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Abstract—Streaming machine learning and data mining prob-
lems are prevalent in real world applications, where individual
data are collected and revealed consecutively. These problems
can often be modeled and solved under Constrained Online
Convex Optimization (COCO) algorithmic framework. The ever-
growing amount of sensitive individual data is posing greater
challenge to the contradictory goals of privacy protection and
reasonable model usability. Despite its extensive studies via
projected/proximal gradient based methods, its projection-free
counterpart has not been well-explored. Inspired by the better
per-iteration computational efficiency and privacy-utility tradeoff
under non-private/non-online settings of the projection-free algo-
rithms, we propose the projection-free COCO with differential
privacy guarantee, a de facto standard for privacy preserving.
We rigorously analyze its utility in terms of regret rate, which
shows that, even without the expensive projection/proximal op-
erators, it still matches the differentially privacy COCO with
projection/proximal operations. To the best of our knowledge,
it is the first projection-free differentially private COCO, and
thus broadens the applicability of COCO with privacy guarantee.
Furthermore, since protecting the privacy of all incoming samples
will lead to inferior regret rate compared to the nonprivate
optimal, we propose a relaxed privacy guarantee which trades
the privacy of remote samples for better utility. To achieve
this, we adopt a window tree mechanism for maintaining a
private gradient summation, which is then used to construct an
approximation function for updating the new response variable
at each timestamp. It improves the regret bound to O(lnT )
with respect to the sequence length T , matching the nonprivate
optimal regret.

Index Terms—Online Convex Optimization, Differential Pri-
vacy, Proximal Online Gradient Descent, Projection-free Online
Gradient Descent

I. INTRODUCTION

In many online practical applications, data are collected and

fed to model learning in a streaming fashion [1]. Prominent

examples can vary from web browsing behavior analysis [2]

with ever increasing social media data, website cookies and

user click history, to monitoring systems that continuously

collect sensory data for applications like personal trajectory

monitoring and location-based services [3], and many oth-

er real-time systems [4] used for industrial manufacture or

financial transaction data analysis. Constraint online convex

optimization (COCO) [1], [5]–[9] is a popular approach to

dealing with various streaming machine learning and data

mining problems arising from such real-time learning and

monitoring systems environment. Within COCO context, with

data instances arriving sequentially over time, the COCO

algorithm responses continuously by releasing new decision

variable from a bounded convex set at each timestamp. Each

time the COCO algorithm plays a variable, it observes a

convex loss and the aim is to minimize the regret, a utility

measure for COCO algorithms.

The outputs of the learning algorithm can put the privacy

of sensitive data at risk, which is especially severe for online

systems as an adversary can potentially observe the entire

response sequence that contains significantly more information

than only one final output produced by an offline system.

To preserve the privacy of individual data instances, the

rigorous statistical notion of differential privacy (DP) [10]–

[12] has become nowadays the standard technique for privacy

guarantee. DP restricts that any single change of the data

instances will make little difference to the output of a random

algorithm. The utility of the algorithm often decreases due

to the additional randomness introduced for privacy protec-

tion. As such, algorithm designers need to strike the trade-

off between privacy and utility, which becomes even more

delicate for the online algorithm with the continuing release

of the output sequence. With streaming data accumulation, it

becomes difficult to protect each instance’s privacy without

much compromise on utility. In the literature, some works

have proposed to maintain satisfactory utility by relaxing the

DP restriction on some instances or events. For example, [13]

considers w-event privacy to only protect the privacy of events

of every w continuous timestamps in a sliding window, while

[14] consider l-trajectory privacy that only ensures differential

privacy of every length l trajectory. In particular, [15] ob-

serves that recent data are more important than distant inputs

and therefore proposes the privacy expiration assumption by

protecting only the privacy of recent data instances inside a

sliding window. However, these are results within the database

community that publishes either private data vectors or simple

statistics like sum or histogram. It has yet to be known whether

similar relaxation of privacy in some instances can improve the

performance of private COCO methods.

