
Detach and Enhance: Learning Disentangled
Cross-modal Latent Representation for Efficient

Face-Voice Association and Matching

Zhenning Yu1,2, Xin Liu1,2,3,∗, Yiu-ming Cheung3,∗, Minghang Zhu1,4, Xing Xu5, Nannan Wang6, Taihao Li2
1Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security, Huaqiao University, Xiamen, China

2Zhejiang Lab, Hangzhou, China
3Dept. of Comput. Sci. and Institute of Research and Continuing Education, HK Baptist University, Hong Kong SAR, China

4Xiamen Key Lab. of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen, China
5Dept. of Computer Sci. and Eng., University of Electronic Science and Technology of China, Chengdu, China.

6State Key Lab. of Integrated Services Networks & School of Telecommun. Eng., Xidian University, Xi’an, China

{zny, xliu, mhz}@hqu.edu.cn, ymc@comp.hkbu.edu.hk, xing.xu@uestc.edu.cn, nnwang@xidian.edu.cn, lith@zhejianglab.com

Abstract—Many researches in cognitive science have shown
that humans often perform face-voice association for various
perception tasks, and some recent data mining works have been
designed in emulating such ability intelligently. Nevertheless,
most methods often suffer from the degraded performance when
there exist semantically irrelevant interference factors across
different modalities. To alleviate this concern, this paper presents
an efficient Disentangled Cross-modal Latent Representation
(DCLR) method to adaptively detach the discriminative feature
attributes and enhance the face-voice association. To be specific,
the proposed DCLR framework consists of two-stage cross-
modal disentangling process. First, the former stage employs
the supervised contrastive learning to push the representations
of face-voice data from the same person closer while pulling
those representations of different person away. Then, the latter
stage freezes all the parameters of the former stage, and further
innovates a multi-layer orthogonal decoupling scheme to learn
the disentangled latent representations, while filtering out the
modality-dependent irrelevant factors. Besides, the cross-modal
reconstruction loss is further utilized to narrow down the se-
mantic gap between heterogeneous feature expressions. Through
the joint exploitation of the above, the proposed framework can
well associate the face-voice data to benefit various kinds of
cross-modal perception tasks. Extensive experiments verify the
superiorities of the proposed face-voice association framework
and show its competitive performances.

Index Terms—Face-voice association, disentangled latent rep-
resentation, contrastive learning, orthogonal decoupling

I. INTRODUCTION

Many cognitive researches lend credence to the hypothesis

that humans are able to hear voices of known individuals to

form mental pictures of their facial appearances, and vice
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versa [1]. Even, some neurologic studies have shown that

humans also are able to associate the voices of unknown

individuals to the relevant pictures of their faces. In recent

years, face and voice have proven to be the most valuable

media data for representing the biometric identity information,

which can greatly help recognize, search and organize human

identities in artificial intelligence system.

Face-voice association is a task of finding their semantic

correspondence, which is of crucial importance to creating nat-

ural human machine interaction systems and benefiting many

real applications, such as active speaker annotation and diariza-

tion [2]. For instance, when watching an unvoiced TV show, an

intelligent media annotation system embedded with face-voice

association technique can well assign an appropriate voice

actor to a matched performer. In recent years, much effort

has been paid to design data mining and machine intelligence

algorithm for recognizing voice-face associations [3], [4], and

some researches have been developed. Intuitively, a natural

way is to learn a common feature embedding to minimize the

heterogeneity between the face images and voice segments,

whereby the mapping features in such space can be directly

measured for face-voice association. For instance, LAFV [5]

leverage the triplet network to learn the co-embedding of

modality-representations of human faces and voices, while

CME [6] train a two-branch neural network to learn cross-

modal embeddings between face images and voices.

Despite these works are able to correlate the relevant face-

voice data, their performances are far from the expectation.

