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ABSTRACT

Many cognitive researches have shown the natural possibility of

face-voice association, and such potential association has attracted

much attention in biometric cross-modal retrieval domain. Nev-

ertheless, the existing methods often fail to explicitly learn the

common embeddings for challenging face-voice association tasks.

In this paper, we present to learn discriminative joint embedding

for face-voice association, which can seamlessly train the face sub-

network and voice subnetwork to learn their high-level semantic

features, while correlating them to be compared directly and effi-

ciently. Within the proposed approach, we introduce bi-directional

ranking constraint, identity constraint and center constraint to learn

the joint face-voice embedding, and adopt bi-directional training

strategy to train the deep correlated face-voice model. Meanwhile,

an online hard negative mining technique is utilized to discrimi-

natively construct hard triplets in a mini-batch manner, featuring

on speeding up the learning process. Accordingly, the proposed

approach is adaptive to benefit various face-voice association tasks,

including cross-modal verification, 1:2 matching, 1:N matching, and

retrieval scenarios. Extensive experiments have shown its improved

performances in comparison with the state-of-the-art ones.
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1 INTRODUCTION

Many cognitive researches have shown that humans are able to

hear voices of known individuals to form mental pictures of their

facial appearances, and vice versa. Naturally, face and voice have

proven to be the most valuable sources of biometric identity infor-

mation, which can greatly help identify, search and organize human

identities. In the past years, purely face-based or voice-based hu-

man recognition methods had been widely studied in the literatures

[9, 14], and the above studies lend credence to the hypothesis that

it may be possible to find the associations between voices and faces

because they both characterize the speaker [2].
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Figure 1: Pipeline of the proposed framework.

With the recent advance of deep learning, there have emerged

some studies to mine the correlations between face and voice ex-

amples, which can be divided into classification based and metric

learning based methods [15]. The former approaches formulate the

face-voice correlation task as a classification problem. For instance,

SVHF-Net [11] formulates face-voice association problem as a bi-

nary selection task. However, this method is designed for a specific

matching task, which is not flexible enough for other association

tasks. DIMNet [13] utilizes a multi-task classification network to

learn the common embeddings, but which does not fully consider

the high-level semantic correlations between faces and voices. The

latter methods usually construct contrastive loss [10] or triplet loss
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[6, 15] to supervise the common representation learning. Along

this line, Arsha et al. [10] utilize the contrastive loss to guide the

learning, while Kim et al. [6] employ the triplet Loss to supervise

the network learning. These two approaches are able to match the

human performance on face-voice matching tasks, but their perfor-

mances are far from the expectation. To the best of our knowledge,

automatic face and voice association is still under early study.

In this paper, we address an efficient deep correlated framework

to learn discriminative joint embedding for face and voice associa-

tion, which can semantically correlate face subnetwork and voice

subnetwork to benefit various cross-modal matching tasks. The

main contributions of this paper are highlighted as follows:

• An end-to-end deep correlated network is proposed to learn

discriminative joint embeddings for face-voice associations.

• A bi-directional ranking loss is proposed to enhance the

discriminative power of joint embedding, while an online

hard negative mining technique is addressed to speed up the

training process.

• Extensive experiments have shown its improved performances

under various face-voice association and retrieval tasks.

The rest of this paper is structured as follows: Section 2 intro-

duces the proposed model and its implementation details. The ex-

tensive experiments and analysis are discussed in Section 3. Finally,

we draw a conclusion in Section 4.

2 THE PROPOSED FRAMEWORK

The objective of the proposed deep correlated model is to learn

the joint common embeddings to represent both face and voice,

which allow them to be semantically correlated. In the following,

we first introduce the network architecture, and then describe the

loss function, the process of identity-based batch sampling and

online hard negative mining scheme.

2.1 Network Architecture

The network architecture is shown in Figure 1, which is a dual-

path network consisting of three parts: face subnetwork, voice

subnetwork and shared FC structure. Specifically, face subnetwork

and voice subnetwork, with independent network parameters, are

utilized to learn the high-level correlated and modality-specific

features with respect to face and voice. The shared FC structures

with the same parameters are employed to jointly learn a shared

latent space to bridge the semantic gap between face and voice.

Face Subnetwork. The face subnetwork is implemented using

the Inception-ResNet-v1 architecture. The input to the face subnet-

work is an RGB image, and the finally fully connected layer of the

Inception-ResNet-v1 architecture is reduced to produce a single

512-D embedding for every face input.

Voice Subnetwork. The voice subnetwork is implemented us-

ing the DIMNet-voice [13] architecture. In order to produce an

efficient voice embedding that is the same size as face embedding,

we set the size of last network layer to be 512.

Shared FC Structure. A shared fully connected layer (FC) is

utilized to learn a joint discriminative embedding space between

face and voice, and their network parameters are shared with each

other. Accordingly, this FC layer can project both face and voice

examples into 256-D common embedding space.

2.2 Loss Function

A novel loss function, consisting of three constraints, is proposed

for discriminative joint embedding learning.

Ranking Constraint. A bi-directional ranking constraint [3] is

utilized to ensure the discriminability of the learnt representation.