For constrained convex optimization, a lot of differentially

convex optimization algorithms [16]–[21] have been designed

provided that the projection/proximal operation [22] onto the
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constrained set can be efficiently computed (i.e. projection-

friendly constraints). However, many constraints adopted in

machine learning have high computational complexity for

computing the projection/proximity, for which a projection-

free optimization would be preferred for better scalability

[23]–[26]. Such projection-free methods, called conditional

gradient algorithms or Frank-Wolfe algorithms, compute a

more efficient linear oracle-based operator to avoid projection

in each iteration and have been recognized as a better alterna-

tive for the linear operator-friendly constrained problems. In

addition to their lower per-iteration computational complexity,

Frank-Wolfe type algorithms have been found to have better

utility under differential privacy restrictions. For example,

Talwar et al. [27] developed a differentially privacy conditional

gradient for the LASSO private and proved that it achieves

nearly optimal utility. Later, it is extended to distributed setting

[20], [21] where the nearly optimal utility is obtained along

with a better uplink communication efficiency. More recently,

[28], [29] show that differentially private conditional gradient

helps improve the utility even for empirical risk minimization

(ERM) with nonconvex loss functions.

Specifically, for the online constrained ERM, the differ-

entially private COCO is required to output a continuous

sequence of response variable at each time stamp. [19], [30],

[31] have considered differentially private OCO algorithms.

[19] and [30] are based on the regret optimal online scheme

called “Follow The Approximate Leader”(FTAL) [6], and [32]

designs private algorithm based on the noise and space effi-

cient tree mechanism. In addition, their accumulative regrets

still grow faster than nonprivate counter part. [19] and [31] also

design online OCO algorithms for special linear loss functions.

The former has O(lnT ) regret achieving the known optimal

even for nonprivate case, while the latter reduces dependence

on the dimension of the problem. However, an extension to

more general loss functions for both results is unclear. These

methods are exclusively developed provided that the constraint

sets are projection-friendly.

Motivated by the computational scalability Frank-Wolfe

algorithm and the superior utility of its two differentially

private variants under deterministic setting, we investigate

whether we can improve the computational efficiency as well

as the utility of the private COCO algorithm by developing its

projection-free counterpart. In addition, to take the advantage

of the relaxed privacy restriction on distant data timely and

safely, we adopt the window tree mechanism with either

Gamma or Gaussian perturbation to maintain a private gradient

summation approximation satisfying the window differential

privacy. We then utilize the popular FTAL scheme to update

the response variable by optimizing an approximate function

constructed with the private gradient summation. Obtained

with the DP-gradient summation, we develop the projection-

free online conditional gradient algorithm and rigorously ana-

lyze its regret bound. We are able to achieve improved regret

growth of order O(lnT ) with respect to the sequence length

T , which matches the nonprivate optimal regret bound. The

regret bound also captures the effect of the window length

and provides an explicit trade-off between privacy and utility.

To the best of our knowledge, it is the first private COCO

algorithm to consider a projection-free update in the private

COCO, providing an alternative choice for private online

learning tasks on linear oracle-friendly constraint sets.

Contributions. To summarize, we aim to provide the theo-
retical understanding of whether an ideal regret bound is

achievable for the differentially private COCO, where the

regret bound is able to match its nonprivate counterpart. In

brief, we have the following contributions: 1) Reduce regret

to O(T ) for private COCO by trading privacy of remote

inputs, so that the utility matches the same order of the

nonprivate counterparts; 2) For privacy-protection window size

W , the regret has a factor ln(W ), which captures the trade-off

between privacy coverage and utility; 3) Provide a projection-

free COCO variant with improved regret bound, which is the

first private conditional gradient method under online setting.

All these results come with rigorous proof. Due to space

limit, we relegate proofs of theorems in this section to the

supplement which can be accessed via the link1.