To the best of our knowledge, the study of efficient face-

voice association is still under early stage and there still face

three challengings: 1) Modality heterogeneity: face and audio

samples are captured by different sensors, and there exist huge

modality differences between face and voice features. 2) Weak
semantic correlation: most existing face-voice association

works often extract the modality-specific feature vectors from

single modality data, which inherently ignores the latent shared
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Fig. 1. Normal data and examples with interference factors.

information and their association and correlation performances

need further improvements. 3) Unexpected interference fac-
tors: there exist different kinds of interference factors during

the data collections, which often bring significant difficulties

to semantically correlation the heterogeneous face and voice

data. As shown in Fig. 1, the face image is often influenced by

different lighting condition, while voice data may be corrupted

by the environmental noise and electromagnetic interference.

Note that, these complex factors often make it difficult to learn

the reliable face-voice associations.

In this paper, we hypothesize that the latent cross-modal

representation among the face and voice should be robust

against to the interference factors. Towards this end, we learn

an efficient Disentangled Cross-modal Latent Representation

(DCLR) to disentangle the common embeddings from the

face-voice data, which consists of two-stage learning process.

The former stage employs the supervised contrastive learning

to enlarge the distance margin between the positive and

negative face-voice pairs, while the latter stage aims to learn

the disentangled latent representations that are shared across

the face and voice data. The main contributions are four-fold:

• A novel disentangled cross-modal latent representation

framework is explicitly designed to learn the face-voice

association, which ensures that the learnt cross-modal em-

beddings are more effective for various matching tasks.

• The designed cross-modal batch is able to significantly

improve the data utilization for face-voice association.

• An efficient multi-layer orthogonal decoupling scheme

is addressed to learn the common embdeddings, while

filtering out the interference factors within each modality.

• Extensive experiments verify the advantages of DCLR

under various face-voice matching scenarios.

The rest of this paper is organized as follows: Section II

briefly surveys the face-voice association works, and Sec-

tion III elaborates the proposed learning framework in detail.

The extensive experiments and comparisons are introduced in

Section IV. Finally, we draw a conclusion in Section V.

II. RELATED WORK

The key issue of face-voice association is to learn their

semantic correlations, and various data mining works have

been developed. An intuitive way is to learn a common

embeddings for correlating the voices and faces so that they

can be compared with each other. The pioneer SVHF [7]

method utilizes CNN architectures to learn the joint repre-

sentation of voices and faces, and formulates their association

problem as a binary classification problem. It is found that

this framework is not flexible enough for different cross-

modal face-voice matching tasks. Benefiting from the advances

in multi-modal deep learning, they further form the positive

and negative face-voice pairs acquired from the same talking

face in a video, and attempt the contrastive loss to minimize

the distance between the embeddings of positive or negative

pairs [8]. In addition, LAFV [5] utilizes the triple network

to learn the co-embedding of human faces and voices, while

CME [6] exploits the N-pair loss to learn the cross-modal

embeddings between face and voice data. With more semantic

information, DIMNet [3] employs multi-label classification to

learn a shared representation by mapping face and voice indi-

vidually to their common covariates, i.e., identity, nationality

and gender. Similarly, SSNet [9] learns a shared deep latent

space representation of multi-modal information, and leverage

the class centers to eliminate the pairwise or triplet supervision

for face-voice association. Until recently, Wang’s [4] attempts

to learn discriminative joint embedding by using bi-directional

ranking constraint, identity constraint and center constraint for

face-voice association. Note that, these two models just utilize

the identity constraint to supervise the common embedding

learning, which cannot fully exploit the shared latent semantic

information for reliable cross-modal correspondence.

Disentangled representation learning aims to design the

appropriate objective functions to learn the disentangled rep-

resentations from the raw data [10]. This not only improves

the interpretability of the model, but also enables analysis

for specific elements. Variational auto-encoder (VAE) [11] is

designed to solve factor analysis on simple datasets. Beta-

vae (β-VAE) [12] upgrades this process by introducing a

hyperparameter β that represents the degree of decoupling.

Recently, disentangled representation learning has also been

applied in the field of rare event detection [13]. In the filed

of cross-modal face-voice association learning, CMBM [14]

considers the disentangled identity factors as the pure identity

information to bridge the face and voice data, and construct a

disentangled learning module to align the identity information

between the paired face and voice data. Experimentally, this

approach has shown its outstanding performance on face-voice

matching task. Nevertheless, it is found that this approach does

not fully consider the distance margin between the positive

face-voice pair and negative face-voice pair, thereby the de-

rived common cross-modal embeddings are not discriminative

enough for better association performance.

