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ABSTRACT
In some practical scenarios, such as video surveillance and personal
identification, we often have to address the recognition problem
of occluded faces, where content replacement by serious occlusion
with non-face objects always produces partial appearance and am-
biguous representation. Under the circumstances, the performance
of face recognition algorithms will often deteriorate to a certain de-
gree. In this paper, we therefore address this problem by removing
occlusions on face images and present a new two-stage Facial Struc-
ture Guided Generative Adversarial Network (FSG-GAN). In Stage I
of the FSG-GAN, the variational auto-encoder is used to predict the
facial structure. In Stage II, the predicted facial structure and the
occluded image are concatenated and fed into a generative adver-
sarial network (GAN) based model to synthesize the de-occlusion
face image. In this way, the facial structure knowledge can be trans-
ferred to the synthesis network. Especially, in order to enable the
occluded face image to be perceived well, the generator in the GAN
based synthesis network utilizes the hybrid dilated convolution
modules to extend the receptive field. Furthermore, aiming at fur-
ther eliminating the appearance ambiguity as well as unnatural
texture, a multi-receptive fields discriminator is proposed to utilize
the features from different levels. Experiments on the benchmark
datasets show the efficacy of the proposed FSG-GAN.

CCS CONCEPTS
• Computing methodologies → Object recognition; Object
identification; Reconstruction.
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1 INTRODUCTION
Face images in real-world scenarios like surveillance and forensics
often suffer from different kinds of occlusions, as shown in Figure 1.
Such occlusions often cause serious information scarcity, especially
for the large occluded area. Subsequently, it severely reduces the
reliability of the most advanced recognition algorithms, which will
lead to crucial surveillance failure if one deliberately hides the face.
This makes some tasks, e.g. face identification and recognition [34],
face parsing [26], lip tracking and contour extraction [9, 28] be-
comes more challenging. Therefore, face image de-occlusion is a
problem of both academic and practical importance.

Figure 1: Examples of occluded face images, where subfigure
(a)-(c) are the face images occluded by mask1, sunglasses2

and car sun visor3, respectively.

Recently, a number of generative models [41, 51] have been
proposed to generate visually realistic images, but they ignore
preserving the identity information. Furthermore, another related
algorithm towards the face image de-occlusion, namely image com-
pletion [2], only works well under constrained occlusion shapes
[5, 25, 48], or need masks of occlusion objects [27, 49]. Recently,
Dong et al. [12] have proposed Occlusion-Aware GAN (OA-GAN)
to address the arbitrary facial occlusions removing problem. This
method successfully removes small occlusion, but meanwhile gen-
erating inconsistent texture when the occluded area is large. As far
as we know, Image de-occlusion problem is still challenging due to
the following four reasons:

1) No preservation of the identity information: Existing gen-
erative methods like Cycle-GAN [51] and DeepFill [49] can
only transform the holistic style without preservation of the
identity information, which is unfavorable for face recogni-
tion.

1The image comes from: https://www.cna.com.tw/news/firstnews/202007210272.aspx
2The image comes from: https://kknews.cc/world/xjj5llg.html
3The image comes from: http://gd.sina.com.cn/yj/social/2015-11-24/102825555.html
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2) Occlusion mask unavailable: Methods like DeepFill and OA-
GAN can fill in the missing area with semantic reasonable
content. However, DeepFill requires a given binary mask of
the occlusion part to tell the model where to fill in. Also,
OA-GAN needs the image of the occlusion object as ground
truth to obtain the "occlusion awareness".

3) Large occluded area: Even though de-occlusion methods like
OA-GAN perform well for the small occlusion, the recovered
result through OA-GAN lacks overall consistency when the
occluded area is large.

4) New identities: The aforementionedmethods divide the train-
ing and testing datasets based on images rather than identi-
ties. That is, the models may have seen a face image of the
target person. For the occluded face images of a new identity
whose photos are not included in the training dataset, the
de-occlusion results from the existing methods will become
deteriorate.