II. BACKGROUND

A. Problem Setup

Given a streaming sequence of loss functions I =
[f1, f2, ..., ft, ...fT ] arriving one at a time, the COCO algorith-

m is required to response xt from the constraint set C, which

is a bounded convex set. After each response, it will suffer

a convex loss ft(xt). In machine learning, depending on the

task, the function ft can have various choices, e.g., logistic loss

or hinge loss for classification, and square function for linear

regression. For the sake of simplicity, this paper abstracts that

ft(x) is L-Lipschitz continuous and μ-strongly convex w.r.t.

x, described by the following two definitions.

Definition 1: (Lipschitz Continuous) A function f(x) :
R

d → R is Lipschitz continuous with parameter L on the

set C if ∀x, y ∈ C it holds that,

|f(x)− f(y)| ≤ L||x− y||2. (1)

Definition 2: (Strong Convexity) A function f(x) : Rd → R

is strongly convex with parameter μ on the set C if ∀x, y ∈ C
it holds that,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ μ

2
||x− y||22. (2)

We also assume that the bounded convex constraint set has

diameter D, i.e. D = max∀x,y∈C ||x− y||2.

We measure the utility of the algorithm by regret, a common

notion used in online algorithms, defined as:

Definition 3: (Regret) Denote the private release of the al-

gorithm by x1, x2, ..., xt, ..., xT , then the regret with sequence

length T is

Regret(T ) =
T∑

t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x). (3)

1http://www.comp.hkbu.edu.hk/∼ymc/papers/conference/wi20/
wi20-supplement.pdf
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B. Differential Privacy and Privacy Expiration

The differential privacy has become the standard statistical

notion in privacy preserving. It guarantees that the output of

the algorithm will remain roughly the same despite the change

of any particular individual of the input sequence. For COCO

setting, with a neighboring I ′ differing from I with a single

entity f ′
t 
= ft (for any t ∈ [T ]), and the output being private

decision variables [x̂2, ..., x̂t, ..., x̂T+1] ∈ CT , the differential

privacy is defined as:

Definition 4: (Differential Privacy (DP) [10]; [11]) A ran-

domized algorithm A is (ε, δ)-differentially private if, for

every two neighboring sequences I and I ′ ∈ FT that differ

in only one entry, and for every event O in the output space

CT ,

P [A(I) ∈ O] ≤ eεP [A(I ′) ∈ O] + δ. (4)

The algorithm is said to be ε-differentially private if δ = 0.

To enable a deterministic algorithm to provide DP protec-

tion, it is common to randomize it by adding designed random

noise values sampled from proper random distributions, in-

cluding Laplacian, Gamma, and Gaussian distributions. The

noise addition mechanisms are often considered to be the

basic building blocks of differential privacy designs, among

which the Gaussian and Gamma mechanisms are utilized in

this paper whose details are summarized in the appendix. The

sensitivity of the algorithm is an important concept in deciding

the parameter of the random distribution, which measures the

maximum change of the algorithm when a particular individual

instance changes.

Definition 5: (�2 Sensitivity) Let A be an algorithm map-

ping stream I to O. The �2 sensitivity of A is Δ2 =
maxI,I′ ||A(I)−A(I ′)||2, where I and I ′ differ only in one

instance.

Considering the simple yet practical privacy expiration

assumption, the window differential privacy definition only

delivers privacy protection for recent instances inside a sliding

window [15]. That is, only the changes of output caused by the

latest W individual entries are counted into the privacy loss,

while the changes of the output caused from distant inputs are

not concerned. The following definition formalizes the window

differential privacy, which is adapted from [15] to our COCO

setting.

Definition 6: (Window Differential Privacy (WDP)) Let A
be a random algorithm. With a specific sequence length T ,

for any input convex function sequence I and a neighboring

sequence I ′, O is an event (i.e., the output sequence space),

A is the window (ε, δ)-differential privacy with a window size

W if the following condition holds,

P [A([f1, f2, ..., ft, ..., fT ]) ∈ O]

≤ ew(T−t)εP [A([f1, f2, ..., f
′
t , ..., fT ]) ∈ O] + δ,

(5)

where w(i) = 1 for i < W , w(i) = ∞ for i ≥ W . The

algorithm is said to be window ε-differentially private with

the window size W if δ = 0.