Since it is the hardest negative that determines success or failure

as measured by R@1 in retrieval task [7], we focus on hardest

negatives for training. Given a l2 normalized positive pair (a,o),
the hardest negatives are given by a′ = argmini�ad(i,o) and o′ =
argminj�od(a, j), and this ranking constraint is formulated as:

Lr =

from face to voice︷�������������������������������������������������������������������︸︸�������������������������������������������������������������������︷
max
o′

[α1 + d(a,o) − d(a,o′)]+ + λ3 max
o′

[β1 − d(o,o′)]+

+max
a′

[α2 + d(o,a) − d(o,a′)]+ + λ4 max
a′

[β2 − d(a,a′)]+

︸�������������������������������������������������������������������︷︷�������������������������������������������������������������������︸
from voice to face

(1)

where d(x) is Euclidean distance. Since the ranking constraint is
bi-directional and symmetrical, we take the constraint from face

to voice as an example to show its functionality. Given a mini-

batch, it contains N face embeddings and N voice embeddings.
For an anchor face embedding a, the distance of its positive voice
embedding o should be smaller than the distance between a and
the hardest negative voice embedding o′ by a margin α1:

d(a,o) < d(a,o′) − α1 (2)

whereo ando′ belong to different identity, we also want the distance
between them is larger than a pre-defined margin β1:

d(o,o′) > β1 (3)

Accordingly, the distance between anchor sample and the hard neg-

ative sample representations is greater than the distance between

the anchor and positive representations.

Identity Constraint. In [13], it is found that the attribute of

ID also provides strong supervision, and we introduce identity

constraint Lid to supervise the joint embedding learning, by using

cross-entropy loss function.

Center Constraint. The center constraint is introduced to min-

imize the intra-class variance, with its definition by:

Lcen =
1

2

N∑

k=1

| |xk − cyk | |
2
2 (4)

where N is the total number of training samples, and xk represents
the feature vectors of the k-th training sample (face or voice), cyk
denotes the center of the class and it will be updated every batch

during the training process. Accordingly, the features of samples of

the same class should be clustered in the same common subspace.

By combining the the ranking constraint, identity constraint and

center constraint, the overall loss function is defined as follows:

L = Lr + λ1Lid + λ2Lcen (5)

2.3 Online Hard Negative Mining

During training, we randomly select one face image and one voice

recording of the same person to construct anchor-positive pairs.

To speed up the convergence of our network, we adopt online
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hard negative mining scheme for training efficiency. For an anchor-

positive pair, the hardest negative example which is the closest to

the anchor example is selected to construct a hard triplet.

3 EXPERIMENTS

Dataset. The popular VoxCeleb [12] dataset is selected for face-

voice association. The training, validate and test split are depicted

in Table 1. In the experiments, the identities between the training

and validation set (or testing set) are fully disjoint.

Face data.We extract video frames at a sampling rate of fps = 1,

and employ MTCNN to detect facial landmarks from the extracted

video frames. Accordingly, the cropped RGB face images of size

224×224×3 are obtained, and followed by preprocessing like [10].

Voice data.We separate the voice data from the original video

and utilize voice activity detector (VAD) to eliminate the long silence

period in the voice segments. Accordingly, 64-dimensional log mel-

spectrograms are generated (window size: 25ms, hop size: 10ms)

and followed by mean and variance normalization.

Table 1: Number statistics for the datasets.

Train Val Test

# speaking face-tracks 105,600 12734 30496
# identities 901 100 250

Evaluation metrics. To evaluate the performance, Some stan-

dard metrics, including AUC value, accuracy (ACC) and mAP, are

selected for quantitative comparison [5].

Implementation details. The algorithm is implemented with

Pytorch, with the momentum and weight decay values setting at

0.9 and 0.0005, respectively. Meanwhile, a logarithmically decaying

learning rate is initialized to 10−3 and decaying value set at 10−8.

The trade-off parameters are set at λ1 = 1, λ2 = 0.001, λ3 = λ4 = 0.1.
The margin values are empirically set at α1 = α2 = 0.6, β1 = β2 =
0.2. The face subnetwork is initialized with pre-trained weights on

the VGGFace2 [1] dataset, and the voice subnetwork is initialized

with pre-trained weights on Voxceleb1.

3.1 Performance Analysis and Comparison

To evaluate the model effectiveness, various face-voice association

tasks have been extensively tested, elaborated below.

Verification task: There are 5 testing groups based on gender,

nationality and age. Similar to [10], U represents the unstratified

group, G denotes that the test set is stratified by gender, and N

represents that the test set is stratified by nationality. A denotes

that the test set is stratified by age.

1:2 matching task: We divide the 1:2 matching task into two

scenarios, from the face to voice and from voice to face. We name

the first scenario as F-V 1:2 matching, where a face image and two

audio clips are given, and the purpose is to determine which audio

clip corresponds to the face image. Similarly, the second scenario

is named as V-F 1:2 matching task, where an audio clip of a voice

and two face images are given, and the goal is to determine which

face image corresponds to the given voice clip.