To this end, inspired by the amodal perception mechanism in
human visual system [31], we propose a two-stage Facial Structure
Guided GAN (FSG-GAN) to perform large area occluded face image
de-occlusion without the occlusion mask, meanwhile preserving
the identity information. Furthermore, the face images of the target
person for testing are not essentially included in the training set.
The model consists of two stages, i.e. facial structure prediction
and de-occluded image synthesis. As the human face’s topological
structure of different individuals is similar, in Stage I, we therefore
use the variational auto-encoder (VAE) [22] to predict the overall
facial structure that can provide background knowledge for the
subsequent de-occluded image synthesis. In Stage II, the predicted
structure and the occluded image are fed into the GAN-based syn-
thesis network to obtain the de-occluded image. In order to enable
the occluded face to be perceived well, we extend the receptive
fields (RFs) of the synthesis network by introducing Hybrid Dilated
Convolution (HDC) [45] modules. Ledig et al. [24] have exploited
perceptual loss and gained an effective performance boost recently.
To maintain the identity information and benefit the subsequent
recognition, we improve this perceptual loss by using the cosine
distance to replace the originally used Euclidean distance. A multi-
receptive fields discriminator is proposed to further eliminate the
appearance ambiguity and unnatural texture. To evaluate the pro-
posed model, we synthesize an occluded face image dataset based
on CelebFaces Attributes (CelebA) [29] and Labeled Faces in the
Wild (LFW) [18]. The experimental results validate the compelling
effectiveness of the proposed method.

The main contributions of this paper are highlighted below:

1) We propose a novel framework to remove different kinds of
occlusions on face images.

2) We introduce the HDC modules to the proposed network to
improve the holistic consistency of de-occluded face images.

3) We propose a multi-receptive fields discriminator that dis-
criminates the different RFs features to further enhance the
detail of de-occluded face images.

4) We build a synthetic occluded face image dataset1, on which
occlusions are semantically placed with reference to face
landmarks.

2 RELATEDWORK
2.1 Image Completion
Image completion (also called inpainting) aims to fill in a missing
region of an image automatically with visually plausible pixels.
Traditional methods like diffusion-based methods [6, 15, 39] and
patch-based methods [1, 10]. The former distributes the external
information along the contour normal into the missing portion,
while the latter copying patches information from a similar area of
an image (or a set of images) can handle simple stationary texture
image well. Recently, benefiting from generative models, a num-
ber of image completion methods [5, 25, 48], which can deal with
complex images, have been proposed. These methods exploit the
encoder-decoder based network combined with the reconstruction
loss and the adversarial loss to recover the missing contents. How-
ever, these methods only work well under specifically restricted
occlusions like rectangular shape, random noise, etc., leaving more
complicated practical occlusions unresolved. Recently, Yu et al. [49]
have proposed DeepFill which fills in multiple irregular shaped
holes at arbitrary locations in an image. This model uses a coarse
network to generate missing contents, and meanwhile using an-
other refinement network with a contextual attention module to
enhance image details and spatial coherency. It generally requires
the binary occlusion mask during testing. Furthermore, image com-
pletionmethodsmainly focus onmaking the generated faces vividly,
but neglect to maintain the personal identity information.

2.2 Frontalization and Face Image De-occlusion
Frontalization focuses on synthesizing the frontal view of a given
side face image. Frontalization and face image de-occlusion both aim
to increase the performance of face recognition algorithms. There-
fore, retaining the subject identity is essential. Traditional frontal-
ization methods use 2D/3D surface texture warping [3, 14, 17],
or landmark localization methods [38]. Conventional face image
de-occlusion algorithms address the problem with sparse coding
techniques [33, 46] or filtering methods [30, 35]. Thanks to the
revolution of deep neural networks, lots of face frontalization and
de-occlusion works [12, 19, 50] have been researched and achieved
outstanding performances. For example, Huang et al. [19] have
proposed a frontal view synthesis method called TP-GAN, which
consists of a global and a local generator. By several regularization
functions like the symmetry loss and the total variation loss, the
model can generate photorealistic frontal view image. Moreover,
Dong et al. [12] have proposed a two-stage Occlusion-Aware GAN
(OA-GAN) that firstly segments the occluded part of the face image
with a GAN based model and then removes this occlusion with
another GAN model. This method can remove real-world occlu-
sions and generate visually realistic images, but it needs to use
the occlusion object as the ground truth to indicate the occluded
part during the first stage of training. Nevertheless, TP-GAN and
OA-GAN still need the basic facial features. These methods are not
competent when some facial organs, e.g. eyes or mouth, are totally
unseen.