Note that neither the design of an efficient algorithm that

timely takes the advantage of the just-relaxed privacy nor the

quantification of the privacy and utility trade-off is trivial

to carry out because, unlike the offline setting, streaming

algorithms deal with dynamic input and output environment

and the privacy window keeps shifting as new instances arrive.

C. Differentially Private Follow The Approximate Leader

The private COCO algorithms [19] and [30] are based on

FTAL [1], [6], which only requires first order information and

is known to be regret optimal. For μ-strongly convex loss

function fτ (x), it updates xt+1 by minimizing an approxima-

tion function of the streaming ERM loss function
∑t

τ=1 fτ (x)
(a.k.a. Follow The Leader (FTL) updating) as

Ft(x) =
t∑

τ=1

f̃τ (x), where (6)

f̃τ (x) = fτ (xτ ) + 〈∇fτ (xτ ), x− xτ 〉+
μ

2
||x− xτ ||22, (7)

which is always a lower approximation by the strong convexity

assumption. To minimize Ft(x), it is equivalent to minimize

Jt(x) = 〈
t∑

τ=1

∇fτ (xτ ), x〉+
μ

2

t∑
τ=1

||x− xτ ||22. (8)

By observing that the continuous gradient summation gt =∑t
τ=1 ∇fτ (xτ ) is the only ingredient having access to sensi-

tive private information in the above procedure, it suffices to

use a differentially private surrogate of gt =
∑t

τ=1 ∇fτ (xτ )
in the computation to ensure the entire COCO algorithm is DP

as well. [19], [30] abstract out the step of the private gradient

summation maintenance as a continuous running sum task and

resort to the tree mechanism. The tree mechanism [32], [33]

has been proven to add minimum noise to ensure DP can

be implemented in a space and time efficient manner. Hence,

it is an ideal candidate for maintaining the private gradient

sum. Denote the private surrogate of gradient summation

computed by the tree mechanism by ĝt, and re-denote the

private release history of the private COCO up to timestamp

t by x̂1, x̂2, ..., x̂t, the private updating replaces gt by ĝt to

minimize

Ĵt = 〈ĝt, x〉+
μ

2

t∑
τ=1

||x− xτ ||22, (9)

[19] and [30] propose to solve it exactly by projection PO
with

x̂t+1 = PO
( t∑
τ=1

x̂τ − ĝt/μ, C
)
, (10)

which potentially limits their applicability to only tasks with

projection-friendly constrains, i.e. constraint sets where pro-

jection can be efficiently evaluated, like Euclidean ball.

III. PROPOSED METHOD

This section presents our private projection-free COCO

algorithm with the improved regret bound by considering the

privacy expiration assumption. Following the FTAL frame-

work, we start with a window tree mechanism that maintains

two binary subtrees with the depth at most (�log2 W 
 + 1)
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TABLE I
COMPARISON OF PRIVATE COCO ALGORITHMS

Algorithm Privacy guarantee per-iteration OP Regret Bound

POCG [19] (ε, δ)-DP two projections O(

√
d
√

T ln2 T
δ

ε
)

PQFTL [19] (ε, δ)-DP linear equation O(

√
d ln 1

δ
ln1.5 T

ε
)

PFTAL [30] ε-DP one projection O( d ln2.5 T
ε

)

Ours with projection window ε-DP one projection O(
d log1.52 W lnT

ε
)

Ours with projection window (ε, δ)-DP one projection O(

√
d log1.52 W ln 1

δ
lnT

ε
)

Ours with linear window ε-DP one linear oracle O(
d log1.52 W lnT

ε
)

Ours with linear window (ε, δ)-DP one linear oracle O
(
max

(√
dε, log1.52 W ln 1

δ

) ·
√

d(L+μD)2 lnT
με

)

s18

s14

s12

v1 v2

s34

v3 v4

s58

s56

v5 v6

s78

v7 v8

Fig. 1. Illustration of the binary tree mechanism

to maintain the window private gradient summation for con-

structing Ĵt(x) in eq.(9). Before presenting the projection-

free COCO, we first solve Ĵt(x) exactly by projection for

projection-friendly constraints, which gives us a direct com-

parison with the previous methods [19], [30] without privacy

expiration assumption (please see Table I for comparison).