III. METHODOLOGY

The overall concept of the proposed face-voice association

framework is illustrated in Fig. 2, and this section elaborates

the proposed two-stage learning process in detail.

A. Problem Description

Without loss of generality, let Xf={fk}Nk=1 and

Xv={vk}Nk=1, respectively, represent the face and voice
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Fig. 2. The schematic architecture of the proposed face-voice association learning framework.

data, with fi and vi being the i-th face-voice data pair,

where N is a number of the training dataset size. The

feature extraction backbone is shown in Fig. 2, which is a

dual-brach network consisting of face subnetwork and voice

subnetwork, respectively, denoted as efi =fnet(fi) ∈ R
d1

and evi=vnet(vi) ∈ R
d1 , where d1 denote the initial

dimensionality. To disentangle the shared latent common

embedding, we construct four encoders, termed as face

common encoder Encf
co(·), face private encoder Encf

pr(·),
voice common encoder Encv

co(·), voice private encoder

Encv
pr(·), and two decoders Decf (·) and Decv(·).

Specifically, the common encoders are utilized to learn

the disentangled feature vectors that are shared across the

face and voice data, while the private encoders are employed

to filter out the modality-dependent factors with respect to

each face and voice data. The decoders are employed to

bridge the semantic gap between the inputs and outputs.

B. Supervised Contrastive Learning

Contrastive learning can be utilized for better cross-modal

representation learning, which allows the model to contrast

the positive pairs from sets of negative samples [15], [16].

To associate the face and voice data, the semantically similar

face-voice pairs should have shared representations, and vice

versa. To this end, we construct a cross-modal batch instead

of directly using a mini-batch, and the face-voice data is

similar if they are collected from the same person and close

to each other in the shared representation space. Given a set

of face-voice pairs zk={efk , evk}k=1···n, and their identity label

{yk}k=1···n, we construct a cross-modal batch {zi, ȳi}i=1···2n,

with mapping relationship by zk=efk , zk+n=evk and the label

ȳk=ȳk+n=yk, k=1· · ·n. By this combination, we normalize

zk to compute the similarity between different data items.

Suppose the index i is the anchor sample, the supervised

contrastive loss is defined as:

Lsup=
2n∑

i=1

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i)

exp(zi · za/τ) , (1)

where P (i)={p∈A(i) : ȳp=ȳi} represents the set of indices

of all positive samples with the i-th identity, |P (i)| denotes

the count of the positive examples, A(i) denote the data set

that exclude itself and τ is a scalar temperature parameter.

C. Disentangled Cross-modal Latent Representation

The supervised contrastive learning stage is able to push

the representations of face-voice data from the same person

closer while pulling those representations of different person

away. Nevertheless, the derived feature representations not

only contain the identity discrimination, but also include the

interference factors that may bring the negative impact to

the correlation mining. To alleviate such concern, we further

freeze all parameters of the first stage, and propose a a

disentangled cross-modal representation learning method to

promote the face-voice association learning. To be specific,

we explore the disentangled latent representations among the

face and voice data, and simultaneously attempt to filter out

the interference factors within each modality. Within this

module, identity association learning, orthogonalized disen-

tangling strategy and cross-modal reconstruction scheme are
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seamlessly embedded to promote the disentangled cross-modal

latent representation learning process.

Identity Association Learning Module: It is noted that

the semantic constraints are usually added to ensure the

common representations from the same person to be as similar

as possible. Given the k-th face-voice data pair {efk , evk},

we extract the face common embedding and voice com-

mon embedding, respectively, by efck =Encf
co(e

f
k)∈Rd2 , and

evc

k =Encv
co(e

v
k)∈Rd2 , where d2 is the output dimensionality

of the common encoder network. For the embedding data

pair {efck , evc

k ,yk}k=1···n, we feed them into to a single fully

connected layer, and utilize the cross-entropy loss to optimize

the identity classification result:

Lclass =
1

n

n∑

k=1

H(efck ,yk) +H(evc

k ,yk), (2)

H(ek,yk) = −
M∑

c=1

(yk=c) log(φ(xk)c), (3)

where M represents the number of all identities, φ(·)c indi-

cates a single fully connected layer to obtain the probability

of x belonging to the semantic label c. The identity label

yk(k = 1...n) is same for each input embedding pairs.

