

availability through techniques like data replication, and does not
affect the lookup operations.

Fig. 6. Leaf split in LIGHT when � ¼ p10 � 0.



b locally, the algorithm calls a DHT-put to place the
bucket rb onto some remote peer (line 10). During the
whole process, the algorithm relies only on local knowledge
and consumes one DHT-lookup (in the DHT-put).

Algorithm 2. Leaf-split(leaf bucket b)
1: � b:leaflabel

2: if � ¼ p011 � then

3: rb:leaflabel �0 {rb is the remote leaf bucket}

4: b:leaflabel �1

5: else

6: rb:leaflabel �1

7: b:leaflabel �0

8: Add corresponding records to rb and delete them in b.
9: Locally write b back to the disk of current peer.

10: DHT-put(�; rb)

5.2 Data Deletion and Leaf Merge

To remove the data key �, LIGHT, similar to data insertion,
first performs a lookup to locate the leaf bucket that covers
�, say �ð�Þ. It then executes a local deletion operation to
remove the corresponding record.

Algorithm 3. Leaf-merge(leaf bucket �)
1: if loadð�Þ < �merge then

2: �s  DHT-lookup(fsð�Þ)
3: if lengthð�Þ ¼ lengthð�sÞ then

4: if loadð�Þ þ loadð�sÞ < �split then

5: if � ¼ fnð�sÞ then

6: Push bucket �s to �.

7: else {this is when �s ¼ fnð�Þ}
8: Push bucket � to �s.
9: local-merge(�; �s)

Data deletion may further lead to a merge of leaf
buckets if the number of records (called load for brevity)
contained in the leaf and its sibling drops below �split.
Algorithm 3 illustrates the leaf merge operation. In line 1,
we predefine a merge threshold �merge, which determines
whether to trigger a probe of its sibling’s load (line 2). The
sibling node is located by a sibling function fs, which is
defined as below:

Definition 3. For a leaf bucket labeled with �, the sibling

function fsð�Þ returns the DHT key of its sibling.

fsð�Þ ¼
fnðp0Þ; if � ¼ p1;
fnðp1Þ; if � ¼ p0;

�

where p ¼ #0½0j1��.

The algorithm proceeds to check whether �’s sibling is a
leaf node, that is, whether the retrieved label �s for the
sibling has the same length as � (line 3). If this is true and
their total load is lower than �split, the actual merge operation
is started (lines 5-9). Note that in the push operation, there is
no need to perform the DHT-lookup for fsð�Þ again, since it
was already found in line 2. Thus, only one DHT-lookup is
incurred for each data deletion operation.

By the definition of our space partition tree,
�merge ¼ �split. In practice, however, to avoid unnecessary
checking and hence save bandwidth consumption, �merge

can be set to a fraction of �split (e.g., half of �split), though this
would deteriorate the index consistency.

5.3 Analysis of Tree Maintenance Cost

5.3.1 Cost Model

Before analyzing the tree maintenance cost, we propose a
cost model reasonable for over-DHT indexing schemes. A
P2P network is characterized by abundant local resources.
That is, a typical P2P network holds ample resources (e.g.,
local disk storage and CPU power) at the network edges. By
contrast, the internetwork resource, namely the bandwidth,
is relatively rare and thus critical in a P2P network.
Therefore, to capture the P2P network cost, we consider
only the bandwidth consumption in the analysis. For an
over-DHT indexing scheme, two operations are bandwidth
consuming: DHT-lookup and data movement (i.e., transferring
data records from one peer to another via a physical
connection, like TCP or UDP). We assume that moving each
data record costs { units and each DHT-lookup costs | units.
The value of { is determined by the size of a data
record—the larger the data record, the higher the cost
incurred for data transferring. The value of | is determined
by the scale of the underlying P2P network—for a P2P
network with more peers, a DHT-lookup incurs more
physical hops (typically at complexity of OðlogNÞ), which
leads to a larger |.

5.3.2 Maintenance Cost

In the interest of space, only data insertion is discussed
here; data deletions can be similarly analyzed. As discussed
earlier, each data insertion involves a LIGHT lookup and a
possible leaf split. A LIGHT lookup incurs logðD=2Þ DHT-
lookups and movement of one data record.

For each leaf split in LIGHT, only one DHT-lookup is
incurred, yielding the DHT-lookup cost of |; the data-
movement cost is proportional to the size of the remote leaf
bucket. Note that for a pair of remote and local buckets,
their sizes sum to �split. Let the size of the remote bucket be a
fraction of �split, denoted as � � �split, where � is a normalized
factor in ½0; 1�. The size of the local bucket is thus
ð1� �Þ � �split. For a specific split, the very value of � is
determined by the local data distribution on the splitting
node. For a large enough tree, while the data skewness does
affect the global tree structure, the local data distribution
within a leaf node is likely to be uniform, yielding an
average � equal to 1

2 . Thus, the average data-movement cost
per split is 1

2 �split � {. In all, the average cost for one leaf split
in LIGHT, denoted as �LIGHT , is

�LIGHT ¼
1

2
�split � {þ 1 � |:

We compare the maintenance cost for a leaf split with
PHT [15], which is the state of the art with respect to
maintenance efficiency. In PHT, an index tree similar to the
space partition tree is maintained and, as mentioned, its
mapping to the underlying DHT is quite straightforward—
all the tree nodes (including the internal nodes) are mapped
directly by its label. As a result, one split produces two leaf
buckets with new labels, which are both mapped to some
remote peers. This incurs two DHT-lookups and movement

66 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010



of �split data records. Additionally, a split incurs two extra

DHT-lookups to update its B+ tree leaf links [15].

Altogether, the bandwidth cost for a PHT split is

�PHT ¼ �split � {þ 4 � |:

In comparison with PHT, LIGHT saves the maintenance

cost for leaf split by

1��LIGHT

�PHT
¼

1
2 � 	 þ 3

	 þ 4
;

where 	 ¼ �split�{
| . This savings ratio can range from 50 to

75 percent, depending on the value of 	.

6 COMPLEX QUERIES

In this section, we discuss the processing of various

complex queries over the LIGHT index, including range

queries, min/max queries, and k-NN queries.

6.1 Range Queries

Given two bounds, l and u, a range query returns all data

records whose keys fall in the range of [l; u). Thanks to the

local tree, LIGHT can support range query processing at

near-optimal cost. To illustrate how it works, we start with a

simple case.

