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Abstract—Biomedical big data are usually high dimensional
and collected in the form of a continuous influx of new features.
Online Feature Selection (OFS) is a promising way to manage and
analyze such data, as OFS circumvents the huge computation cost
brought by simultaneously considering all the features, and can
also dynamically maintain a distribution-fitting feature subset
on the fly. However, almost all the OFS solutions are based
on a naive premise that all features are of the same type,
overlooking the fact that real biomedical data set usually consists
of heterogeneous numerical and categorical features. This paper
therefore proposes a new approach to Online Heterogeneous
Feature Selection (OHFS), which dynamically maintains a feature
subset that maximizes the number of neighborhood sets where
all the objects within each neighborhood set are of the same
class. To appropriately partition the objects into neighborhood
sets, a density-guided relation is proposed, which adaptively
forms non-overlapping neighborhood sets by detecting spatially
compact objects. A unified density measure is also presented
to avoid information loss in processing heterogeneous features.
It turns out that the proposed approach features parameter-
free, interpretability, and efficiency. It is capable of maintaining
a concise feature subset while receiving any type of feature.
Extensive experimental evaluations demonstrate its superiority.

Index Terms—Online feature selection, heterogeneous features,
distance metric, density measure, supervised learning.

I. INTRODUCTION

Feature selection plays a key role in biomedical data anal-
ysis [1]–[3]. The general purpose of feature selection is to
search for an optimal feature subset that can appropriately
describe the data distribution w.r.t. certain analysis tasks [4].
Online Feature Selection (OFS) becomes a promising way
to analyze high-dimensional biomedical data [5], [6], as it
can effectively circumvent the curse of dimensionality and
incorporate newly generated features [7]. Since categorical
features are very common in real data [8], many recent analysis
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TABLE I: Fragment of a biomedical data set.

ID Sex
(Categorical)

GCS Type
(Categorical)

Height
(Numerical) . . . Class

1 male to speech 190 . . . Type8
2 female to pain 170 . . . Type2
3 male spontaneoust 175 . . . Normal
...

...
...

...
...

...
452 male none 190 . . . Type7

attempts have been attracted [9]–[12]. Table I demonstrates a
data set with both categorical and numerical features, where
a categorical feature may have multiple qualitative values not
embedded in a well-defined distance space [13].

In the literature, an OFS approach [14] has been proposed
based on classical rough set theory, which is feasible for the
selection of categorical features. The basic idea is that more
data objects can be matched with their class labels under
the distribution representation of the optimal feature subset.
Later, by adopting a similar basic idea but adding an extra
feature redundancy analysis procedure via k-greedy search,
another OFS approach has also been proposed [15]. They
both adopt rough set theory, which is flexible, robust, and
convenient to take into account the relationship between the
current features and newly arrived ones. Although these two
approaches achieve considerable performance in OFS, they
are based on the hypothesis that all features are of the same
type, which is still not the case for most real biomedical
data. To cope with data sets composed of both numerical and
categorical features, various Heterogeneous Feature Selection
(HFS) approaches have been proposed [16]. Among them,
the one proposed in [17] computes lower approximations of
classes based on neighborhood rough sets formed through
combining Euclidean distances and Hamming distances on
numerical and categorical features, respectively, to quantify
the significance of heterogeneous features. Later, [18] further
introduces entropy to more appropriately distinguish objects in
forming neighborhood sets. Differing from them, approaches
[19], [20] first discretize numerical features, and then adopt



772

entropy as a measure to select feature subset. As studied by
our previous work [21], [22], the awkward information gap
between heterogeneous features cannot be well bridged by
simply adopting the metric combination and numerical feature
discretization, especially in data analysis tasks involving inter-
feature relationship. More importantly, all the above HFS
approaches are designed for static data only, which are inad-
equate for Online Heterogeneous Feature Selection (OHFS).

Since the state-of-the-art distance and correlation measures
of heterogeneous features [23] are all based on the global
data statistics, which will be dynamically updated in OHFS,
none of the existing OFS and HFS solutions are directly
applicable to the challenging OHFS problem to the best of
our knowledge. Motivated by this, we propose an OHFS
approach by first defining a more appropriate neighborhood
relation guided by the distribution densities of objects, and
then unifying the distance metric of categorical and numerical
features to form a pertinent density measurement basis for
the computation of neighborhood relation. In this approach,
instead of forming neighborhood sets for each object, non-
overlapping neighborhood sets are formed for the efficient
purpose of online learning. To appropriately obtain such
neighborhood sets, density and distance are both considered
for partitioning the data objects. That is, only locally compact
objects with relatively sparse boundaries to the surrounding
objects can be partitioned into one neighborhood set.