1The full dataset can be found in https://drive.google.com/drive/folders/
1ISmIMmmpEVFTi8Xl2aiGR8DUBjjOEHMl?usp=sharing
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3 THE PROPOSED METHOD

Figure 2: Examples of the training set {X ,Y }, where (a) shows
the occluded face images {xi } ∈ X , and (b) is the original
occlusion-free face images {yi } ∈ Y .

In this section, we will propose the FSG-GAN for face image de-
occlusion. Specifically, the proposed method is intended to recover
the occluded area and then the output image is utilized to recognize
the right person. Human beings can be conscious of the part of
a person that is occluded behind an object. How we represent
these occluded parts of perceived objects is the problem of amodal
perception. [32] pointed out that amodal perception heavily relies
on our background knowledge of the appearance of the (possibly)
occluded part of the object. Using the most quoted example in
amodal perception, namely the cat behind the picket fence, it is
natural that a person who has never seen a cat will have difficulty
in representing its occluded tail behind the fence. In our work,
we utilize VAE to construct the background knowledge, then use
a GAN-based synthesis network to obtain the final de-occlusion
result. As shown in Figure 2, let {X ,Y } denote the training set,
where X represents the occluded face image set and Y represents
the corresponding original occlusion-free face image set. For each
x ∈ X of the target person, we can obtain the predicted structure
д that estimates y ∈ Y as close as possible. Then, д is used as the
background knowledge to de-occlude the face image of the target
person, and eventually get the output ŷ.

3.1 The Framework of FSG-GAN
The overall framework of our proposed FSG-GAN is shown in
Figure 3, which is composed of two stages. We firstly predict the
holistic facial structure of the occluded image by VAE in Stage I.
VAE makes a strong assumption that the posterior is approximately
factorial and predictable with a neural network [4]. These assump-
tions constrain the expressive ability of the model, thus resulting
in blurry results. Even though a lot of previous works [16, 36, 41]
increased the expressiveness of the approximate prior and posterior,
and promising results were obtained, they take a long time to train.
Our model aims to take advantage of the fast and tractable training
of VAE. Therefore, we use the generated blurry result by VAE (de-
noted as V ) as the holistic facial structure to provide background
knowledge for the following de-occlusion procedure. The predicted
structure д can be denoted as:

д = V (x). (1)

Then, a U-Net [37] structure generator (G) is applied to get the
de-occluded face image in Stage II. The result obtained by V pro-
vides the geometric background knowledge of a human face. G
can efficiently remove the occlusion even when the occluded area
is large with the guidance of the obtained geometric background

knowledge. The de-occluded face image ŷ is denoted as:

ŷ = G(x,д). (2)

To further enhance the de-occlusion results, an adversarial struc-
ture is utilized. Different from the previous work [49] that exploits
a two pathway discriminator to fuse global and local critics, our
discriminator D gives the final output that is a soft version of the
weighted estimation of different RFs features.