Multi-layer Disentangling Module: To filter out the ir-

relevant factors that existed in each modality, we further

extract the private embedding by e
fp
k =ReLU(Encf

co(e
f
k)) and

e
vp

k =ReLU(Encf
pr(e

v
k)) to separate the interference factors,

where ReLU is utilized to regularize the output of the embed-

ding network. For disentangled representation learning [10],

its main objective is to completely separate the common

embedding vector and private embedding vector from the input

feature representation. To this end, we employ multi-layer

orthogonality constraints to increase their heterogeneity, and

the corresponding orthogonal loss function is defined as:

1) Instance-level disentangling operation: For each

modality data, the common embedding and private embedding

should be disentangled to be irrelevant to each other, and

the cosine similarity (CS) can be utilized to measure the

magnitude of the difference. Often, a smaller cosine similarity

represents a lower correlation between the common embedding

and private embedding. Accordingly, the the orthogonal loss

based on CS is defined as:

LCS
orth =

1

n

n∑

k=1

[cos(efck , e
fp
k ) + cos(evc

k , e
vp

k )], (4)

where cos(., .) represents the cosine similarity between two

input embeddings. By minimizing such loss, the model en-

courages orthogonality between the common embedding and

private embedding, which can be well utilized to disentangle

the shared common embedding across face and voice data.

For the convenience of explanation, we take the face modality

as an example and the similar observation goes for the voice

modality. Suppose two embeddings efc and efp are derived

respectively from the face common and private encoders, and

we normalize each embeddings to lie on the unit hypersphere

by �2 normalization:

efc = (
cf1

||efck ||2
+

cf2

||efck ||2
+ ...+

cfd2

||efck ||2
), (5)

efp = (
pf
1

||efpk ||2
+

pf
2

||efpk ||2
+ ...+

pf
d2

||efpk ||2
), (6)

where cfi and pf
i , respectively, represent the i-th element

in common embedding and private embedding, d2 represents

the dimension of the feature embedding. Accordingly, the

orthogonal loss function can be expressed as:

cos(efc , efp) =
efc · efp

||efc || × ||efp ||
= (cf1p

f
1 + cf2p

f
2 + ...+ cfd2

pf
d2
).

(7)

Within the derived latent space, it is reasonable to assume

that each element in the feature vector represents a different

semantic factor corresponding to the identity information. In

order to maximally preserve the identity information, the dis-

entangling process can guarantee that the linear independence

between the common embeddings and private embeddings is

measured by means of inner product.

2) Modality-layer disentangling operation: For each

modality instance, the instance-level disentangling operation

can make the common embedding and private embedding

of each instance to be irrelevant to each other. For the

training process, the data instances often interacts with each

other, and it is imperative to filter out the interference fac-

tors within each modality and simultaneously consider the

semantic identity information to distinguish each modality.

Accordingly, we explicitly separate the common embedding

space and the private embedding space during the learning

process. Let Fc={efck }nk=1, Fp={efpk }nk=1, Vc={evc

k }nk=1 and

Vp={evp

k }nk=1, respectively, denote the common feature matrix

and private feature matrix, whose rows are respectively the

common and private representations for the instances of face

and voice modality. Then, we employ modality constraint

(MC) to encourage orthogonality between the representations

in the common and private feature embeddings:

LMC
orth = ||FcFp

T||F + ||VcVp
T||F , (8)

where || · ||F represent Frobenius norm. This loss function

measures the degree of association between common and

private embeddings in each modality.