To form a distance metric that is unified on heterogeneous
features, we compute transformation cost between represen-
tations of two feature values to indicate their distance. That
is, two values of a feature are represented by the conditional
probability distributions of another relevant feature. If the
transformation cost between these two representations is large,
then the two values are considered to be more dissimilar. Since
each feature is uniformly represented in the form of a graph,
which is considered to be the current most informative form
for representing data, to derive the transformation cost, the
information of heterogeneous features can be exploited in a
homogeneous way to appropriately reflect both the distance
and density of data objects for heterogeneous feature selection.
Comprehensive experiments including ablation studies, signif-
icance tests, and efficiency evaluation have been conducted on
various real biomedical data sets to demonstrate the superiority
of the proposed approach over six state-of-the-art counterparts.
The main contributions of this paper are three-fold:
• To the best of our knowledge, this is the first attempt

to tackle the OHFS problem. It relaxes the assumption
that streaming features are of the same type. Since it is
parameter-free and intuitive, it is promising for biomed-
ical data management and analysis.

• A novel self-adaptive neighborhood relation based on
distance and density has been proposed to form compact
non-overlapping neighborhood sets. Such a relation is
more efficient and effective in boosting OHFS, especially
for real data with complex object distributions.

• We unify the distance and density of data objects rep-
resented by heterogeneous features by adopting graph-

TABLE II: Frequently used symbols.

Symbols Explanations

xi ∈ U i-th data object of the universe U ;
fr ∈ F r-th feature of feature set F ;
Cm ∈ C m-th class of class set C;
vrg ∈ Vr g-th possible value of fr’s value domain Vr ;
ANk

F ′i a set of k objects arranged according to ascending order
of their distances to xi computed upon F ′;

S(F ′) significance of a feature set F ′;
F a set of mixed numerical and categorical features;

D(·, ·;F ′) distance between two data objects computed upon F ′;
Dr(·, ·) distance between two values of fr ;
µi density gap of xi computed upon object densities;
ρi density of xi;

RµF′ (xi) neighborhood set of xi guided by density gap µi;

based transformation cost as a measure, which well-
bridges the awkward information gap while preserving
the intrinsic properties of heterogeneous features.

The rest of this paper is organized as follows. Section II
provides preliminaries, while Section III presents the proposed
approach in detail. Experimental results are demonstrated in
Section IV with in-depth analysis. Finally, Section V gives the
concluding remarks.

II. PRELIMINARIES

This section presents necessary pre-definitions of OHFS,
including common notations and brief formulation of the
neighborhood relation-based feature selection in Section II-A
and online feature selection in Section II-B. A data set for
feature selection can be viewed as an information system
IS = (U,F,C, V ), where the universe U = {x1,x2, ...,xn}
is a set of n data objects, F = {f1, f2, ..., fd} is a set of
d features, C = {C1, C2, ..., Cl} is a set of l classes with
Cm containing all the objects belonging to m-th class, and
V = {V1, V2, ..., Vd} stores the value domain corresponding
to each feature with Vt stores possible values of t-th feature.
Table II sorts out frequently used symbols in this paper.

A. Neighborhood Relation for Feature Selection

Neighborhood relation is commonly adopted for categor-
ical or heterogeneous feature selection. Before the feature
selection, we let each object xi find a neighborhood set
RF ′(xi) composed of objects that are more closer to xi, where
the distance between xi and xj reflected by feature subset
F ′ ∈ F is denoted as D (xi,xj ;F

′). Two conventional neigh-
borhood relations are the k-nearest and δ-radius relations, i.e.,
RkF ′(xi) = ANk

F ′i and RδF ′(xi) = {xj | D(xi,xj ;F
′) ≤ δ},

respectively, where j ∈ {1, 2, ..., n}, and

ANk
F ′i = {x〈i,0〉,x〈i,1〉, ...,x〈i,k−1〉} (1)

is the collection of the top k objects that are more similar to
xi among all n data objects. The subscript 〈i, h〉 indicates
that the corresponding object ranks hth in the degree of
similarity to xi. Therefore, the objects in ANk

F ′i are actually
arranged in ascending distance order, i.e., D(xi,x〈i,0〉;F

′) <
D(xi,x〈i,1〉;F

′) < ... < D(xi,x〈i,k−1〉;F
′). Note that we let
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x〈i,0〉 ≡ xi. For simplicity without causing ambiguity, we use
RF ′(xi) to generally indicate neighborhood relation.

The above neighborhood relations act to reflect the quality
of feature subset F ′ w.r.t. class labels, and then high-quality
features can be selected accordingly. To use the neighborhood
set for feature selection, the lower and upper approximation
of data objects can be computed according to neighborhood
relation RF ′(xi) w.r.t. each class of objects Cm by

UF ′m = {xi | RF ′(xi) ⊆ Cm} (2)

UF ′m = {xi | RF ′(xi) ∩ Cm 6= ∅} (3)

respectively, where i ∈ {1, 2, ..., n} and m ∈ {1, 2, ..., l}.
Based on Eqs. (2) and (3), the overall data set U can be
partitioned into positive, boundary, and negative regions w.r.t.
class Cm, which can be represented as U+

F ′m = UF ′m,
U∼
F ′m = UF ′m−UF ′m, and U−F ′m = U−UF ′m, respectively.