3.2 Facial Structure Prediction
VAE assumes that both the prior and posterior are Gaussian dis-
tributions. The performance of such model is constrained by the
restrictive mean field approximation to the intractable posterior
distribution [40], and thus resulting in blurred generated samples.
In this paper, we take the advantage of fast learning complicated
distributions by VAE to obtain the complete face image distribu-
tions. We assume that the occluded image domain has intersection
with the complete image in the latent space. The purpose of the
encoder of V is to map the occluded image domain into this in-
tersection in the latent space, and then the decoder is to find the
corresponding complete face image. Some features are occluded,
which increases the uncertainty of the corresponding complete
face image. Therefore, V outputs a blurry image. We use the blurry
image as the overall structure to provide background knowledge
for Stage II. To train V , we optimize the variational lower bound
Lb on logp(y):

logp(д) =
∫
z
q(z |x) logp(д)dz

=

∫
z
q(z |x) log

(
p(z,д)

q(z |x)

q(z |x)

p(z |д)

)
dz

=

∫
z
q(z |x) log

(
p(z,д)

q(z |x)

)
dz + KL (q(z |x)∥p(z |д))

= Lb + KL (q(z |x)∥p(z |д)) .

(3)

The KL(.) term is always greater or equal to zero. Therefore, the
objective of V is to maximize the variational lower bound Lb . The
loss function LVAE for V is:

LVAE = −

∫
z
q(z |x) log (p(д |z)) dz −

∫
z
q(z |x) log

(
p(z)

q(z |x)

)
dz

= Ez∼q(z |x )[−loдp(д |z)] + KL (q(z |x)∥p(z)) ,
(4)

where q(z |x) = z ∼ N(µe (x),σe (x)), p(д |z) = д ∼ N(µd (z),σd (z))
and the prior p(z) is set as an isotropic unit Gaussian z ∼ N(0, 1).
(µe ,σe ) and (µd ,σd ) are obtained by the encoder and decoder blocks
in V , respectively. After optimization, the overall structure д of the
occluded image x can be obtained by the trained V .

3.3 De-occluded Face Image Synthesis
The main framework of our de-occluded image synthesis model
consists of a U-Net structure generator G and a multi-RFs discrimi-
nator D. The generator takes the occluded image x and the overall
structure д as input. The discriminator D shares the same structure
with the encoder blocks in VAE, and is then followed by three shal-
low nets that attempt to determine the real or fake image from the
different levels.
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Figure 3: An overview of the proposed FSG-GAN. The training process consists of two stages. Stage I utilizes the VAE (V ) to pre-
dict the overall facial structure, and Stage II takes the U-Net structure generator (G) and the proposed multi-RFs discriminator
(D). The final output of D is a softmax weighted sum of the discriminant results from the different layers.

3.3.1 De-occluded Image Generator. G takes a U-Net structure
where skip connections are utilized to fuse the multi-level fea-
tures. The encoder-decoder structure has been successfully used,
e.g. see [19, 20]. However, the generated images suffer from prob-
lems like inconsistency in overall skin tone and unnatural recov-
ered regions. We therefore introduce the HDC module to encoder
blocks to solve such problems. Dilated (atrous) convolution has
been widely used in image semantic segmentation [7, 8], speech
synthesis [42], machine translation [21], etc. It can enlarge the RFs
of the model without reducing the size of the feature map to ag-
gregate global information. Wang et al. [45] have proposed HDC
to further improve the model by utilizing a range of dilation rates
and concatenating them serially, which can effectively alleviate the
gridding issue caused by the standard dilated convolution. We take
advantage of HDC to make the output image globally consistent
without losing the details.

Structure. Figure 4 shows the details of the generator, which
exploits the U-Net structure consisting of three encoder blocks
and three decoder blocks. Each encoder block contains a down-
sampling module, an HDC module and a residual module. The
HDC module parallels one 1 × 1 convolution and three dilated
convolutions with the different dilated rates capturing the multi-
scale information. The kernel size of the dilated convolutions is
3× 3 and the dilated rates are set at [1, 2, 5], respectively. The batch
normalization (BN) and swish activation suggested by NVAE [41]
are used in each module. In this way, the RFs of the three encoder
blocks are a quarter, a half and the entire image, respectively. The
decoder block has an up-sampling module that contains an up-
sampling unit and a convolution layer. The skip connection is used
from the corresponding symmetrical block.