3) Mutual-level disentangling operation: Instance-level

disentangling operation and modality-layer disentangling op-

eration encourage different ways of orthogonalization within

each data instance and each modalities. To aggregate these

disentangling capability, we propose a new orthogonal ag-

gregated method by using AND gate and OR gate. Different

from the above two operations that directly calculate feature

embedding, here it explores overall instances of cross-modal

data in the cross-modal latent space. To be specific, we employ
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AND gate to group common embeddings and OR gates to

combine private embeddings:

eAk = AND(efck , evc

k ), eOk = OR(e
fp
k , e

vp

k ), (9)

where AND represents the gate of AND operation, OR denotes

the gate of OR operation. Through the disentangling aggre-

gation, we can obtain the discriminative common embeddings

and private embeddings. The AND gate and OR gate are im-

plemented by multiplication and addition, respectively. Specif-

ically, let RA={eAk }nk=1∈Rn×d2 and RO={eOk }nk=1∈Rn×d2 ,

respectively, denote the embedding matrices whose rows are

the common and private embeddings derived from the cross-

modal gate operations, then the orthogonal loss based on AO
is defined as:

LAO
orth = ||RA(RO)T||F , (10)

Through the minimizing of Eq. (10), the disentangled cross-

modal latent space supports orthogonality across face and

voice data, and the gates operation also contributes to the

elimination of cross-modal heterogeneity.

4) Integrated disentangling loss: For efficient face-voice

association, the regularization of different orthogonal layers

should be exploited in an integrated way, and the following

objective function is utilized to learn the fine-grained face-

voice association:

Lall
orth = LCS

orth + LMC
orth + LAO

orth. (11)

Cross-modal Reconstruction Module: The combination

of common embedding and private embedding enhances the

robustness of the reconstruction results. Meanwhile, the refined

embedding between different layers should semantically match

the input embedding to maintain the semantic consistency. To

achieve cross-modal association, we perform modality-specific

reconstruction and cross-modal reconstruction in tandem. For

the modality-specific reconstruction, the decoders of common

embeddings and the private embeddings within each modality

are combined to reconstruct the input representations as:

ē
fr1
k =Decf (efck ⊕e

fp
k ), ē

vr1

k =Decv(evc

k ⊕e
vp

k ), (12)

where ⊕ represents the addition of two embedding vectors,

ē
fr1
k ∈Rd1 and ē

vr1

k ∈Rd1 are of the same dimensionality. For

the cross-modal reconstruction, we mutually reconstruct the

face embedding and voice embedding in a cross-modal way

to maintain the semantic consistency:

ē
fr2
k =Decf (evc

k ⊕e
fp
k ), ē

vr2

k =Decv(efck ⊕e
vp

k ), (13)

Consequently, we integrate the reconstruction loss to ensure

the semantic consistency between face and voice:

Lrec = 1
n

n∑
k=1

[frec(e
f
k , ē

fr1
k ) + frec(e

f
k , ē

fr2
k )]

+ 1
n

n∑
k=1

[frec(e
v
k, ē

vr1

k ) + frec(e
v
k, ē

vr2

k )],
(14)

Algorithm 1 Learning algorithm of DCLR framework

Input: Training data Xf={fk}Nk=1 and Xv={vk}Nk=1, Tem-

perature parameter τ , Dimension d1, d2, Epoch number L.

Output:Model parameters Θ.

Initialization: Initialize face subnetwork fnet(·) and voice

subnetwork vnet(·) in stage one, Initialize encoders and

decoders Encf
co(·), Encv

co(·), Encf
pr(·), Encv

pr(·), Decf (·),
Decv(·) in stage two.

1: // Stage One

2: for l = 1,2,...,L do
3: Pre-train face and voice subnetworks fnet(·), vnet(·)

with inputs Xf={fk}Nk=1, Xv={vk}Nk=1.

4: Calculate the supervised contrastive loss Lsup with

Eq. (1) in a cross-modal batch.

5: end for
6: // Stage Two

7: Freeze the subnetworks parameters

8: Decoupling of features inherited from stage one

9: for l = 1,2,...,L do
10: Update Encf

co(·), Encv
co(·) with Eq. (2) and Eq. (11)

and Eq. (14)

11: Update Encf
pr(·), Encv

pr(·) with Eq. (11) and Eq. (13)

12: Update Decf (·), Decv(·) with Eq. (14)

13: Adjusting parameters in the encoder and decoder with

back propagation

14: end for
15: return The face subnetwork fnet(·), voice subnetwork

vnet(·) and cross-modal latent encoder Encco(·).

where frec(e, ē)=||e−ē||22 represents mean-square error func-

tion, and the final loss function is formulated as:.