6.1.1 A Simple Case

In this case, the query issuer happens to be the leaf bucket

containing one of the range bounds. Without loss of

generality, we assume that it is the lower bound l. As

explained earlier, the leaf bucket can construct a local tree,

as illustrated in Fig. 7a. This figure shows the lower bound

leaf �ðlÞ and all its right neighboring subtrees, denoted by


1; 
2; . . . . In general, the subtree 
i covers the data space

½pvi; pviþ1Þ, where partition value pvi is the lower bound of

the space covered by 
i. Further denote the right branch

nodes by �1; �2; . . . , which can be inferred based merely on

the knowledge of �ðlÞ:
Definition 4. For a tree node labeled with x, the right neighbor

function frnðxÞ returns the label of its nearest right branch

node. For example in Fig. 7a, frnð�ðlÞÞ ¼ �1; frnð�iÞ ¼ �iþ1.

The right neighbor function is defined as follows:

frnðxÞ ¼
x; if x ¼ #011�;
p1; otherwise x ¼ p01�;

�

where p ¼ #0½0j1��. In the case where x ¼ #011�, the tree
node x already lies rightmost in the LIGHT tree and frn
maps it to itself. We can similarly define the left neighbor
function flnðxÞ:

flnðxÞ ¼
x; if x ¼ #00�;
p0; otherwise x ¼ p10�:

�

Using frnðxÞ, the leaf bucket �ðlÞ can locally infer all �is. The
query range ½l; uÞ bounds the rightmost branch node �k,
whose neighboring subtree 
k covers the range’s upper
bound u, as depicted in Fig. 7a. We distinguish two cases:
1) the query’s upper bound u is smaller than the upper bound
of the space covered by 
k; 2) u is exactly the same as

k’s upper bound. For Case 1, the arrows in Fig. 7a illustrate
how leaf bucket �ðlÞ forwards the query to recursively
traverse all the leaves in the range ½l; uÞ: it forwards the query
to the rightmost leaves in all 
is for i ¼ 1; 2; . . . ; k� 1 and the
leftmost leaf in 
k. The former forwarding is done by a DHT-
lookup of fnð�iÞ (i.e., the parent of �i) because, as shown in
the figure, the rightmost leaf in 
i is named to fnð�iÞ, while the
latter forwarding is done by a DHT-lookup of �k because the
leftmost leaf in 
k is named to �k. The current query range
½l; uÞ is then decomposed into disjoint subranges for these
next-hop leaves, specifically, ½pvi; pviþ1Þ for the rightmost leaf
in 
i (i ¼ 1; 2; . . . ; k� 1) and ½pvk; uÞ for the leftmost leaf in 
k.
For Case 2, the forwarding process is similar except that �ðlÞ
forwards the query to the rightmost leaves in all 
is for
i ¼ 1; 2; . . . ; k. The similar forwarding procedure can be
recursively invoked until the leaf completely covers the
queried subrange. Algorithm 4 formally describes the
recursive forwarding strategy for the simple case.

Algorithm 4. Recursive-forward(bucket b, range R)

1: leftwards ðb:leaflabel ¼ p011�Þ
2: �  b:leaflabel

3: loop

4: if leftwards ¼ true then

5: �  flnð�Þ
6: else

7: �  frnð�Þ
8: inv  interval(�) {compute the interval covered by

branch node �}

9: if inv \R ¼ NULL then

10: return

11: else if inv � R then

12: nextbucket  DHT-lookup(fnð�Þ)
13: recursive-forward(nextbucket; inv)

14: else

15: nextbucket  DHT-lookup(�)

16: if nextbucket ¼ NULL then {a failed DHT-lookup}

17: nextbucket  DHT-lookup(fnð�Þ)
18: recursive-forward(nextbucket; inv \R)
19: return

For complexity, one point noteworthy is that during the
whole recursive procedure, at most one DHT-lookup could
possibly fail. It only occurs when LIGHT forwards the
query to DHT key �k and the �k corresponds to a leaf node.

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 67

Fig. 7. Range query processing. (a) Local tree of � and the recursive

forwarding. (b) An example.



For all the subqueries forwarded to fnð�iÞ, they could not
fail, because there must exist one leaf node in 
i which is
named to fnð�iÞ.

6.1.2 General Case

In the general case, the query issuer can be any leaf bucket.
As described in Algorithm 5, after receiving the range query
R ¼ ½l; uÞ, the leaf locally computes the lowest common
ancestor that covers R, abbreviated as LCA. It then forwards
the query by a DHT-lookup of fnðLCAÞ. We discuss three
possible cases: 1) The DHT-lookup has failed (line 3),
implying that range R is so small that a single leaf
completely covers it. In this case, the range processing is
reduced to a lookup operation. 2) The returned leaf bucket
overlaps the query range (line 6), implying one range bound
must be in this leaf bucket. This is the simple case we
discussed above. 3) The returned leaf bucket does not
overlap the query range (line 8). In this case, the query
range is subdivided and, respectively, forwarded to LCA’s
children, namely LCA0 and LCA1. Note that each of the
leaves named to LCA0 and LCA1 must cover one bound of
the corresponding subrange. Thus, the processing of both
subsequent queries can follow the simple-case strategy.

Algorithm 5. General-forward(range R)

1: LCA  computeLCA(R).

2: bucket  DHT-lookup(fnðLCAÞ)
3: if bucket ¼ NULL then {a failed DHT-lookup}
4: return LIGHT-lookup(R:lowerbound)

5: else

6: if bucket overlaps R then {turn into the simple case}

7: return recursive-forward(R; bucket)

8: else

9: bucket  DHT-lookup(LCA0)

10: result0  recursive-forward

(R \ bucket:range; bucket)
11: bucket  DHT-lookup(LCA1)

12: result1  recursive-forward

(R \ bucket:range; bucket)
13: return result0 [ result1

An example. Consider the range query ½0:3; 0:6Þ on the
tree shown in Fig. 7b. Any leaf bucket receiving the query
locally calculates the LCA to be #0 and performs a DHT-
lookup of fnð#0Þ ¼ #. The returned leaf bucket is #000,
whose range does not overlap the queried range (i.e., Case 3).
As mentioned, the queried range is then subdivided and
forwarded to DHT keys #00 (¼ fnð#001Þ ¼ fnðfrnð#000ÞÞ)
and #01 (¼ frnð#001Þ), to which leaf buckets #0011 and
#0100 are respectively named. Bucket #0011 has its bound
value of 0.5 in the queried range and hence the recursive
forwarding process then applies; bucket #0011 further
forwards it to #001 (¼ fnðflnð#0011ÞÞ), which is the name
of bucket #0010. After that, all leaf buckets in the range
½0:3; 0:6Þ are found.