We then develop the DP projection-free COCO, which still

maintains the optimal O(lnT ) regret. The regret analysis is

nontrivial compared to its nonprivate counterpart because of

the dynamic noise injected at each time stamp for the purpose

of differential privacy protection. The regret analysis shows

the benefit of privacy expiration in improving regret bound to

O(lnT ) given a fixed window size, matching the nonprivate

optimal w.r.t. the sequence length T . Also, it captures the

trade-off between the privacy coverage and the regret bound.

A. A Mini-example for Tree Mechanism and Window Tree
Mechanism

As for the tree mechanism [32], [33], which is central to en-

abling the privacy preserving ability for FTAL algorithms, we

briefly introduce it with the mini-example illustrated in Figure

1 for releasing the continuous summation of v1, v2, ..., v8 with

ε-DP guarantee. For rigorous algorithm description, please

refer to [33] and [32]. The tree mechanism constructs a

complete binary tree where the value of each individual

instance is stored in the leaf node, i.e. v1, v2, ...v8 in the

example. Internal nodes store the partial sum of its child

nodes. For example, node s12 keeps the sum of v1 and v2
while s14 keeps the sum from v1 to v4. Each node also keeps

a private copy of its value by adding noise vector sampling

from the properly scaled random distribution, each providing

(ε/ log2 8)-DP ((ε/ log2 T ) for general game length T ). The

rationale is that any partial sums can be computed by referring

at most log2 8 (log2 T for general game length T ) nodes in the

binary tree. For example, when computing s1−7, it sums noisy

values kept in nodes s14, s56 and v7. Hence, any particular

instance change will affect at most 3 (log2 T ) nodes in the

tree. By composition theorem, the continuous private running

sum release would be ε-DP. Note that tree mechanism adds

noise as minimum as possible, either adding noise to each

instance value itself followed by summation or adding noise

to the summed clean instances will require significantly greater

amount of noise to ensure ε−DP under continuous releasing

context, and the utility (i.e. accuracy of the approximated sum)

deteriorates.
We then describe the intuition of the window tree mech-

anism, still based on the same mini-example. It extends the

tree mechanism to window tree mechanism that considers the

decayed privacy when releasing continuous sum. Still, we keep

the instance values on leaf nodes and partial sums on inner

nodes. Given a window size W (we assume W is the exact

power of 2 hereafter for the sake of simplicity), the complete

binary tree can be divided into blocks and each is a log2 W+1
depth tree with W leaves. The sliding window can at most span

two blocks of the log2 W + 1 depth trees. Back to the mini-

example in Figure 1, with the window size 4, the binary tree

is divided into the two depth-3 subtrees rooted at node s14 and

s58, respectively. At time t = 7, the private window involves

node v4 to v7, spanning two subtrees. At time t = 8, the private

window involves nodes v5 to v8, affects only subtree s58, and

at this moment we can only keep the clean value kept by node

s14 and discard the entire subtree root at s14. The computation

of s1−7 (i.e. the sum of v1 to v7) is by summing clean value in

s12, v3 and noisy values in v4, s56, v7, that at most log2 4 + 1
noisy nodes are involved. For general W and time t, we only

need to keep the complete structures of at most two rightmost

subtrees of depth log2 W +1 (i.e. (k−1)-th and k-th subtrees,

k = � t
W 
) with both clean and noisy value. For the nodes

residing left to these two subtrees, it suffices only to keep their

clean sum and recall the tree structure. The calculation of the

window partial sum only involves log2 W + 1 noisy nodes.