Ldisent = Lclass + Lall
orth + Lrec. (15)

D. Training Strategy

The complete training process of the proposed DCLR

method consists of two-stage learning procedures. The first

stage constructs a cross-modal batch and optimizes the feature

representation with supervised contrastive loss in Eq. (1). The

second stage freezes all the parameters of the first stage, and

further learns the disentangled latent representations by using

loss function in Eq. (15). The whole optimization problem can

be efficiently solved by Adam [17], with the batch size setting

at 64, while the learning rate is fixed to be 10−5. The proposed

DCLR algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS

As suggested in most baseline [3], [4], [7], the public

available Voxceleb [18] and VGGFace dataset [19] are select-

ed for evaluation. Voxceleb dataset consists of short videos

collected from 1251 celebrity interviews, while VGGFace

dataset contains 2622 identity information data. For face-

voice association, we select 1225 identities with overlapping

peoples within these two datasets, and exactly follow the

work [7] to split data into train/vaildation/test sets without
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identity overlapping. In the experiments, we make use of both

still images from VGGFace and frames extracted from the

videos in the VoxCeleb dataset during training. The statistical

information of the data information is shown in Table I.

TABLE I
STATISTICAL NUMBERS FOR SPLITTING DATASETS.

Train Val Test total
Face images 106584 12260 20076 138920

Speech segments 106584 14182 21850 142616
Identities 924 112 189 1225

A. Implementation Details

Face extractor: The cropped RGB face image is scaled into

the size of 224×224×3, and followed by preprocessing with

the similar operations stated in work [8]. Meanwhile, the

face sub-network backbone is implemented by the standard

Inception-ResNet-v1 [20] architecture.

Voice extractor: The voice data are detected from the original

video by voice activity detector, and obtained by eliminating

the silent period. Accordingly, 64-dimensional log melspec-

trograms are generated (window size: 25ms, hop size: 10ms)

and followed by mean and variance normalization. The voice

sub-network is implemented by DIMNet-voice [3].

During the training process, τ is experimentally fixed to be

0.07 during the supervised contrastive learning in stage one.

All of the encoders and decoders in stage two are composed

of several fully connected layers, and the dimensions of these

layer encoders are arranged as 1024→512→64, and each layer

is followed by the ReLU activation function. Conversely, the

decoder is symmetrical to the encoder, and the dimensions

of these layer decoders are set at 64→512→1024. Before re-

construction, we normalize the embeddings of the two inputs,

and choose the Tanh activation function instead of ReLU in

the decoders to provide a diverse reconstruction effect. The

evaluation protocols of face-voice association are four-fold:

1) Verification: Given a face and a voice data example,

the purpose of cross-modal verification task is to determine

whether they are collected from the the same person or

not. The verification performance is evaluated with AUC

quantitative indicator (area under the ROC curve).

2) 1:2 matching: Given an anchor example from one modal-

ity and two candidates from the other modality, the objective

of 1:2 matching task is to find out which candidate has the

same identity information as the anchor. The performance is

evaluated with the metric of accuracy (ACC) [21].

3) 1:N matching: This task is an extension of the afore-

mentioned 1:2 matching task, and the only difference is that

there are N candidates instead of two candidates. Similarly,

the accuracy is utilized to measure the matching performance.

4) Retrieval: This task extends the matching work to cross-

modal retrieval scenario. That is, given a query data of one

modality, it allows to index more candidates with the same

identity as matched in another modality, and its performance

is evaluated with standard mean average precision (mAP) [22].

To evaluate the face-voice association performance, we

divide all cross-modal association tasks into two cases: face

matching voice (F-V) and voice matching face (V-F). Similar

to most baseline [3], [4], [7], the symbol (G) represents that

all data in the task have the same gender and the symbol

(U) represents unstratified group. In the experiments, the

competing SVHF [7], DIMNet [3], CMBM [14] and Wang’s

model [4] are selected for meaningful comparisons.

B. Performance Analysis and Comparison

Results of face-voice association: The 1:2 matching, ver-

ification, and cross-modal retrieval results about face-voice

associations are shown in Table II, in which the best re-

sults of our method are marked in red, and the best results

among the competing methods are marked in green. It can

be clearly observed that the proposed DCLR method has

always achieved the better performance over the baselines.