Given an F ′, the corresponding overall positive region is thus

U+
F ′ =

l⋃
m=1

U+
F ′m =

l⋃
m=1

UF ′m. (4)

It is intuitive that a preferred F ′ tends to maximize the size
of U+

F ′ , which indicates that F ′ can maximize the certainty of
objects w.r.t. all the class labels.

B. Online Feature Selection
For OFS, it is commonly assumed that the features flow

in one by one at each time-stamp t while the number of data
objects n remains fixed. It is also worth noting that a common
setting is to make the discarded features never come back.
During the OFS process, Eq. (4) is commonly used to indicate
the significance of a feature subset by

S(F ′) =
|U+
F ′ |
n

(5)

where |·| obtains the cardinality of a set, and thus |U+
F ′ | reflects

the number of objects in the positive regions. Eq. (5) computes
the proportion of objects that are partitioned into the positive
regions based on F ′. Accordingly, features can be divided into
three types by the following definitions for guiding OFS.

Definition 1. Significant feature: Given C, F ′, and a new
feature ft at time-stamp t, if S(F ′ ∪ ft)− S(F ′) > 0, then ft
is a significant feature for F ′.

Definition 2. Redundant feature: Given C, F ′, and a new
feature ft at time-stamp t, if S(F ′ ∪ ft)− S(F ′) = 0, then ft
is a redundant feature for F ′.

Definition 3. Irrelevant feature: Given C, F ′, and a new
feature ft at time-stamp t, if S(F ′ ∪ ft)− S(F ′) < 0, then ft
is an irrelevant feature for F ′.

Based on the above definitions, a significant ft should be
incorporated by F ′, an irrelevant ft should be rejected by F ′,
and redundant features in F ′ should be discarded, to maintain
a maximum S(F ′) at each time-stamp t during the OFS. Note
that we will use F instead of F in Section III to indicate a
heterogeneous feature set.

III. PROPOSE METHOD

This section first formulates the OHFS problem, then
presents the proposed self-adaptive neighborhood relation, uni-
fied distance metric, and the whole feature selection algorithm
in Section III-A, III-B, and III-C, respectively.

For a heterogeneous feature set F , we have d = dc + dn
where dn and dc are the number of numerical and categorical
features, respectively. Value domain of a categorical feature
fr is denoted as a set of unique values Vr = {vr1, vr2, ..., vrvr}
where vr is the number of fr’s possible values. Based on
Eq. (5), objective of OHFS can be formalized as maintaining
F ′t with significant features at each time-stamp t to maximize
the significance S(F ′t), which can be written as

F ′t = argmax
F ′

S(F ′) s.t. F ′ ⊆ F ′t−1 ∪ ft. (6)

According to Section II-B, the positive region U+
F ′ for calcu-

lating S(F ′t) is based on RF ′ , and obtaining RF ′(xi) requires
the inter-object distances, we thus adopt a common form of
inter-object distance w.r.t. F ′ as

D(xi,xj ;F ′) =
√∑

fr∈F ′

Dr(xri , xrj)2. (7)

where xri ∈ Vr is the value of xi on fr, and Dr
(
xri , x

r
j

)
measures the distance between two feature values xri and xrj of
fr. Then we introduce how to define RF ′(xi) and Dr(xri , xrj)
in the following two sub-sections.

A. SANR: Self-Adaptive Neighborhood Relation

Existing neighborhood relations described in Section II-A
form n neighborhood sets that may overlap each other, which
may cause high computation cost for considering each current
feature in OHFS. Moreover, for unevenly distributed data
objects, the k-nearest relation may incorporate very dissimilar
objects into the same neighborhood set, while the δ-radius
relation may form neighborhood sets crossing class boundaries
if the value of δ is set too large. Inappropriate neighborhood
sets surely influence the performance of the corresponding
feature selection.

To appropriately distinguish class boundaries and save
computation cost, we propose a new neighborhood relation
based on density to adaptively form non-overlapped compact
neighborhood sets that may have different sizes. To obtain
such sets, we first select representative data objects for the
corresponding local regions based on density gap.

Definition 4. Density gap: Density gap µi of object xi with
density ρi is the minimum distance between xi and another
object xj with higher density ρj , which can be written as

µi = minD(xi,xj ;F ′) (8)

s.t. xj ∈ U\xi, ρj > ρi, and ρi =
ki

D(xi,x〈i,ki〉;F ′)
.