Loss function. L1 norm is adopted as the metric of the distance
between the de-occluded image and the ground truth image. As a
result, the pixel-wise loss Lpw takes the form:

Lpw (G) = E(x ,y)∼pd (x ,y)
[
∥y −G(x,д)∥1

]
. (5)

This L1 formed pixel-wise loss forces the generator to output a
sharper image than the L2 norm [20].

Preserving crucial identity information while synthesizing the
de-occluded face image is essential for the subsequent applica-
tion like face recognition. The perceptual loss originally proposed
by Ledig et al. [24] can maintain perceptually relevant similarity
in super-resolution. We exploit this perceptual loss to help the
model preserve the identity similarity. Differently, we replace the
originally used VGG19 with LightCNN [47] because LightCNN is
specifically for face images and is much smaller. In addition, the
previous works [43, 44] have shown that identity information is
only related to the angles of the deep features. Therefore, we define
the identity-preserve loss Lip on the LightCNN features by the
cosine distance:

Lip (G) = E(x ,y)∼pd (x ,y)

[
1 −

F (y) · F (G(x,д))

∥F (y)∥2 ∥F (G(x,д))∥2

]
, (6)

where F represents the pre-trained LightCNN model.
The adversarial loss Ladv is used to further enhance the realism

of the de-occluded image:

Ladv (G) = Ex∼pd (x )

[
− log

(
D
(
G(x,д)

) )]
, (7)

where D is the proposed multi-RFs discriminator that will be dis-
cussed in detail in the following subsection 3.3.2.

The overall loss function for G is a weighted sum of the previ-
ously defined losses:

Ltotal (G) = λpwLpw (G) + λipLip (G) + λadvLadv (G). (8)

3.3.2 Multi-RFs Discriminator. The L1 and L2 norm losses favor
blurry results on image generation because these losses fail to
capture high-frequencies in many cases. In the literature, Isola
et al. [20] have proposed Markovian discriminator to encourage
generator model high-frequencies by determiningN×N real or fake
patches in an image. In our face image de-occlusion problem, the
global consistency and local details are both important. Different
from the previous work like DeepFill [49] that introduces global
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Figure 4: The detailed structure of the generator and eachmodule. The generator takes the predicted structure image д by VAE
and its corresponding occluded image x as input.

and local discriminators, we improve the Markovian discriminator
by determining the features from the different layers. It is well
known that the RF in shallow network is small and will increase as
the network deepens. Discriminating different level features that
have different RFs can achieve the goal of fusing global consistency
and local details. For the i-th layer features, we have Ni × Ni -
patch responses. The i-th layer output di is an average of all these
responses. The ultimate output of D is a weighted sum of all layers’
output, where the weights are calculated by a softmax function.

Structure. The feature extraction module in the discriminator
shares the weight with the encoder in VAE to reduce the number
of training parameters. The feature maps from different layers are
fed into discriminator modules which all consist of a convolution,
a nonlinear activation, and a linear unit followed by a sigmoid.

Loss function.We have I outputs of different RFs feature maps.
The ultimate output du of D is calculated by:

du =
I∑
i
widi , (9)

where di represents the response of the i-th layer. We use a soft
version parameterized by λ of the three classical Pythagorean
means [13] to calculate the weightwi :

wi =
eλdi∑I
j e

λdj
, (10)

where λ ≥ 0. du is the arithmetic mean of I outputs when λ = 0 and
the max value when λ → ∞. We take λ = 1, then Eq. (9) becomes a
softmax that is differentiable. The Minimax objective function is
utilized for D:

Ladv (D) =Ey∼pd (y)
[
− log

(
D(y)

) ]
+

Ex∼pd (x )
[
− log

(
1 − D

(
G(x,д)

) ) ]
.