6.1.3 Complexity

Suppose the query range is distributed on B leaf buckets.
We here consider only the case where B >¼ 2 (i.e., Cases 2
and 3 discussed in the last section). In general forwarding
(Case 3), there is at most one DHT-lookup that returns a leaf

bucket not overlapping the range. Moreover, as explained
in Section 6.1.1, in the procedure of each recursive
forwarding, there is at most one failed DHT-lookup.
Therefore, a total of three extra DHT-lookups can possibly
occur, that is, the LIGHT-based range query costs at most
Bþ 3 DHT-lookups, which is close to the optimal perfor-
mance (i.e., B DHT-lookups).

6.2 Range Queries with Lookahead

To further reduce the query latency, we propose a parallel
processing algorithm. The basic idea is that each recursive
forwarding in the range query looks one step ahead. That is,
for each branch node �i (i ¼ 1; 2; . . . ; k) in Fig. 7a, the bucket
�ðlÞ forwards the query not only to fnð�iÞ but also to �i. By
this means, each recursive forwarding can explore the
neighboring subtree by two levels (instead of one level as in
the original algorithm). Therefore, total latency can be
reduced by a factor of two. However, the lookahead can
increase the number of DHT-lookup failures, typically from
3 to B=2. This is because in the worst case each lookahead
may result in a DHT-lookup failure. As such, the lookahead
strategy trades bandwidth overhead for shorter query
latency. In general, if we look h steps ahead, the average
latency can be reduced by a factor of hþ 1, while the
number of DHT-lookups is increased by h times. In practice,
the user can tune the parameter of h based on his/her
performance preferences.

6.3 Min/Max Queries

The min (max) query returns the smallest (largest) data key
in the data set. Interestingly, LIGHT supports processing a
min/max query at constant cost, owing to its nice naming
function. More specifically, the query complexity is one
DHT-lookup only.

Theorem 6.1. In LIGHT, a DHT-lookup of # returns the smallest
key, whereas a DHT-lookup of #0 returns the largest key.

Proof. The leaf bucket containing the smallest data key in
LIGHT should be the one labeled #00�. By the naming
function, this bucket #00� is mapped to #. Likewise, the
largest data key should be associated with leaf bucket
#01�, which is named to #0. tu

6.4 k-NN Queries

Given a data key � and an integer k, the k-NN query returns
the k-nearest data keys to �. LIGHT supports k-NN query
processing by a LIGHT lookup of �, followed by a
sequential leaf traversal. Specifically, after the bucket
covering � is located, a bidirectional leaf traversal is set
off simultaneously toward the left and the right.

Without loss of generality, we focus on the traversal
toward the right. The packet in the leaf traversal carries a
parameter unf , which is an integer indicating how many
keys still need to be found. It is initiated to k and at any
time, unf � k. Suppose bucket b receives a k-NN query
message of unf and data key �. As described in Algorithm 6,
it locally searches the nearest unf data keys to � (line 1).
Bucket b then returns the results directly to the query issuer
(via a physical hop since the query issuer’s address can be
known from the packet header) (line 2). The query issuer
will update the value of unf according to the current result
set and notify bucket b of the new unf 0 (line 3). If the new

68 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010



unf 0 is still bigger than 0, meaning that the current result set
is not yet filled up, bucket b further forwards the query to its
immediate right neighbor (lines 4-10). This is quite similar
to the forwarding to �i in the range query. A k-NN query
traversing B buckets incurs at most 1:5B DHT-lookups
since in the worst case 50 percent of DHT-lookups might
fail (e.g., the hop from #0011 to #0100 always succeeds but
the one from #0010 to #0011 can fail).

Algorithm 6. k-NN-forward(leaf bucket b; unf; �)

1: result b.localsearch(�; unf)

2: return result to query initiator

3: unf 0  update(unf) {update unf from query initiator}
4: if unf 0 > 0 then

5: � b:leaflabel

6: �  frnð�Þ
7: nextbucket DHT-lookup(�)

8: if nextbucket ¼ NULL then {a failed DHT-lookup}

9: nextbucket DHT-lookup(fnð�Þ)
10: k-NN-forward(nextbucket; unf 0; �)

7 EXPERIMENTAL RESULTS

This section presents the results of performance evaluation.
We compare LIGHT with the state-of-the-art indexing
schemes PHT [15] and DST [18] in terms of index
maintenance costs and lookup/query performance.

7.1 Experiment Setup

We implemented LIGHT in Java. The total number of
code lines is 2,200 (including LIGHT, DST, and PHT),
which demonstrates the simplicity of developing an over-
DHT indexing scheme. In the experiments, LIGHT, DST,
and PHT were run over the Bamboo DHT [21], a ring-like
DHT that has good robustness and is now widely
deployed in the OpenDHT project [6]. Our whole system
was deployed in a LAN environment consisting of more
than 20 computers (or peers).8

Both real data and synthetic data were tested. For the real
data, we used the DBLP data set, which contains the
publications listed in the DBLP Computer Science Biblio-
graphy.9 The author names were converted to a floating
number in the domain of [0, 1] and used as the data keys. By
filtering out duplicate author names, we obtained a DBLP
data set containing approximately 250,000 distinct data keys
(see Fig. 8 for the data distribution). We further divided the
whole data set into five smaller data sets with 50,000 data
keys each. The experiments were conducted against all the
five small data sets; the average performance is reported
here. To evaluate the scalability of the indexing schemes, we
also used two synthetic data sets: uniform and gaussian, with
sizes varying from 500,000 to 8,000,000. The data keys in the
uniform data set were randomly generated in ½0; 1�, while
the data keys in the gaussian data set follow a gaussian
distribution with a mean of 1

2 and a standard deviation of 1
6 ,

which guarantees that about 97 percent of the keys will fall
in ½0; 1� (see Fig. 8). For performance testing on the synthetic

data, we repeated each experiment over 30 times and report
the average results.