In Definition 4, the notation U\xi indicates the universe ex-
cluding xi, density ρi is computed as the number of neighbor
objects (i.e., ki) per the radius D(xi,x〈i,ki〉;F ′) by treating
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𝐱𝐱 𝑖𝑖,0 𝐱𝐱 𝑖𝑖,1 𝐱𝐱 𝑖𝑖,3 𝐱𝐱 𝑖𝑖,4 𝐱𝐱 𝑖𝑖,5𝐱𝐱 𝑖𝑖,2

1         1.2             2.4              1 1.3

Fig. 1: A toy example with n = 6 to explain the deter-
mination of ki. Please note that x〈i,0〉 ≡ xi, AN6

F ′i =
{x〈i,0〉,x〈i,1〉,x〈i,2〉,x〈i,3〉,x〈i,4〉,x〈i,5〉}, each sphere repre-
sents a data object, and the scaled line indicates distances
between every pair of adjacent data objects. By going through
AN6
F ′i from the left to the right, it can be found that

x〈i,4〉 is the first object satisfying D(xi,x〈i,4〉;F ′)/4 <
D(xi,x〈i,4−1〉;F ′)/(4− 1), thus q = 4 and ki = q − 2 = 2.

xi as the circle center, where x〈i,ki〉 is an object ranks kith
in terms of closeness to xi among all the n data objects, as
defined in Eq. (1). For the data object with the highest density,
we set its density gap as maxD(xi,xj ;F ′) with xj ∈ U .

As shown in Fig. 1, a mechanism is proposed to adaptively
determine ki for different xi to ensure that only significantly
close objects are considered for the computation of density.
Specifically, we first obtain the distance ascending neighbor set
ANn
F ′i for xi by considering all the n objects in the universe

U according to Eq. (1). Then by going through ANn
F ′i from

the left to the right, q is determined by finding the object x〈i,q〉
that first satisfies

D(xi,x〈i,q〉;F ′)
q

<
D(xi,x〈i,q−1〉;F ′)

q − 1
, (9)

then we determine ki = q − 2, because x〈i,q−2〉 is the last
object in ANn

F ′i that is significantly close to x〈i,0〉.
It is intuitive that an ideal representative object of a neigh-

borhood set should be surrounded by its neighbors with lower
density, and should also have a relative long distance to the
other representative objects with higher density. According to
Definition 4, an object with a higher density gap is more
suitable to become a representative object. Therefore, we first
rank objects in descending order of their density gaps, and
then form neighborhood sets for the objects in turn by

RµF ′(xi) = ANki
F ′i

∖ ⋃
µg>µi

AN
kg
F ′g

 (10)

until all data objects are incorporated by the neighborhood
sets. The computation process of significance S(F ′) based on
the proposed SANR is summarized in Algorithm 1.

As RµF ′(xi) relies on the object-level distance D(xi,xj ;F ′)
(see Eq. (7)), how to appropriately define Dr(xri , xrj) on
heterogeneous features F ′ to form D(xi,xj ;F ′) is another
key problem that will be solved in the next subsection.

B. UDM: Unified Distance Metric

To unify the distance Dr(xri , xrj) w.r.t. different heteroge-
neous features fr, we adopt transformation cost that quantifies
the cost for converting a Conditional Probability Distribution
(CPD) into another as a measure. We first specify the CPD,

Algorithm 1 Significance of feature subset based on SANR.

Input: U , C, V , F ′, and Dr.
Output: S(F ′).
1: for i = 1→ n do
2: Compute µi for xi according to Eqs. (8) and (9);
3: end for
4: for µis in descending order do
5: Obtain RµF ′(xi) /∈ ∅ according to Eq. (10);
6: end for
7: Compute S(F ′) according to Eqs. (2), (4), and (5);

and then formulate the distance. Finally, we show that the
distance is unified for categorical and numerical features.

CPD of a feature fs given a possible value vrg of another
feature fr can be written as

pr←sg = [p(vs1|vrg), p(vs2|vrg), ..., p(vsvs |vrg)]> (11)

where p(vsh|vrg) is conditional probability of vsh as given vrg .
Superscript r ← s and subscript g indicate that such a CPD is
utilized to represent the g-th possible value of fr by the values
of fs. For simplicity, we denote r ← s as rs hereinafter.

As studied by most categorical data distance measures,
the difference between two such CPDs, e.g., prsg and prsq
can effectively reflect the dissimilarity between two possible
values, i.e., vrg and vrq . Thus the Earth Mover’s Distance
(EMD) [24], which has been proposed for computing the
transformation cost between two histogram descriptors of
images, is adopted to quantify the difference between prsg
and prsq according to the graph structure of fs that can be
constructed according to our previous work [23]. That is, a
graph structure of fs is with all the vs possible values (as
nodes) connected by vs(vs− 1)/2 edges with identical length
“1”. The edge lengths indicate the transformation cost per
the quantity that needs to be transformed between nodes.
The necessity for introducing graph representation is to unify
the transformation cost for both numerical and categorical
features, which will be discussed later in Theorem 2.