1:Nmatching task: This task is an extension of 1:2 matching, in

which the gallery now includes N-1 imposters. Note that, the model

just needs to predict the only positive sample from N samples. This

task is more challenging with the increase of number N.

Cross-modal retrieval task: This task is an extension of match-

ing task, and one or more instances might match the given anchor.

Table 2 presents the various face-voice association results. Com-

paring with recent relevant works, it can be found that the proposed

joint embedding learning method has yielded the improved verifi-

cation, 1:2 matching and cross-modal retrieval performances. That

is, the learned joint embeddings are discriminative enough to cor-

relate the face and voice modalities. That is, the final outputs of the

proposed network model not only can preserve much information

about the gender, nationality and age, but also contain valuable

information for identity analysis. Consequently, the proposed net-

work model incorporates more capability to learn discriminative

joint embedding for challenging face-voice matching task.

Figure 2 shows 1:N matching performance on two cross-modal

matching scenarios. It can be found that the proposed network

model has achieved the best results on different N values. That

is, the joint embedding learning method is powerful to find the

associations between faces and voices.
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Figure 2: Comparison of 1: N matching performance
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Figure 3: Some cross-modal retrieval examples.

Figure 3 shows some retrieval results with descending order of

similarity from left to right, and we highlight the matching samples

in green. It can be found that the matching samples account for a

large part of top ranked samples, which shows that the proposed

model is able to well associate the face and voices.

Further, we utilize t-SNE [8] method to visualize the learned

embedding features. As shown in Figure 4, we randomly chose

10 people from the test set and visualize their face embeddings. It

can be found that the learned embeddings belonging to the same

identity always gather together, while the embeddings belonging to

the different identities are far away. It indicates that the proposed

network model exhibits high discriminability to learn the joint em-

beddings, which can well push representations of the same person

closer while pulling those of different person away.

3.2 Ablation Study

First, we study the influence of different model configurations. As

shown in Table 3, it can be found that the deeper structures, e.g.,

Inception-ResNet, has achieved better cross-modal verification per-

formance. Within the proposed framework, the fully connected

layers of both face and voice branches are shared with each other.
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Table 2: Comparison with other models on verification task, 1:2 matching task, retrieval task.
Tasks Verification (AUC) F-V 1:2 Matching (ACC) V-F 1:2 Matching (ACC) Retrieval (mAP)
Methods U G N A GNA U G N GN U G N GN F-V V-F
SVHF [11] - - - - - 79.50 63.40 - - 81.00 63.90 - - - -

Horiguchi’s [4] - - - - - 77.8 60.8 - - 78.10 61.7 - - 2.18 1.96
Kim’s [6] - - - - - 78.60 61.60 - - 78.20 62.90 - - - -
PINs [10] 78.5 61.1 77.2 74.9 58.8 83.80 - - - - - - - - -

DIMNet-I [13] 82.5 71.0 81.1 77.7 62.8 83.52 71.78 82.41 70.90 83.45 70.91 81.97 69.89 4.17 4.25
DIMNet-IG [13] 83.2 71.2 81.9 78.0 62.8 84.03 71.65 82.96 70.78 84.12 71.32 82.65 70.39 4.23 4.42
VFMR3 [15] - - - - - - - - - 71.52 - - - - 5.00
Ours 85.03 73.22 84.44 79.77 65.07 85.42 73.52 84.48 71.11 85.18 74.29 83.97 70.70 6.19 6.75

Table 3: Different configurations on verification task.
Config Details Val (AUC %)

Network
VGG-Face+VGG-Vox 78.15

Inception-Resnet+DIMNet-voice 85.49

Last FC
Not shared 73.67
Shared 85.49

Embedding size
128 84.69
256 85.49
512 85.20

Loss

Only identity loss 66.12
Only center loss 50.49
Only ranking loss 83.15

Ranking loss + identity loss 83.94
Ranking loss + center loss 83.81

Full model 85.49

Figure 4: Visualization of the learned face embeddings.

To evaluate its efficiency, we also evaluate the performance without

sharing the FC layers. It can be found that the verification perfor-

mance without sharing scheme drops a lot, which indicates that

the shared fully connected layers with the shared parameters are

able to well correlate the heterogeneous face and voice.

Next, we train our model with different embedding size (i.e., 128,

256 and 512). It can be found that different embedding sizes have

induced a bit different verification performance, and the size of 256

has yielded the better performances.

Moreover, we also verify the effectiveness of the ranking loss,

the center loss and the identity loss. It can be observed that the

learning model with only the identity loss or the center loss has

resulted in a bit poor performance. By integrating the ranking loss,

the proposed network model brings significant improvement on

verification performance, and the proposed fully model with three

constraints has yielded the best performances.

4 CONCLUSION

This paper has presented an efficient deep correlated model to map

the face and voice into a shared discriminative embedding space,

and the proposed model can well push the representations of the

same person closer while pulling those of different person away.

Accordingly, the derived cross-modal embeddings are beneficial for

various face-voice association and cross-matching tasks, and the

extensive experiments have shown its outstanding performances.
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