7.2 Structural Properties

In this experiment, we examine the structural properties of
the LIGHT index, including average leaf depth, number of
leaf nodes, and bucket utilization. Bucket utilization is defined
to be the ratio of the number of records stored in a leaf bucket
to the bucket capacity �split. We measure these properties
after we inserted 50,000 data keys into the LIGHT index.
Fig. 9 shows the performance trends when �split is varied
from 50 to 1,000. When �split grows large, both the average
leaf depth and the number of leaf nodes decrease since a
large � results in leaves containing more keys and thus fewer
leaf nodes. Comparing the three data sets under testing,
DBLP has more and deeper leaf nodes. This is because the
data distribution in DBLP is highly skewed, which makes
the index tree very unbalanced. As shown in Fig. 10, most
leaf nodes for the uniform data set have a depth of 13 or 14,
whereas the depth of the leaf nodes for DBLP varies from 10
to 25. Fig. 9c shows the bucket utilization as a function of
�split. As expected, the bucket utilization for the DBLP data
set is lowest due to the skewness of data distribution. The
bucket utilization for the synthetic data sets, especially the
uniform data set, fluctuates as �split increases, owing to the
characteristic of the space partition tree.

7.3 Lookup Performance

This experiment evaluates the efficiency of looking up a key
in the index. We compare LIGHT with PHT with varying
data set sizes. Note that the lookup operations in both
LIGHT and PHT have a parameter D, the maximum leaf
depth. To make a fair comparison, D is always set to the
actual maximum tree depth for the data set under testing.
The splitting threshold �split is fixed at the default value 100.
For each experiment, we conduct 1,000 lookups for the keys
uniformly distributed in ½0; 1� and record the average
number of DHT-lookups per lookup operation. The results
are shown in Fig. 11. In general, as expected, the number of
DHT-lookups increases as the data set grows. For the DBLP
and gaussian data sets, LIGHT outperforms PHT by
35 percent on average. For the uniform data set, the
performance curve of PHT exhibits a zigzag shape (see
Fig. 11c). This is because most leaf buckets reside in the
deepest two levels of the tree (as seen in Fig. 10). As the data

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 69

8. The performance measurements such as the number of DHT-lookups
are independent of the network scale.

9. http://dblp.uni-trier.de/xml/.

Fig. 8. Key distribution in DBLP and gaussian data set.



set size is increased, the numbers of leaf buckets on these
two levels are increased in turn, for which the binary search
gets a fluctuating lookup performance.

7.4 Index Maintenance Performance

We now evaluate the index maintenance performance
under data insertions and deletions. In the following, we
first compare LIGHT with PHT for the leaf split cost
(note that DST incurs no split cost [18]). We then compare
the overall index maintenance performance among
LIGHT, PHT, and DST.

7.4.1 Leaf Split Costs

In this set of experiments, we first measure the value of � for
LIGHT, that is, the ratio of data records moved to remote
peers during a leaf split. To evaluate it, we continuously
insert data into the LIGHT index and record the average
value of � for the leaf splits. As shown in Fig. 12, the
average � remains almost constant under different data set
sizes for the uniform and gaussian data sets. For the DBLP
data set, the average � fluctuates a little bit when the data
set size is smaller than 15,000 but becomes stable as the size
of the data set increases. This is mainly because of the
irregular distribution of DBLP data (Fig. 8). Fig. 12b shows
the result as a function of �split. In all cases tested, the
average � fairly approaches the value of 0.5, which is
consistent with our previous analysis in Section 5.3.2.

Next we compare LIGHT with PHT for the leaf split
performance. We continuously insert data into LIGHT and
PHT and record the cumulative split costs. Recall that our
leaf split involves data-movement costs and DHT-lookup
costs (Section 5.3). We measure them separately in each
experiment. Figs. 13a and 13b show the results for LIGHT
and PHT indexing 50,000 DBLP data keys, with �split varied
from 50 to 1,000. For both schemes, total data-movement

costs slightly decrease as �split increases, while the number
of DHT-lookups is inversely proportional to �. The reason is
that a larger �split results in fewer split operations.
Comparing LIGHT with PHT, LIGHT improves PHT by
50 percent for data-movement costs and 75 percent for
DHT-lookup costs, which conforms to our previous
analysis. To further test the scalability, we conduct
experiments on the synthetic data sets with varying data
set sizes. From Figs. 13c and 13d, a similar performance
improvement can be observed under different data set sizes
for both the uniform and gaussian data sets.

7.4.2 Performance under Data Insertions

In this section, we evaluate performance under data
insertions, which includes the costs incurred by both data
insertion and leaf split. The same experimental settings are
chosen as with the leaf split experiments. The results are
shown in Figs. 14a and 14b. We can see that DST incurs a
cost higher than LIGHT and PHT by an order of magnitude.
This is because DST employs data replication. More
specifically, each insertion in DST needs to look up all the
ancestors of the leaf and insert the data into the unsaturated
ancestors, which typically amplifies the insertion cost by a
factor of D. Comparing LIGHT and PHT, LIGHT still
outperforms PHT by about 40 percent for data-movement
costs and 30 percent for DHT-lookup costs. This is because
LIGHT achieves more efficient lookup and leaf split
operations during the insertion process. From Figs. 14c
and 14d, it is also interesting to observe that the relative
performance of LIGHT, PHT, and DST is quite insensitive to
the data distribution.

7.4.3 Performance under Data Deletions

We next study performance under data deletions. The
experiments proceed in three phases: the growing phase, in
which only data insertion is allowed; the steady phase, in
which data insertions and deletions are randomly per-
formed; and the shrinking phase, in which data is deleted
from the P2P index until it is contracted into a single root.
Recall that the leaf merge operation requires a threshold
�merge. In the experiments, �merge is set to 0:5 � �split and
0:2 � �split. Figs. 15a and 15b show the data-movement costs
and DHT-lookup costs, respectively, for LIGHT and PHT
under the DBLP data set, where the costs for DST are much
higher and thus are not shown in the figures for clarity. In
Fig. 15a, the data-movement costs remain relatively stable
in the steady phase, implying that the split or merge

70 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 10. Depth distribution.