Accordingly, distance between vrg and vrq reflected by fs can
be expressed according to the graph structure of fs below1:

Drs(vrg , vrq) = max((prsg − prsq ),0) · 1 (12)

where max(·, ·) compares each pair of corresponding bits of
two vectors and reserves the maximum value (i.e., quantity that
will be transformed), and 1 is a vs-dimensional vector with
all its values equal to 1 (i.e., cost per the quantity of each
bit that need to be transformed). Due to different degrees of
inter-feature dependence, different features fs may contribute
differently according to their importance wrs in forming the
overall distance Dr(vrg , vrq) between vrg and vrq by

Dr(vrg , vrq) =
∑
fs∈F ′

Drs(vrg , vrq) · wrs. (13)

1Due to space limitation, please refer to [23] for more derivation details.
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Thus we further extend Eq. (12) to measure the inter-feature
dependence as the importance wrs, which can be written as

wrs =

∑vr−1
g=1

∑vr

q=g+1Drs(vrg , vrq)
vr (vr − 1) /2

. (14)

According to [21], possible values of a categorical feature can
be viewed as different concepts. Eq. (14) actually quantifies
average inter-concept distances of fr reflected by fs. We
take an extreme example to explain Eq. (14). When fr and
fs are identical, they are perfectly interdependent, and the
corresponding Drs(vrg , vrq) always reaches the maximum “1”
for arbitrary combinations of g and q with g 6= q according to
Eq. (12). Therefore, the corresponding wrs also reaches the
maximum “1” indicating a 100% inter-feature dependence.

Based on Eqs. (12) - (14), object-level distance between xi
and xj on F ′ can be computed through Eq. (7). We prove that
the defined distance is a unified distance metric.

Theorem 1. D(xi,xj ;F ′) is a distance metric.

Proof. It is clear that Eq. (12) is a metric, and thus Eq. (13)
based on Eq. (12) is also a metric. Since Eq. (7) is computed
by performing finite arithmetic operations based on Eq. (13),
D(xi,xj ;F ′) satisfies all the metric properties:
(1) D(xi,xj ;F ′) ≥ 0; D(xi,xj ;F ′) = 0 iff xi = xj ;
(2) D(xi,xj ;F ′) = D(xj ,xi;F ′);
(3) D(xi,xj ;F ′) ≤ D(xi,xl;F ′) +D(xl,xj ;F ′);

Theorem 2. The proposed distance metric treats categorical
and numerical features in a unified way w.r.t. priori knowledge
that distance space of each numerical feature is an indepen-
dent one-dimensional continuous2 Euclidean distance space
with value domain [0, 1].

Proof. Distance space of a numerical feature fr can be viewed
as a graph with vr → ∞ linearly arranged nodes connected
by vr − 1 edges with identical length. Due to the indepen-
dence, we have wrs ≡ 0 with r 6= s, and thus we should
only consider the distance under the case r = s, where
wrs = limvr→∞(

∑vr−1
g=1 1/(vr − 1))/1 = 1 according to

Eq. (14). Here, vr → ∞ is the number of possible values,
and the denominator “1” indicates that there is only one
pair of concepts for a numerical feature, i.e., “0” for “none”
and “1” for “yes” [21]. Accordingly, Eq. (13) degrades to
Dr(vrg , vrq) = Drr(vrg , vrq) = |vrg − vrq | according to the graph
structure, which is equivalent to Euclidean distance.

C. Overall Feature Selection Algorithm

We then introduce how to analyze the significance and
redundancy of heterogeneous features during OHFS. Given an
arbitrary feature subset F ′t−1, now we consider a new feature
ft using the Algorithm 2 named USO, which first performs
significance analysis to ft based on F ′t−1. If ft is significant,
it will be incorporated to form F ′t . If ft is an irrelevant feature,
it will be simply passed. If ft is redundant, redundancy analysis
will be further conducted and may yield the removal of any

2Numerical integer features are treated as categorical ordinal features here.

Algorithm 2 USO: UDM and SANR-based OHFS.

Input: U , C, V , Dr defined by Eq. (13), ∀F ′t−1, F =
F\F ′t−1, and S(F ′t−1) computed by Algorithm 1.