(11)

3.4 Algorithm
In the training phase, the input is the occluded image xi and the
output is the de-occluded image ŷi . The values of all images are
scaled to [−1, 1]. The details of the training phase are summarized
in Algorithm 1.

In the testing phase, D is discarded and we use the trainedV and
G with an occluded face image as input to get the de-occluded face
image. We first useV to get the predicted overall structure дi of the
input occluded image xi . Then, xi and дi are concatenated together
and input into G to get the final de-occluded image ŷi .

Algorithm 1 Training phase of the proposed framework.

Input: Occluded face images {xi } ∈ X ;
Corresponding ground truth images {yi } ∈ Y .

Output: De-occluded face images {ŷi }.
1: while V not converged do
2: Sample batch images {xi } from X ;
3: Predict {дi } for {xi };
4: Update V with Eq. (4);
5: end while
6: while G not converged do
7: Sample batch images {xi } from X ;
8: Use trained V to predict {дi } for {xi };
9: Generate de-occluded face images {ŷi } with {xi } and {дi };
10: Update G with Eq. (8);
11: Update D with Eq. (11);
12: end while

4 EXPERIMENT
4.1 Datasets and Implementation Details
We synthesize the occluded face image dataset on benchmark
datasets, i.e. CelebA and LFW. First, 15 commonly seen occlusion
objects can be obtained manually or via a color image segmentation
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method, e.g. see [23] and [7]. Then, we overlay these occlusions
onto the non-occluded face image with random shape, location,
rotation and size. In addition, we preprocess the images by crop-
ping out the face part and then re-scaling them into the size of
128 × 128 × 3 pixels. Figure 5 shows a snapshot of the occluded
faces and Figure 6 shows examples of the occlusion objects.

CelebA is a public medium scale face attributes dataset which
contains 202,599 celebrity images with 10,177 identities. LFW is a
commonly used testing set and contains 13,233 faces of 5,749 indi-
viduals collected in uncontrolled environments. The identities in
the training phase are separated from the testing phase. To train our
proposed FSG-GAN, we randomly select 90% identities in CelebA.
The remaining 10% identities in CelebA and the whole LFW are
used as testing set. Four testing sets from CelebA and LFW datasets
are prepared and the composition details of the training and test-
ing sets are listed in Table 1. The new identities/occlusions mean
that the identities/occlusions have not been seen by the model dur-
ing the training phase. The hyper-parameters in the generator are
empirically set at: λpw = 100, λip = 50 and λadv = 1.

Table 1: Dataset composition details.

Dateset name New identities New occlusions
Training set

Set-CelebA × ×

Testing set
Set1-CelebA ✓ ×

Set2-CelebA ✓ ✓
Set1-LFW ✓ ×

Set2-LFW ✓ ✓

Figure 5: Examples of the synthesized dataset, where images
in the top row are from CelebA and those in the bottom row
are from LFW.

Figure 6: Examples of the occlusion objects.

4.2 Performance Evaluation
The qualitative index is evaluated by the visual effect of the de-
occlusion results. To quantitatively evaluate the de-occlusion per-
formance, two commonly usedmetrics, namely peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM), are used. It is worth
noting that face de-occlusion aims at generating identity-preserved
occlusion-free face images rather than the same pixels in the orig-
inal images. Therefore, recognition accuracy is also used to help
evaluate the performance of the proposed model.

We compare the proposed FSG-GAN with three state-of-the-art
methods, namely Cycle-GAN [51], DeepFill [49] and OA-GAN [12].
Cycle-GAN is a style transform method that can transform the
image from the occluded face image domain to the occlusion-free
image domain. DeepFill is an inpainting method that shows poten-
tial application in removing occlusions. OA-GAN is also a two-stage
face image de-occlusion method that performs well in removing
facial occlusions. For Cycle-GAN, we retrain the official code with
our dataset for fair comparisons. Since DeepFill is also trained on
the CelebA dataset, we use the officially provided code and model
parameters. As the code of OA-GAN is not publicly available, we
therefore re-implemented it by ourselves.