Bolot et al. [15] first proposed the window tree mechanism

for the private running sum under ε-DP constraint. They added

Laplacian perturbation with a proper parameter based on the

�1 sensitivity of the problem. Also, their studies were limited

to simple statistics releasing, e.g., running sum or linear
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map. In the following, in order to adopt the tree mechanism

for our private COCO problem, we extend the window tree

mechanism by adding Gamma and Gaussian perturbation with

the proper parameters according to �2 sensitivity for providing

ε and (ε, δ)-DP, respectively, and the noise injecting involves

at most two rightmost (log2 W + 1)-depth subtrees.

B. Window Tree Mechanism for Private Gradient Summation
with Decayed Privacy

1) Window Tree Mechanism with Gamma Perturbation:
We consider the window tree mechanism for general stream-

ing data v1, v2, ..., vt, ... to preserve ε differential privacy

with a window size W for releasing summation sequence

(s1, s2, ..., st, ...). We denote the noise vectors added to the

nodes in the two rightmost subtrees (explained in the sup-

plement) by ni. The next lemma describes the distribution

parameter of ni and shows the window ε-DP guarantee with

Gamma perturbation denoted by Γ.

Lemma 1: With ni ∈ R
d sampled to satisfy

||ni||2 ∼ Γ(d,
Δ2(�log2 W 
+ 1)

ε
), (11)

where Γ denotes the Gamma distribution (i.e. ||ni||2 propor-

tional to e
− ||ni||2ε

Δ2(�log2 W�+1) ) and is added to each relevant node,

the window tree mechanism achieves the window ε-differential

privacy with the window size W .

The next lemma describes the utility of the window tree

mechanism in terms of the �2-norm distance between the

private and clean running sums. Note that we are generally

interested in the case t > W and left along t ≤ W , which is

identical to the original tree mechanism.

Lemma 2: For any β > 0 and t, with probability at least 1−
β, st computed by the window tree mechanism with Gamma

noise at each node of ||ni||2 ∼ Γ(d, Δ2(�log2 W�+1)
ε ) satisfies:

||st −
t∑

i=1

vi||2 ≤ (
dΔ2 log

1.5
2 W ln d

β

ε
), (12)

where Δ2 is the �2 sensitivity of the sum function.

2) Window Tree Mechanism with Gaussian Perturbation:
Similarly, to ensure window (ε, δ)-DP (δ > 0), we add

Gaussian noise to the nodes of the subtrees involved in the

privacy window.

Lemma 3: With noise vector ni ∼ N (0, σ2
Id×d), where

σ2 =
8Δ2

2(�log2 W 
+ 1)2 ln2(2/δ)

ε2
, (13)

and added to each relevant node, the window tree mechanism

achieves the window (ε, δ)-differential privacy with a window

size W .

Similarly, we provide the utility bound.

Lemma 4: For any β > 0 and t, with probability at least

1− β, st computed by window tree mechanism satisfies:

||st −
t∑

i=1

vi||2 = O((
√
dΔ2 log

1.5
2 W ln

1

δ

√
ln

1

β
)/(ε)) (14)

Algorithm 1 Window Differentially Private COCO with Pro-

jection: WDP-COCOP

Input: x1 = x̂1, T,W, μ, L, ε or (ε, δ), loss function sequence

f1, f2, ..., fT .

1: for t = 1, 2, ..., T do
2: Construct ĝt by window tree mechanism WT M:

OPTION I: WT MGamma(∇ft(x̂t),W, ε) for window

ε-DP;

OPTION II: WT MGaussian(∇ft(x̂t),W, ε, δ) for win-

dow (ε, δ)-DP;

3: x̂t+1 = PO((
∑t

τ=1 x̂τ − ĝt/μ), C);
4: Output: x̂t+1;

5: end for

where Δ2 is the �2 sensitivity of the sum function.