For the 1:2 matching task and verification task, no matter

the dataset is gender-restricted or unrestricted, the proposed

DCLR method improves the performance by 2%-4% over

the results by the competing Wang [4]. That is, the cross-

modal latent representation derived from the proposed DCLR

framework can provide valuable identity information to find

the associations between faces and voices. For the more

challenging retrieval task, it can be found that the proposed

DCLR approach always yields the highest mAP values, in

both V-F and F-V retrieval tasks. For instance, the mAP score

obtained by the proposed DCLR approach reaches up to 6.96

on V-F task, which is significantly higher than the result 4.48

generated by CMBM [14] and 5.13 obtained by Wang [4].

That is, the proposed DCLR model is able to well correlate

the semantically similar face and voices.

Besides, the representative 1:N matching results are shown

in the Fig. 3, it can be also found that the proposed disen-

tangling network almost always delivers the best results on

different N values. That is, the derived disentangled latent

representation is beneficial to find the potential associations

between the faces and voices. Therefore, the proposed disen-

tangling network model not only can preserve much informa-

tion about the identify information across face and voice data,

but also is able to filter out the irrelevant information that can

promote the face-voice association performance.

(a) V→F 1:N matching task. (b) F→V 1:N matching task.

Fig. 3. Comparison of 1:N matching performance.

Results of different disentangling operations: Within the

proposed framework, we employ the multi-layer orthogonality
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TABLE II
COMPARISON WITH BASELINES ON 1:2 MATCHING TASK, VERIFICATION TASK AND RETRIEVAL TASK.

Tasks 1:2 Matching(ACC) Verification(AUC) Retrieval(mAP)

Methods V-F(U) F-V(U) V-F(G) F-V(G) V-F(U) F-V(U) V-F(G) F-V(G) V-F F-V

SVHF [7] 81.0 79.5 63.9 63.4 - - - - - -

DIMNet-I [3] 83.77 83.20 72.88 70.94 83.21 83.44 71.93 70.61 5.10 3.89

DIMNet-IG [3] 84.39 83.70 73.15 71.67 83.10 83.56 72.07 71.14 4.68 4.01

CMBM [14] 84.17 84.35 73.64 72.21 83.83 83.89 73.18 71.71 4.48 4.13

Wang’s [4] 84.76 84.87 74.10 74.22 84.25 84.87 74.63 74.74 5.13 4.45

Ours(w/o Lsup) 84.03 83.61 72.06 70.09 83.85 83.92 69.88 68.76 4.39 3.87

Ours(w/o Lclass) 86.30 87.04 76.15 75.96 85.71 86.34 74.69 75.20 6.65 5.43

Ours(w/o Lall
orth + Lrec) 86.68 87.35 76.85 76.99 87.15 87.52 77.22 77.08 6.80 5.84

Ours 86.79 87.45 77.40 77.58 86.76 86.89 77.62 77.44 6.96 5.90

TABLE III
COMPARISON WITH DIFFERENT ORTHOGONAL LOSS FUNCTIONS ON 1:2 MATCHING TASK, VERIFICATION TASK AND RETRIEVAL TASK.

Tasks 1:2 Matching(ACC) Verification(AUC) Retrieval(mAP)

Different Lorth V-F(U) F-V(U) V-F(G) F-V(G) V-F(U) F-V(U) V-F(G) F-V(G) V-F F-V

LCS
orth 86.71 87.37 77.08 77.12 86.68 86.85 77.50 77.23 6.94 5.74

LMC
orth 86.53 87.27 77.27 77.28 86.96 87.54 75.87 75.92 6.57 5.84

LAO
orth 86.58 87.40 76.89 76.96 87.18 87.59 77.22 77.25 6.95 5.89

Lall
orth 86.79 87.45 77.40 77.58 86.76 86.89 77.62 77.44 6.96 5.90

(a) Different d1 values. (b) Different d2 values.