Fig. 9. LIGHT structural properties with varied �split. (a) Average leaf depth. (b) Number of leaf nodes. (c) Bucket utilization.



operations rarely happen during this phase. This is because
random insertions and deletions may cancel out each
other’s effects. Throughout the whole process, the cost of
LIGHT remains half that of PHT, and they are both
insensitive to the value of �merge. In contrast, the DHT-
lookup costs in Fig. 15b are more sensitive to �merge—the
smaller the �merge, the fewer DHT-lookups. This is because a
large �merge leads to more DHT-lookups for probing the
sibling’s load. Similar performance results are also observed
for the uniform and gaussian data sets in Figs. 15c and 15d,
where �merge is fixed at 0:5 � �split.

7.5 Range Query Performance

Finally, we evaluate the query processing performance for
range queries. The evaluation is in terms of two aspects:
time latency and bandwidth costs. The former is captured
by the paralleled steps of DHT-lookups, while the latter is
captured by the total number of DHT-lookups. Recall that
we proposed two LIGHT range query algorithms, the basic
one (in Section 6.1) and the one with lookahead (in
Section 6.2). PHT also has two range query algorithms,
denoted as PHT(sequential) [15] and PHT(parallel) [16],
respectively. Thus, we compare these four range query
algorithms together with DST.

Fig. 16 shows the range query performance on the DBLP
data set. In Figs. 16a and 16b, the bandwidth costs generally
go linearly with the data set size and the range span.10

Among the five algorithms, LIGHT(basic) achieves the
lowest bandwidth (though not quite visible in the figure),
while PHT(sequential) requires a bandwidth slightly higher
than LIGHT(basic). As discussed earlier, their performance
nearly approaches the optimum, that is, the number of DHT-
lookups equals the number of target leaf buckets. The
bandwidth costs of PHT(parallel) and DST are twice that of
LIGHT(basic) because they both incur internal node traver-
sal when processing range queries. The bandwidth costs of
LIGHT(lookahead) are approximately 50 percent higher
than the optimal bandwidth, which again conforms to our
previous complexity analysis. In terms of time latency, as
shown in Figs. 16c and 16d, the two LIGHT algorithms
substantially outperform the others. Without leveraging
parallelism, PHT(sequential) incurs extremely high latency.
Although parallelism is employed in PHT(parallel) and DST,
they still suffer from data skewness for which the deepest
leaf node dominates the whole query process.

For the scalability test on the synthetic uniform and
gaussian data sets, a similar result is found in Fig. 17. The only
exception here is that LIGHT(basic) incurs a slightly higher
latency than DST because the skewness is much lower in the
synthetic data and DST suits such unskewed distribution.

In summary, LIGHT(basic) outperforms all others in
terms of bandwidth costs and achieves quite good time
latency, just behind LIGHT(lookahead). LIGHT(lookahead)
trades bandwidth for time latency, which makes its time
latency the shortest. PHT(sequential) achieves quite effi-
cient bandwidth costs but incurs extremely high latency.
PHT(parallel) and DST both incur the highest bandwidth
costs, but their latency is not yet the most efficient.

8 ENHANCEMENTS

In this section, we further present two extensions to the
LIGHT index, including how to index unbounded data
domains and how to improve peer load balance.

8.1 Extensible Indexing

The basic LIGHT index deals with a bounded data domain
(i.e., in the normalized [0, 1] space), which requires a priori
knowledge of the indexed data. However, in many applica-
tions, such knowledge cannot be obtained in advance; and
even more the data domain may change over time. For
example, if we want to index the publication dates of MP3
files in a P2P file-sharing application, the data domain for
publication dates is not fixed and evolves in ð�1;1Þ. In
this section, we propose E-LIGHT, an extensible LIGHT that
supports data indexing of unbounded data domains.

Fig. 18 shows how the E-LIGHT indexes the domain
ð�1;1Þ. We introduce two spine buckets, that is, the

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 71

Fig. 11. LIGHT lookup performance on different data sets. (a) DBLP data set. (b) Gaussian data set. (c) Uniform data set.

Fig. 12. LIGHT split costs (measured by �). (a) Varying data set size.
(b) Varying �split.10. For a queried range ½l; uÞ, the range span is u� l.



72 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 13. Index maintenance costs of leaf split. (a) and (b) Varying �split on DBLP data set. (a) Data-movement costs and (b) DHT-lookup costs.

(c) and (d) Scalability: varying data set size on synthetic data sets. (c) Data-movement costs and (d) DHT-lookup costs.

Fig. 14. Index maintenance costs under data insertions. (a) and (b) Varying �split on DBLP data set. (a) Data-movement costs and (b) DHT-lookup
costs. (c) and (d) Scalability: varying data set size on synthetic data sets. (c) Data-movement costs and (d) DHT-lookup costs.

Fig. 15. Index maintenance costs under data deletions. (a) and (b) Performance on DBLP data set. (a) Data-movement costs and (b) DHT-lookup
costs. (c) and (d) Performance on synthetic data set. (c) Data-movement costs and (d) DHT-lookup cost.

Fig. 16. Range query performance on DBLP data set. (a) and (b) Bandwidth costs. (a) Varying range span and (b) varying data size. (c) and (d) Time

latency. (c) Varying range span and (d) varying data size.

Fig. 17. Range query performance on synthetic data sets. (a) Bandwidth on gaussian data. (b) Latency on gaussian data. (c) Bandwidth on uniform
data. (d) Latency on uniform data.



buckets whose labels are like #00 � or #11�. For example,

in Fig. 18, the right spine bucket #111 lies at the end of the

right spine and indexes the space ½2;1Þ. A spine bucket

does not employ the binary partition strategy—when it

splits, two subspaces can be ½2; 3Þ and ½3;1Þ. Subspace ½2; 3Þ
is then covered by bucket #1110, which can subsequently

grow into a conventional LIGHT, like ½1; 2Þ indexed by

LIGHT �1. Essentially, each spine bucket acts as an

extending point, and an E-LIGHT index consists of two

spine buckets and a set of conventional LIGHTs.
In E-LIGHT, the naming function fnð�Þ still applies, as

depicted by the dotted arrows in Fig. 18. The only exception

is that both spine buckets are named to the root #, which

may double the load of the DHT key #. We thus impose the

constraint: a spine bucket splits if it stores more than
�split

2 records. The algorithms for various complex queries in

LIGHT can work in E-LIGHT without much modification.

For example, given a data key � 2 ð�1;1Þ, we can easily

figure out which LIGHT �i covers the key �, and afterwards

the LIGHT algorithm can be applied to �i.