4.2.1 Qualitative Comparison. Figure 7 shows the results of de-
occluded face images on CelebA and LFW. Cycle-GAN can perform
holistic style transformation and generate semantically meaningful
pixels. However, the local detail and identity information are with-
out guarantee of preservation after transformation. DeepFill aims
to fill in irregular shaped holes in an image. It generates the detailed
pixels but without the preservation of identity, which is therefore
essentially inapplicable to practical applications like identification
and recognition. Specifically, we can see that in Set1-LFW, Deep-
Fill increases PSNR, but decreases SSIM. That means that DeepFill
cannot reconstruct the overall structure of face image well when
the occlusion breaks the image structure. In addition, it needs the
binary mask of the occlusion object during testing. The reason why
OA-GAN does not work well is that the method can only detect and
remove small occlusions. The method loses overall consistency be-
cause there is no reference information when the occluded regions
possess independent semantics (e.g., eyes, mouth and forehead). The
facial structure predicted by VAE in the proposed method serves
as background knowledge that can supervise the generation. The
generator has a large receptive field without reducing the size of the
feature maps, which can maintain the overall structure and color
consistency. The results show that FSG-GAN successfully removes
the occlusion and recovers a photorealistic face image.

4.2.2 Quantitative Comparison. Table 2 shows the comparison in
terms of PSNR and SSIM. However, PSNR and SSIM favor the images
which are exactly the same as the ground truth. The recognition
accuracy of the occluded images is also reported to help evaluate
the effectiveness of our proposed FSG-GAN. We choose 200 identi-
ties who have more than 6 images from Set1-CelebA and Set1-lfw
to calculate the recognition accuracy. In addition, these occluded
images simulate natural occlusion. Figure 8 shows a snapshot of
these images. For each person, we choose one image as the gallery
image while the other five images are used as query images. We
repeat the experiment five times and report the average recognition
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Figure 7: Examples of qualitative comparison, where (a) and (b) are the input occluded face images and the ground truth
images, while from (c) to (f) are the de-occlusion results given by Cycle-GAN, DeepFill, OA-GAN, and our proposed FSG-GAN
respectively. The boxes with the size of 6 × 3 images each from left to right show the experimental results on Set1-CelebA,
Set2-CelebA, Set1-LFW and Set2-LFW, respectively.

Table 2: Quantitative comparison in terms of PSNR and SSIM.

Method
Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set1-CelebA Set2-CelebA Set1-LFW Set2-LFW
Occluded image 10.4764 0.6425 13.6658 0.6852 12.4447 0.7606 14.1494 0.7601
Cycle-GAN (2017) 13.7667 0.6459 15.8253 0.8325 16.0223 0.8238 16.1571 0.8545
DeepFill (2018) 14.5140 0.7029 20.2123 0.8581 14.9931 0.7387 19.4776 0.8591
OA-GAN (2020) 17.1828 0.7215 14.7253 0.7325 19.1809 0.7978 15.0563 0.8458

Proposed FSG-GAN 21.1112 0.7936 20.3914 0.8699 21.9961 0.8344 19.7848 0.8710

Table 3: Quantitative comparison in terms of recognition ac-
curacy (%).

Method
Acc. Rank-1 Rank-5 Rank-10

Set2-CelebA
Occluded img 44.2 ± 3.0 54.4 ± 2.5 59.6 ± 2.0
Cycle-GAN 36.9 ± 3.5 51.6 ± 2.8 58.2 ± 2.7
DeepFill 45.1 ± 2.4 59.6 ± 1.4 65.3 ± 0.6
OA-GAN 47.2 ± 2.4 61.9 ± 2.2 68.9 ± 0.9

Proposed FSG-GAN 64.2 ± 4.7 76.3 ± 3.3 80.3 ± 2.4
Set2-LFW

Occluded img 52.7 ± 1.6 60.6 ± 1.3 64.0 ± 1.4
Cycle-GAN 46.8 ± 2.6 55.7 ± 1.5 61.4 ± 2.0
DeepFill 52.9 ± 4.4 64.3 ± 2.3 68.2 ± 2.1
OA-GAN 53.1 ± 2.3 64.9 ± 2.1 69.4 ± 2.0