Output: Optimal F ′t at the current time-stamp t.
1: while F 6= ∅ do
2: Fetch ft ∈ F , compute S(F ′t−1 ∪ ft) by Algorithm 1;
3: if S(F ′t−1 ∪ ft) > S(F ′t−1) then
4: F ′t ← F ′t−1 ∪ ft and S(F ′t)← S(F ′t−1 ∪ ft);
5: end if
6: if S(F ′t−1 ∪ ft) = S(F ′t−1) then
7: F ′t ← F ′t−1 ∪ ft;
8: for each f ∈ F ′t do
9: Compute S(F ′t\f) by Algorithm 1;

10: if S(F ′t\f) ≥ S(F ′t) then
11: S(F ′t)← S(F ′t\f) and F ′t ← F ′t\f ;
12: end if
13: end for
14: end if
15: F ← F\ft and t← t+ 1;
16: end while

features in F ′t−1 ∪ ft that are no longer significant upon the
arrival of ft and feature removals.

Theorem 3. Time complexity of USO is O(d3cn + d2cn
2 +

dcn
2 log n) at any time-stamp t.

Proof. For worst-case analysis, we assume that all the features
are categorical, i.e., dc = |F ′t|, and V = max(v1, v2, ..., vdc).
Distance matrices Mt = {M1,M2, ...,Mdc} corresponding
to each feature in F ′t should be updated in advance before
each time we compute significance S in USO Algorithm, and
significance will be computed at most dc times. Then we
analyze the complexity of updating Mt and S once.

The time complexity for updating Mt is O(nd2c + V3d2c).
Please refer to Theorem 2 in [23] for detailed analysis.

To compute S, we should first compute a n × n distance
matrix for the objects and sort all the rows in the matrix in
ascending order with O(n2dc + n2 log n). Then for each of
the n objects, we should consider at most the remainder n−1
ones to determine its ki value for obtaining the density ρi,
and should scan the remainder n − 1 objects to find the one
with higher density and the shortest distance to it to obtain
the density gap, which take complexity O(n2). The n density
gaps should be sorted in descending order with O(n log n).
Then, at most n neighborhood sets can be formed in order,
and each neighborhood set will consider at mots ki objects in
the already sorted distances, with complexity O(nki). Overall
complexity for computing S is thus O(n2dc+n

2 log n+n2+
n log n+nki), which can be simplified to O(n2dc+n

2 log n).
Since Mt and S will be computed at most dc times, the

overall time complexity at time-stamp t is O(nd3c + V3d3c +
n2d2c + dcn

2 log n). As V is a very small constant, the final
time complexity is O(d3cn+ d2cn

2 + dcn
2 log n).

Note that during the OHFS, the size of F ′t will become
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TABLE III: Statistics of experimental data sets.

Data sets Abbr. dn dc d n Source

SCADI SC 1 205 206 70 [30]
ARrhythmia AR 206 73 279 452 [30]
DARWIN DA 425 25 450 174 [30]
MUsk MU 168 0 168 476 [30]
Period Changer PC 1177 0 1177 90 [30]
TOxicity TO 1200 0 1200 171 [30]
MADELON MA 0 500 500 600 [31]
HIVA HI 0 1617 1617 384 [32]

stable quickly after a certain number of time-stamps [25]. That
is, the value of dc in Theorem 3 can be viewed as a small
constant (see Table VI), which indicates that USO does not
bring much extra computation cost than the existing efficient
counterparts [26], [27] with time complexity O(dcn

2 log n).

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Three types of experiments: (1) comparative study, (2)
ablation study, and (3) efficiency evaluation, are designed to
comprehensively evaluate the efficacy of the proposed USO.

Seven counterparts including one conventional approach,
i.e., OS-NRRASR-SA (ONS) [14], and six state-of-the-art
approaches, i.e., MRMS [15], A3M [26], OFS-Density (O-
Dense) [27], OSFI [28], OSFS-ET (OET) [25] and GapKnn
[29], are chosen for comparison. Hyper-parameters of the
counterparts (if any) are set according to the corresponding
source papers. For the counterparts infeasible in handling
heterogeneous features, we let them process numerical and
categorical features using Euclidean and Hamming distances,
respectively [17], to form two types of neighborhood sets,
which are then combined for feature selection.

Eight data sets including three mixed, three pure numer-
ical, and two pure categorical data sets are utilized for the
experiments. Statistics of the data sets are shown in Table
III. During the experiment, one feature is randomly fetched
as the streaming feature without replacement at the current
time-stamp, until all features are exhausted.

Four evaluation metrics are utilized to quantify the feature
selection performance. We feed the selected feature subset
at the final time-stamp to two conventional classifiers, i.e.,
Support Vector Machine (SVM) [33] and K-Nearest Neighbor
(KNN) [34], and then use classification accuracy to form
two evaluation metrics, i.e., Acc@SVM and Acc@KNN. Ten-
fold cross-validation is used and average accuracy is reported.
Bonferroni-Dunn (BD) test with Critical Difference (CD)
intervals is chosen to visualize the significance test results. Ac-
curacy per Feature (ApF) is also computed to comprehensively
reflect the effectiveness and efficiency of a feature selection
approach. All the experiments are coded with Python 3.9.