8.2 Improvement of Peer Load Balance

In general, DHTs offer load balance quite efficiently, yet not

that effectively. Specifically, if the imbalance ratio denotes the

ratio of the heaviest load to the average load for the peers in

the P2P network, DHTs only bound the imbalance ratio at

OðlogNÞ with high probability [5], [1]. This result is

considerably large for large-scale P2P networks. In this

section, we propose a double-naming strategy as an

improvement for balancing peer load. The double-naming

strategy naturally adapts the “power of two choices”

paradigm [61] (PoTC) to LIGHT, which bounds the

imbalance ratio at Oðlog logNÞ.
The basic idea behind the double-naming strategy is

simple. Previously in LIGHT, each leaf bucket � had one

name, fnð�Þ. Now, the double-naming strategy adds

another name, that is, � itself. Thus, for each bucket, there

are two distinct names, � and fnð�Þ (note that fnð�Þ 6¼ �),

which implies that one bucket can have two choices of

underlying peers to store it. Between these two candidates,

it picks the one with lighter load to actually store the bucket

�. Since the load of the peer may change over time, the

bucket periodically checks these two peers, and accordingly

adjusts its storage location. Unlike PoTC’s other adaptations

that come with double hashes within DHTs [62], the

double-naming strategy is completely independent of DHTs

and can be seamlessly incorporated into LIGHT.
The adaptability comes with prices—to locate the

bucket �, now two (rather than one) DHT-lookups are

needed. For more efficiency, one possible solution is to

trade the adaptability. Specifically, a physical link (at the IP

level) is maintained between each pair of two candidate

peers which, although it incurs modification of underlying

DHTs, accelerates the indirection of the failed DHT-lookup

and the periodical reassessment of bucket location. So, now

it consumes one DHT-lookup and a possible physical hop to

locate a leaf bucket; this extra hop is trivial, since a typical

DHT-lookup incurs OðlogNÞ physical hops. By this means,

various LIGHT algorithms still apply in the double-naming

LIGHT, without loss of efficiency.

9 CONCLUSION

This paper proposed LIGHT, a LIGhtweight Hash Tree, for

efficient data indexing over DHTs. LIGHT differs from

PHT, a representative over-DHT indexing scheme, in the

following aspects:

. Both PHT and LIGHT are based on the idea of space
partitioning. While PHT maps its index structure
into DHT in a straightforward manner, LIGHT
leverages a clever naming function, which signifi-
cantly lowers the maintenance cost and improves the
DHT-lookup performance.

. LIGHT employs local tree summarization to provide
each bucket a local view. This local view is essentially
helpful for distributed query processing, but unlike
PHT’s sequential leaf link, requires no extra main-
tenance cost.

. In PHT, all leaf nodes and internal nodes are
mapped to the DHT space, whereas only leaf nodes
are mapped in LIGHT. The processing of range
queries in PHT has to go through all internal nodes
of the subtree in addition to the leaf nodes in the
queried range, which at least doubles the search cost.

. Thanks to the novel naming function, one can easily
determine the leftmost/rightmost leaf node under a
subtree in O(1) lookup. As such, min/max queries
can be efficiently supported in LIGHT.

. LIGHT can be extended to index unbounded data
domains and naturally accommodate a double-
naming strategy to improve peer load balance. As
a comparison, PHT (and other existing over-DHT
schemes) only supports data indexing of bounded
domains and achieves better load balance by
modifying DHTs.

Experimental results show that in comparison with the

state-of-the-art indexing techniques PHT and DST, LIGHT

saves 50-75 percent of index maintenance cost and supports

more efficient lookup operations. Moreover, LIGHT has a

much better query performance in terms of both bandwidth

consumption and response time. As an over-DHT scheme,

LIGHT is adaptable to generic DHTs and can be easily

implemented and deployed in any DHT-based P2P system.

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 73

Fig. 18. Extensible LIGHT.



ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers.

This work was supported by the National Natural Science

Foundation of China under Grant Nos. 60573183, 90612007,

and 60873070, and Shanghai Leading Academic Discipline

Project No. B114. Shuigeng Zhou’s work was also supported

by K.C. Wong Education Foundation-HKBU. Jianliang Xu’s

work was supported by grants from the Research Grants

Council, Hong Kong SAR, China (Project Nos. HKBU211307

and HKBU210808).

REFERENCES

[1] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications,” Proc. 2003 Conf. Applications, Technol-
ogies, Architectures, and Protocols for Computer Comm. (SIGCOMM),
pp. 149-160, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” Proc. 2001 Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM), pp. 161-172, 2001.

[3] A.I.T. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. Middleware, pp. 329-350, 2001.

[4] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph, “Tapestry: A Fault-
Tolerant Wide Area Application Infrastructure,” Computer Comm.
Rev., vol. 32, no. 1, p. 81, 2002.

[5] D.R. Karger, E. Lehman, F.T. Leighton, R. Panigrahy, M.S. Levine,
and D. Lewin, “Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World
Wide Web,” Proc. Symp. Theory of Computing (STOC), pp. 654-663,
1997.

[6] S.C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica, and H. Yu, “OpenDHT: A Public DHT Service
and Its Uses,” Proc. 2005 Conf. Applications, Technologies, Archi-
tectures, and Protocols for Computer Comm. (SIGCOMM), pp. 73-84,
2005.

[7] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” Proc. Int’l
Workshop Peer-to-Peer Systems (IPTPS), pp. 53-65, 2002.

[8] http://en.wikipedia.org/wiki/kademlia, 2009.
[9] A.I.T. Rowstron and P. Druschel, “Storage Management and

Caching in Past, a Large-Scale, Persistent Peer-to-Peer Storage
Utility,” Proc. Symp. Operating Systems Principles (SOSP), pp. 188-
201, 2001.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S.E. Czerwinski, P.R. Eaton,
D. Geels, R. Gummadi, S.C. Rhea, H. Weatherspoon, W.
Weimer, C. Wells, and B.Y. Zhao, “Oceanstore: An Architecture
for Global-Scale Persistent Storage,” Proc. Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp. 190-201, 2000.

[11] F. Dabek, M.F. Kaashoek, D.R. Karger, R. Morris, and I. Stoica,
“Wide Area Cooperative Storage with CFS,” Proc. Symp. Operating
Systems Principles (SOSP), pp. 202-215, 2001.

[12] M.J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
Content Publication with Coral,” Proc. Networked Systems Design
and Implementation (NSDI), pp. 239-252, 2004.