Fig. 4. Impacts of d1 and d2 within the DCLR framework.

constraints between the common and private encoders in each

modality to increase their heterogeneity. To evaluate the effec-

tiveness of each disentangling operation, we record the results

of different disentangling operations and their combinations.

Table III displays the performance of the DCLR framework

with different orthogonal loss functions (i.e., LCS
orth, LMC

orth,

LAO
orth and Lall

orth ) on the task of cross-modal face-voice

association, in which the best results are marked in red. It

can be observed that the Lall
orth embedded within the DCLR

framework achieves a bright performance. In the orthogonal

subspace, the combination of different orthogonal strategies

provides the greatest degree of separation of interference fac-

tors. The multi-layer disentangling module scheme allows each

method to complement each other’s advantages in cross-modal

face and voice association learning. It is worth mentioning that

the gating strategy achieves the best results on verification(U)

tasks. The gate operation focuses on the heterogeneity of cross-

modal data and provides a useful complement to the verifica-

tion task. In general, the Lall
orth maintains an almost across-

the-board lead compared to three other independent methods,

except for a slightly weaker performance on individual tasks.

Ablation study: The proposed DCLR framework mainly con-

sists of two-stage learning process. The former stage employs

the supervised contrastive learning to push the representations

of face-voice data from the same person closer while pulling

those representations of different person away. The loss func-

tion employed for this stage is illustrated in Eq. (1). The latter

stage further innovates a multi-layer orthogonal decoupling

scheme to learn the disentangled latent representations, and the

loss function enrolled for this stage is illustrated in Eq. (15).

To investigate the impact of each loss functions, we further

design three variant experiments that exclude the loss term

from the training process, and adopt w/o to indicate the loss

terms excluded during the training process.

Table II shows the performance of different variant exper-

iments. It can be found that the Lsup provides the important

foundation for the whole learning framework. That is, the

supervised contrastive learning is able to pay more attention

to the difficult positive and negative examples in a cross-

modal batch, which can well push the representations of

face-voice data from the same person closer while pulling

those representations of different person away. The Lall
orth

further promotes the face-voice association performance, and

the derived disentangled cross-modal latent representations

explicitly provide the shared identity information across the

heterogeneous face and voice data. Through the learning

of Lall
orth and Lrec, the interference factors that may bring

negative impacts to the cross-modal embedding are filtered

into in private embedding, which can enhance the common
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Fig. 5. Top 10 cross-modal retrieval examples, and the correct candidate is
marked with a green box.

embedding to benefit various face-voice matching tasks.

(a) Embeddings before training. (b) Embeddings after training.

Fig. 6. Visualization of the learned embeddings.

Parameters Analysis and Visualization: Fig. 4 shows the

impact of different dimensions within the proposed DCLR

framework. It can be found that the different settings of d1
and d2 also can achieve comparable association performance.

That is, these parameters are generally insensitive to the face-

voice matching performances within a wide range of values.

Further, we show the representative cross-modal face-voice

matching examples to visualize the retrieval results. As shown

in Fig. 5, it can be observed that the proposed DCLR frame-

work holds a strong ability to associate the semantically sim-

ilar face and voice examples. This indicates that the proposed

disentangled model can well filter the irrelevant information

in the cross-modal embedding, and the derived cross-modal

latent embedding is valuable to provide significant identity

information for discriminative representation.

Besides, we further utilize the t-SNE [23] algorithm to

visualize the learned embedding vectors from ten randomly

selected peoples. As shown in Fig. 6, it can be found that

the proposed DCLR model is able to cluster the face and

voice of the same identity close together, while pulling those

of different modalities away, and some clusters are tighten

closely. Therefore, the disentangled latent representations are

semantically meaningful and discriminative for benefiting var-

ious face-voice association tasks.

V. CONCLUSION

This paper proposes an efficient disentangled cross-modal

representation learning framework for various face-voice asso-

ciation and matching. The proposed framework first employs

the supervised contrastive learning to push the representations

of face-voice data from the same person closer while pulling

those representations of different person away. Then, the

network model further learns the disentangled latent represen-

tations that are shared across the face and voice data, while

filtering out the modality-dependent factors. Consequently, the

proposed method is capable of capture the common semantic

information across faces and voices, and the qualitative results

have shown its competitive performance.
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