B. Comparative Study

Performance in terms of Acc@SVM and Acc@KNN are
shown in Tables IV and V, respectively. The best and the
second-best results are highlighted using boldface and un-
derline, respectively. The “Acc” and “Rank” rows report the

TABLE IV: Comparison of Acc@SVM performance.

Data USO ONS MRMS A3M O-Dense OSFI OET GapKnn

SC 0.8285 0.5857 0.6000 0.5857 0.4428 0.3714 0.7000 0.6428
AR 0.6667 0.5690 0.5976 0.5976 0.6071 0.5642 0.6380 0.5952
DA 0.9001 0.1879 0.0895 0.8882 0.7133 0.4852 0.7238 0.8356
MU 0.6019 0.4259 0.4378 0.5404 0.5255 0.4304 0.6077 0.5361
PC 0.6888 0.7000 0.6666 0.6888 0.6555 0.6555 0.6888 0.6888
TO 0.6705 0.6705 0.6235 0.5764 0.6588 0.6705 0.6647 0.6307
MA 0.5235 0.4700 0.4916 0.5233 0.5300 0.4783 0.5116 0.5133
HI 0.9634 0.9634 0.9610 0.9634 0.9634 0.9634 0.9634 0.9608

Acc 0.7304 0.5715 0.5585 0.6704 0.6371 0.5774 0.6873 0.6754

Rank 1.3750 4.7500 6.0000 3.5000 4.2500 5.6250 2.6250 4.5000

TABLE V: Comparison of Acc@KNN performance.

Data USO ONS MRMS A3M O-Dense OSFI OET GapKnn

SC 0.8143 0.5714 0.5571 0.4571 0.4142 0.2857 0.5857 0.5285
AR 0.6857 0.5214 0.5309 0.5571 0.5666 0.3595 0.6142 0.5571
DA 0.8941 0.5656 0.6271 0.8588 0.6908 0.4732 0.7218 0.7941
MU 0.6241 0.5503 0.5197 0.5065 0.5647 0.5460 0.6195 0.5000
PC 0.6222 0.6111 0.6111 0.5666 0.5999 0.6666 0.6111 0.5333
TO 0.5660 0.5545 0.5081 0.4839 0.5310 0.6117 0.4385 0.4915
MA 0.5300 0.4850 0.5016 0.5300 0.5300 0.4783 0.5116 0.5133
HI 0.9634 0.9634 0.9610 0.9476 0.9634 0.9634 0.9634 0.9608

Acc 0.7125 0.6028 0.6021 0.6135 0.6076 0.5481 0.6332 0.6098

Rank 1.2500 4.3750 5.2500 5.2500 3.7500 5.0000 3.3750 5.6250

USO

ONS

MRMS

A3M

ODense

OSFI

OET

GapKnn

CD interval ( = 0.1)

(a) 1 2 3 4 5 6

CD interval ( = 0.1)

1 2 3 4 5 6(b)

Fig. 2: BD test based on the results in (a) Table IV and
(b) Table V. Approaches ranked outside the CD intervals are
believed to perform significantly differently from USO.

average accuracy and average rank on all the data sets. The
corresponding BD significance tests are visualized based on
CD interval in Fig. 2. We also report the average number of
selected features during the OFS in Table VI with the “Ave”
row reporting the average of each column in the table.

It can be observed from Tables IV and V that USO outper-
forms the other counterparts in general, which illustrates its
effectiveness. More specifically, USO outperforms the other
counterparts on all the mixed data sets (i.e., SC, AR, and DA)
indicating that USO can successively fuse the information pro-
vided by heterogeneous features as the fundamental distance
metric is unified on numerical and categorical features. For
the remainder five pure data sets, performance of USO always
ranks in top-3, which is not as superior as on mixed data sets,
but still very competitive as the significance of feature subset
is computed more appropriately based on SANR proposed in
Section III-A. That is, during the forming of neighborhood
set, density gap acts to finely detect boundary regions among
compact object clusters, which are also probably decision
boundaries among classes. To sum up, USO is competent in
handling any type of features.

We also conducted BD tests according to [35] to the results
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TABLE VI: Comparison of the number of selected features.