[13] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet Indirection Infrastructure,” Proc. 2002 Conf. Applications,
Technologies, Architectures, and Protocols for Computer Comm.
(SIGCOMM), pp. 73-86, 2002.

[14] M.J. Freedman, K. Lakshminarayanan, and D. Mazières, “Oasis:
Anycast for Any Service,” Proc. Networked Systems Design and
Implementation (NSDI), 2006.

[15] S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, and S. Shenker,
“Brief Announcement: Prefix Hash Tree,” Proc. Principles of
Distributed Computing (PODC), p. 368, 2004.

[16] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S.
Shenker, and J.M. Hellerstein, “A Case Study in Building Layered
DHT Applications,” Proc. 2005 Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm. (SIGCOMM),
pp. 97-108, 2005.

[17] J. Gao and P. Steenkiste, “An Adaptive Protocol for Efficient
Support of Range Queries in DHT-Based Systems,” Proc. IEEE Int’l
Conf. Network Protocols (ICNP), pp. 239-250, 2004.

[18] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed Segment
Tree: Support of Range Query Cover Query over DHT,” Proc. Fifth
Int’l Workshop Peer-to-Peer Systems (IPTPS), Feb. 2006.

[19] B. Yang and H. Garcia-Molina, “Comparing Hybrid Peer-to-Peer
Systems,” Proc. Very Large Data Bases (VLDB), pp. 561-570, 2001.

[20] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” www.citeseer.ist.psu.edu/
saroiu02measurement.html, 2002.

[21] S.C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling
Churn in a DHT,” Proc. USENIX Ann. Technical Conf. (ATC),
pp. 127-140, 2004.

[22] C.G. Plaxton, R. Rajaraman, and A.W. Richa, “Accessing Nearby
Copies of Replicated Objects in a Distributed Environment,” Proc.
Symp. Parallel Algorithms and Architectures (SPAA), pp. 311-320,
1997.

[23] W.G. Bridges and S. Toueg, “On the Impossibility of Directed
Moore Graphs,” J. Combinatorial Theory, Series B, vol. 29, no. 3,
pp. 339-341, 1980.

[24] P. Fraigniaud and P. Gauron, “Brief Announcement: An Overview
of the Content-Addressable Network D2B,” Proc. Principles of
Distributed Computing (PODC), p. 151, 2003.

[25] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-Theoretic
Analysis of Structured Peer-to-Peer Systems: Routing Distances
and Fault Resilience,” Proc. 2003 Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm. (SIGCOMM),
pp. 395-406, 2003.

[26] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A Scalable and
Dynamic Emulation of the Butterfly,” Proc. Principles of Distributed
Computing (PODC), pp. 183-192, 2002.

[27] D. Li, X. Lu, and J. Wu, “Fissione: A Scalable Constant Degree and
Low Congestion DHT Scheme Based on Kautz Graphs,” Proc.
IEEE Int’l Conf. Computer Comm. (INFOCOM), pp. 1677-1688, 2005.

[28] J. Liang and K. Nahrstedt, “Randpeer: Membership Management
for QoS Sensitive Peer-to-Peer Applications,” Proc. IEEE Int’l Conf.
Computer Comm. (INFOCOM), 2006.

[29] O.D. Sahin, A. Gulbeden, F. Emekçi, D. Agrawal, and A.E.
Abbadi, “PRISM: Indexing Multi-Dimensional Data in P2P Net-
works Using Reference Vectors,” Proc. 13th Ann. ACM Int’l Conf.
Multimedia (MM), pp. 946-955, 2005.

[30] J. Gao and P. Steenkiste, “Efficient Support for Similarity Searches
in DHT-Based Peer-to-Peer Systems,” Proc. Int’l Conf. Comm.
(ICC), pp. 1867-1874, 2007.

[31] L. Chen, K.S. Candan, J. Tatemura, D. Agrawal, and D. Cavendish,
“On Overlay Schemes to Support Point-in-Range Queries for
Scalable Grid Resource Discovery,” Proc. IEEE Int’l Conf. Peer-to-
Peer Computing (P2P), pp. 23-30, 2005.

[32] E. Tanin, A. Harwood, and H. Samet, “Using a Distributed
Quadtree Index in Peer-to-Peer Networks,” Very Large Data Bases
J., vol. 16, no. 2, pp. 165-178, 2007.

[33] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker, and
I. Stoica, “Querying the Internet with Pier,” Proc. Very Large Data
Bases (VLDB), pp. 321-332, 2003.

[34] S. Idreos, C. Tryfonopoulos, and M. Koubarakis, “Distributed
Evaluation of Continuous Equi-Join Queries over Large Structured
Overlay Networks,” Proc. Int’l Conf. Data Eng. (ICDE), p. 43-54,
2006.

[35] S. Idreos, E. Liarou, and M. Koubarakis, “Continuous Multi-Way
Joins over Distributed Hash Tables,” Proc. Extending Data Base
Technology (EDBT), 2008.

[36] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Proc. Middleware, pp. 21-40, 2003.

[37] C. Tang, S. Dwarkadas, and Z. Xu, “On Scaling Latent Semantic
Indexing for Large Peer-to-Peer Systems,” Proc. 27th Ann. Int’l
ACM SIGIR Conf. Research and Development in Information Retrieval,
pp. 112-121, 2004.

[38] C. Tang and S. Dwarkadas, “Hybrid Global-Local Indexing for
Efficient Peer-to-Peer Information Retrieval,” Proc. Networked
Systems Design and Implementation (NSDI), pp. 211-224, 2004.

[39] M. Cai and M.R. Frank, “RDFpeers: A Scalable Distributed RDF
Repository Based on a Structured Peer-to-Peer Network,” Proc.
World Wide Web (WWW), pp. 650-657, 2004.

[40] L. Galanis, Y. Wang, S.R. Jeffery, and D.J. DeWitt, “Locating Data
Sources in Large Distributed Systems,” Proc. Very Large Data Bases
(VLDB), pp. 874-885, 2003.

74 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010



[41] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for
Grid Information Services,” Proc. IEEE Int’l Conf. Peer-to-Peer
Computing (P2P), pp. 33-40, 2002.

[42] C. Schmidt and M. Parashar, “Flexible Information Discovery in
Decentralized Distributed Systems,” Proc. High Performance Dis-
tributed Computing (HPDC), pp. 226-235, 2003.