Later, we will show that, with Gaussian perturbation, the

compromise on privacy with a small probability δ can improve

the regret bound dependence of the dimension d in private

COCO from O(d) to O(
√
d), when compared with Gamma

perturbation based methods like PFTAL in [30]. That is, the

private COCO can inherit the improved utility of Lemma 4.

C. Window Differentially Private COCO with Projection

Before presenting our DP projection-free COCO, we briefly

describe the DP COCO with projection when the privacy

expiration is used. It is called Window Differentially Private

COCO with Projection (WDP-COCOP) as summarized in

Algorithm 1. Subsequently, we are able to 1) have a direct

comparison with the DP-COCO without privacy expiration

technique because they are exclusively projection-based; 2)

set the context for the projection-free counterpart in terms of

the regret bound, which shows that the projection-free operator

does not compromise the utility.

We follow the FTAL framework and provide window pri-

vacy protection by utilizing the private approximation of the

gradient summation maintained by window tree mechanism

presented in the previous subsection. That is, at the t-th times-

tamp, we update the response x̂t+1 by exactly solving Ĵt(x)
with ĝt computed by window tree mechanism. In detail, Step 2

has two options to add either Gamma or Gaussian perturbation

to the relevant nodes in the window tree, depending on the

privacy type (i.e. ε or (ε, δ)). The regret bound provides us a

direct comparison with the previous algorithms based on simi-

lar building blocks but without privacy expiration assumption,

clearly revealing the effect of the window differential privacy

in COCO as a result.

Privacy Guarantee: The WDP-COCOP algorithm preserves

the window differential privacy with the proper noise pa-

rameters as described by the following two theorems. In

brief, they are by Lemma 1 & 3 with �2 sensitivity being

(L + μD), plus the post-processing property of differential

privacy (Proposition 2.1 in [12]).

Theorem 1: (window ε-DP of Algorithm 1) Let f1, .., fT
be streaming L-Lipschitz continuous and μ-strongly convex

functions. The diameter of the bounded convex set is D.
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Algorithm WDP-COCOP with OPTION I is the window ε-
differential privacy with the window size W if window tree

mechanism samples Gamma noise from distribution

||ni||2 ∼ Γ(d,
(L+ μD)(�log2 W 
+ 1)

ε
). (15)

Theorem 2: (window (ε, δ)-DP of Algorithm 1) Let f1, .., fT
be streaming L-Lipschitz continuous and μ-strongly convex

functions. The diameter of the bounded convex set is D. Al-

gorithm WDP-COCOP with OPTION II is the window (ε, δ)-
differential privacy with the window size W if the window

tree mechanism samples Gaussian noise from the distribution

ni ∼ N (0,
8(L+ μD)2(�log2 W 
+ 1)2 ln2(2/δ)

ε2
Id×d).

(16)

Regret Analysis: The regret analysis for Algorithm 1 WDP-

COCOP with both privacy options is provided.

Theorem 3: (regret guarantee with window ε-DP) Under the

same condition as in Theorem 1, for any β > 0 and window

size W , we have with probability at least 1−β, the following

regret bound holds,

Regret(T ) = O((d(L+ μD)2 log1.52 W ln
d

β
lnT )/(με)).

Theorem 4: (regret guarantee with window (ε, δ)-DP) Under

the same condition as in Theorem 2, for any β > 0 and

window size W , we have with probability at least 1− β, the

following regret bound holds,

Regret(T ) = O((
√
d(L+μD)2 log1.52 W ln

1

δ

√
ln

1

β
lnT )/(με))

.

Discussion: Compared with PQFTL [19] and PFTAL [30],

with a fixed window size W , our regret bound is of order

O(lnT ), which is better than theirs and is also known to

match the nonlinear optimal. Also, PQFTL [19] is limited to

quadratic loss functions. Taking the window size W related

term into comparison, our regret bounds provide an explicit

trade-off between privacy coverage and regret bound, i.e.

the regret scales with the sliding window size. Compared to

the more generally applicable PFTAL [30], even with full

sequence privacy protection (i.e. W = T ), our method with

Gaussian perturbation (option II) has better dependence on d
(i.e. O(

√
d) to O(d)), which can be more favored in high-

dimensional tasks. Table I provides a summary of private

COCO algorithms.