Proposed FSG-GAN 68.6 ± 4.6 77.6 ± 3.4 80.1 ± 2.7

accuracies of the de-occlusion results by these methods on CelebA
and LFW. The rank-1, rank-5 and rank-10 recognition accuracies
are calculated, respectively, by first extracting deep features with

ArcFace [11] and then using a cosine-distance metric to calculate.
Table 3 shows the recognition accuracy. The proposed FSG-GAN
obtains higher scores in both PSNR and SSIM as well as recognition
accuracy, which demonstrates the better performance of FSG-GAN
in both image quality and identity preservation.

Figure 8: Examples of the images used to calculate recogni-
tion accuracy, where (a) is from CelebA and (b) is from LFW.

4.3 Ablation Experiment
To verify the effectiveness of the proposed modules, we conducted
two more experiments: train the model (i) without HDC modules
and (ii) with regular discriminator that is the same as DeepFill and
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Figure 9: The effectiveness of different modules, where (a)
are the input occluded face images and (b) are the ground
truth images, while from (c) to (e) are the de-occluded im-
ages by the networkw/oHDCmodule, withRegular discrim-
inator, and with HDC module and multi-RFs discriminator
respectively.

Table 4: Quantitative evaluation of different modules.

Method
Metric PSNR SSIM

Occluded img 7.9484 0.5298
w/o HDC 17.7813 0.6856

Regular Dis. 17.3046 0.6581
Hdc + multi-RFs Dis. 18.1103 0.6979

OA-GAN. We utilized the same images that were utilized to calcu-
late the recognition accuracy to demonstrate the effect. Figure 9
shows the qualitative effect and Table 4 reflects the quantitative
effect. From row c of Figure 9, it can be seen that the recovered
part of the skin tone has less consistency with the original region
to a certain extent when the network is without HDC modules.
There are unnatural textures in the recovered part with the regu-
lar discriminator. Since the regular discriminator only determines
the overall similarity without paying attention to image details, it
cannot provide motivation for the generator to output the detailed
images well.

5 CONCLUDING REMARKS
In this work, we have proposed the FSG-GAN network to address
the challenging problem of face image de-occlusion. We first use
the VAE to predict the overall facial structure to get the human face
topological structure background knowledge. Then, the predicted
structure and the occluded image are fed into the following novel
U-Net structure to remove the occlusion. Specifically, we have
introduced the HDC modules to improve the holistic consistency
of the face image. The de-occlusion results are further enforced
through the proposed multi-RFs discriminator by distinguishing the

Figure 10: Examples of incapable situations, where (a) shows
input occluded face images, (b) shows ground truth images,
and (c) shows unsatisfactory de-occlusion results.

different level features of real and generated images. Experiments
have shown that the proposed method outperforms the existing
counterparts.

Even though our model is able to remove various occlusions and
generate semantically reasonable and visually realistic contents, it
is incapable of handling some situations. One situation is the ex-
cessive range of posture. We have used the roughly aligned images
in CelebA dataset and implemented various data augmentation to
improve the robustness towards different posture, but found that
the occlusion in face image with large posture cannot be removed
well. We show the examples of the results in the first and second
columns of Figure 10. These unsatisfactory de-occlusion results
indicate that the model cannot distinguish facial structure semantic
information well. Nevertheless, we can exploit contextual attention
to alleviate this issue. The other powerless situation is that the
occlusion is too severe. When occlusions cover almost all the facial
information, the network fails to predict the correct facial struc-
ture, leading to unsatisfactory results. The third to fifth columns of
Figure 10 demonstrate this situation. That is, the occluded area and
the occlusion type have a significant impact on recovery results.
We will conduct a systematic research towards these in our future
work.
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