[43] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer,
“Range Queries in Trie-Structured Overlays,” Proc. IEEE Int’l Conf.
Peer-to-Peer Computing (P2P), pp. 57-66, 2005.

[44] D. Li, X. Lu, B. Wang, J. Su, J. Cao, K.C.C. Chan, and H.V. Leong,
“Delay-Bounded Range Queries in DHT-Based Peer-to-Peer
Systems,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS),
p. 64-71, 2006.

[45] D. Li, J. Cao, X. Lu, and K.C.C. Chan, “Efficient Range Query
Processing in Peer-to-Peer Systems,” IEEE Trans. Knowledge and
Data Eng., vol. 21, no. 1, pp. 78-91, Jan. 2009.

[46] A. Gupta, D. Agrawal, and A.E. Abbadi, “Approximate Range
Selection Queries in Peer-to-Peer Systems,” Proc. Conf. Innovative
Data Systems Research (CIDR), 2003.

[47] M. Bawa, T. Condie, and P. Ganesan, “Lsh Forest: Self-Tuning
Indexes for Similarity Search,” Proc. World Wide Web (WWW),
pp. 651-660, 2005.

[48] Y.-J. Joung, C.-T. Fang, and L.-W. Yang, “Keyword Search in DHT-
Based Peer-to-Peer Networks,” Proc. Int’l Conf. Distributed Comput-
ing Systems (ICDCS), pp. 339-348, 2005.

[49] Y.-J. Joung and L.-W. Yang, “KISS: A Simple Prefix Search Scheme
in P2P Networks,” Proc. Workshop Web and Databases (WebDB),
2006.

[50] D. Han, T. Shen, S. Meng, and Y. Yu, “Cuckoo Ring: Balancing
Workload for Locality Sensitive Hash,” Proc. IEEE Int’l Conf. Peer-
to-Peer Computing (P2P), pp. 49-56, 2006.

[51] J. Aspnes and G. Shah, “Skip Graphs,” Proc. Symp. Discrete
Algorithms (SODA), pp. 384-393, 2003.

[52] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram,
“Querying Peer-to-Peer Networks Using P-Trees,” Proc. Workshop
Web and Databases (WebDB), pp. 25-30, 2004.

[53] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and J.
Shanmugasundaram, “P-Ring: An Efficient and Robust P2P Range
Index Structure,” Proc. ACM SIGMOD, pp. 223-234, 2007.

[54] H.V. Jagadish, B.C. Ooi, and Q.H. Vu, “Baton: A Balanced Tree
Structure for Peer-to-Peer Networks,” Proc. Very Large Data Bases
(VLDB), pp. 661-672, 2005.

[55] H.V. Jagadish, B.C. Ooi, Q.H. Vu, R. Zhang, and A. Zhou, “VBI-
Tree: A Peer-to-Peer Framework for Supporting Multi-Dimen-
sional Indexing Schemes,” Proc. Int’l Conf. Data Eng. (ICDE), p. 34,
2006.

[56] C. du Mouza, W. Litwin, and P. Rigaux, “SD-Rtree: A Scalable
Distributed Rtree,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 296-305,
2007.

[57] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. 2004 Conf. Applica-
tions, Technologies, Architectures, and Protocols for Computer Comm.
and ACM SIGCOMM Computer Comm. Rev., pp. 353-366, 2004.

[58] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. Very Large Data Bases (VLDB), pp. 444-455, 2004.

[59] D.R. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. Symp. Parallel Algo-
rithms and Architectures (SPAA), pp. 36-43, 2004.

[60] P. Yalagandu and J. Browne, “Solving Range Queries in a
Distributed System,” Technical Report TR-04-18, 04-18, Dept. of
Computer Sciences, Univ. of Texas at Austin, 2003.

[61] M. Mitzenmacher, “The Power of Two Choices in Randomized
Load Balancing,” "IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094-1104, Oct. 2001.

[62] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. Int’l Workshop Peer-
to-Peer Systems (IPTPS), pp. 80-87, 2003.

Yuzhe Tang received the BSc degree in
computer science and engineering from Fudan
University, Shanghai, China, in 2006. He is
currently working toward the MSc degree in the
School of Computer Science, Fudan University.
His research interests include peer-to-peer net-
works, data management, and distributed com-
puting systems.

Shuigeng Zhou received the bachelor’s degree
from Huazhong University of Science and
Technology (HUST) in 1988, the master’s
degree from the University of Electronic Science
and Technology of China (UESTC) in 1991, and
the PhD degree in computer science from Fudan
University in 2000. He served in at the Shanghai
Academy of Spaceflight Technology from 1991
to 1997 as an engineer and as a senior engineer
(since August 1995). He was a postdoctoral

researcher in the State Key Lab of Software Engineering, Wuhan
University, from 2000 to 2002. He is now a professor in the School of
Computer Science, Fudan University, Shanghai, China. His research
interests include data management in P2P and sensor networks, data
mining, information retrieval, and complex networks. He has published
more than 100 papers in domestic and international journals (including
IEEE TKDE, IEEE TPDS, DKE, PRE, EPL, and EPJB) and conferences
(including ICDE, SIGKDD, and SIGIR). Currently, he is a member of the
IEEE, the ACM, and the IEICE.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhejiang
University, Hangzhou, China, in 1998, and the
PhD degree in computer science from Hong
Kong University of Science and Technology, in
2002. He is an associate professor in the
Department of Computer Science, Hong Kong
Baptist University. He was a visiting scholar in the
Department of Computer Science and Engineer-
ing, Pennsylvania State University, University

Park. His research interests include data management, mobile/pervasive
computing, wireless sensor networks, and distributed systems. He has
published more than 70 technical papers in these areas, most of which
appeared in prestigious journals and conference proceedings, including
ACM SIGMOD, IEEE ICDE, IEEE INFOCOM, TKDE, TPDS, and VLDBJ.
He is an editor of a book entitled Web Content Delivery, published by
Springer, and a coguest editor of the International Journal of Grid
Computing: Theory, Methods and Applications (Elsevier) for a special
issue on scalable information systems. He serves as a vice chairman of
the ACM Hong Kong Chapter. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TANG ET AL.: LIGHT: A QUERY-EFFICIENT YET LOW-MAINTENANCE INDEXING SCHEME OVER DHTS 75