Data USO ONS MRMS A3M O-Dense OSFI OET GapKnn

SC 9.1 7.1 6.5 5.4 5.6 1.0 2.6 5.0
AR 9.8 2.0 1.9 7.6 9.6 3.5 16.7 7.7
DA 8.3 1.0 1.0 15.5 10.0 1.0 31.5 15.4
MU 16.1 3.0 2.5 11.5 13.6 8.4 19.5 11.5
PC 1.0 2.6 2.6 9.4 7.5 1.0 5.8 9.0
TO 1.0 2.5 2.4 9.2 6.6 1.0 13.3 10.2
MA 2.3 3.0 3.4 11.0 10.0 3.0 1.8 11.1
HI 10.0 10.0 10.0 16.0 19.0 2.0 2.0 3.0

Ave 7.2 3.9 3.8 10.7 10.2 2.6 11.7 9.1

Fig. 3: Performance of different ablated versions of USO
evaluated by (a) Acc@SVM and (b) Acc@KNN.

in “Rank” rows of Tables IV and V, and visualize the test
results based on CD interval in Fig. 2. The length of the CD
interval is 3 for comparing eight approaches on eight data
sets with α = 0.1. The compared approaches are considered
to perform significantly differently from USO if they ranked
outside the CD interval. It can be seen that USO performs
significantly better than most of the counterparts, although
most of them are recent state-of-the-arts.

It is worth noting that, although USO does not always
significantly outperform the state-of-the-art A3M, OET, and O-
Dense, they rely on a larger number of features (see Table VI)
to achieve a competitive accuracy. We compute Accuracy per
Feature (ApF) by ApF = Acc./Ave to more comprehensively
compare their performance where “./” means to divide the
values of the corresponding positions of two vectors. ApF of
USO w.r.t. Acc@SVM is 0.7304/7.2=0.1014, which is obvi-
ously higher than that of A3M (0.0626), OET (0.0587), and
GapKnn (0.0742). This indicates that USO achieves superior
accuracy with a more concise feature subset.

C. Ablation Study

Four ablated versions of USO are compared to verify the
effectiveness of its core components. UDM and SANR of USO
are replaced with the conventional combination of Euclidean
and Hamming distance [17] and δ-radius neighborhood rela-
tion to form USO\UDM and USO\SANR, respectively. Both
UDM and SANR are replaced to form USO\(UDM+SANR).

It can be observed from Fig. 3 that the accuracy of USO,
USO\UDM, USO\SANR, and USO\(UDM+SANR) increas-
es in order on all the mixed data sets (i.e., SC, AR, DA), which
intuitively illustrates the effectiveness of UDM and SANR. For
pure numerical and categorical data sets, the performance is
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the same for USO and USO\UDM, which proves that UDM
effectively unifies the numerical and categorical distances.
Moreover, due to the sparsity of categorial valued objects,
UDM and SANR do not act in forming the neighborhood sets,
and thus the feature selection results of the four USO versions
are the same on all the categorical data sets, i.e., MA and HI.

D. Efficiency Evaluation

To validate the efficiency of USO, its execution time is com-
pared with five state-of-the-art counterparts including A3M, O-
Dense, OSFI, OET, and GapKnn, on two large synthetic mixed
data sets with increasing d and n. For Fig. 4, n is fixed at 300,
and a categorical feature with a number of possible values
vt ∈ {3, 4, 5, 6} or a numerical feature is randomly generated
with equal probability to be the new streaming feature ft until
t = 10, 000. It can be observed that the increase of execution
time is almost linear w.r.t. the increasing of d for all the
compared approaches. Moreover, it is obvious that USO is
more efficient than the counterparts in Fig. 4. This is because
USO forms and searches fewer non-overlapping neighborhood
sets, and obtains a more concise feature subset. For Fig. 5, we
fix d at 1000 with dn = dc = 500 and still let vt ∈ {3, 4, 5, 6}
for categorical features, to randomly generate data objects until
n = 10, 000. It can be seen that with the linear increase of
n, the execution time for selecting 1000 features increases
polynomially. All the above observations conform with the
time complexity analysis at the end of Section III-C.

V. CONCLUDING REMARKS

This paper has proposed a novel OHFS approach called
USO for boosting the analysis of real complex biomedical
data sets. USO mainly addresses the two difficulties in OHFS,
i.e., heterogeneity caused by the mixed features and dynamic
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feature space due to streaming features, by proposing (1) SAN-
R, a flexible neighborhood relation for forming neighborhood
sets, and (2) UDM, a unified distance metric as the basis of
(1). To the best of our knowledge, this is the first attempt to
simultaneously tackle the online and heterogeneity issues in
feature selection, which is more challenging than only coping
with one of them. The superiority of USO has been well
demonstrated by the comparative results, significance tests,
ablation study, etc., on various real public biomedical data sets.
Moreover, USO is parameter-free, efficient, and interpretable.

Due to space limitation, we have to omit case studies
and evaluation of feature input order robustness of USO in
this paper. It is worth noting that the omitted results have
indeed confirmed that USO is very robust to different feature
orders. These results and discussions will be available soon
in a journal version of this paper. Moreover, considering the
challenging issues under the OHFS settings, e.g., streaming
data with concept drifts [36], time-series data with missing
values [37], and very large-scale data [38], would be promising
future research directions.
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