D. Window Differentially Private COCO with Linear Oracle

We present a private COCO called Window Differentially

Private COCO with Linear oracle (WDP-COCOL) in Algo-

rithm 2 targeting at tasks with linear oracle (LO)-friendly con-

straint sets, e.g., matroid polytope, flow polytope, and spectra-

hedron [23]. The conditional gradient method [34], [35], also

known as the Frank-Wolfe method, has become increasingly

popular for convex (and even nonconvex [36]) optimization

over LO-friendly constraint sets, where either the improved

computational efficiency or the better ability to preserve the

sparse structure of the desired variable when computed with

the CG methods has been observed [23]. In particular, [27]

provides a CG-based private algorithm in the offline ERM

setting and shows that it achieves nearly optimal utility for

Lasso regression under DP restriction. [37], [38] consider

online CG methods, however, in the nonprivate setting. It is

still unclear whether CG can be carried out in a private manner

within the streaming context. In this subsection, we show that

we can construct a window tree mechanism based private

leader that is capable of incorporating a variant of conditional

gradient method. To the best our knowledge, this is the first
differentially private online convex learning algorithm that
only requires solving a linear minimization problem at
each iteration. More importantly, our regret analysis shows

that our private online CG method is able to provide the same

regret bound O(lnT ) with respect to the game length T given

a fixed window size W , which is the same as 1) the more

computational demanding an online projected gradient method

would provide, and 2) the nonprivate optimal regret bound. In

the following, we first describe our differentially private online

CG method, which is followed by privacy as well as utility

guarantee in terms of regret analysis.

We study the private COCO with the CG step based on the

nonprivate FTAL-type conditional gradient variant [38] and

consider a constraint set to be generally bounded polytope P .

It uses a slightly different approximation function Ft(x) with

eq.(6),

Ft(x) =

t∑
τ=1

f̃τ (x) +
C0μ

2
||x− x1||22. (17)

Thus, our modified private Ĵt(x) is

Ĵt = 〈ĝt, x〉+
μ

2

t∑
τ=1

||x− x̂τ ||22 +
C0μ

2
||x− x1||22, (18)

where ĝt can again be maintained by window tree mechanism.

The key ingredient to the CG based method is a linear oracle

evaluation step. Recently, various modifications have been

proposed based on the original LO. This paper, in specific,

follows [38] to use the local linear oracle, denoted by LLOO,

which returns a linear oracle p given the variable x and the

gradient g. Roughly, LLOO chooses a linear oracle from a

smaller range that p is in the ρ · r ball centered around x
(denoted by B(x, r)), rather than from the entire set P . [38]

shows that, on general polytopes, LLOO still computes one

local LO evaluation per-timestamp. The functioning of LLOO
is summarized in the following assumption.

Assumption 1: Denote the local linear oracle by LLOO
that, for the variable x, radius r and gradient estimation g.

It evaluates the linear oracle p ∈ P , i.e. p = LO(x, r, g).
We assume the linear oracle p satisfies the following two

properties.

1) ∀y ∈ B(x, r) ∩ P , it holds that 〈p, g〉 ≤ 〈y, g〉;
2) ||x− p||2 ≤ ρr.

In Algorithm 2, Line 8 computes the new private decision

variable x̂t+1 by linear combination, which avoids the pro-
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jection/proximal operation. Although our method is based

on nonprivate [38], the design of parameters and analysis

are different. For example, the settings of C1, CW take the

window size and DP parameters ε, δ into consideration, which

are exclusive to window differential privacy. Also, the regret

analysis needs to handle the approximate linear oracle output

of LLOO because of the randomness inherited in ĝt for

privacy, rather than the deterministic clean gt as considered

in [38].

Algorithm 2 Window Differentially Private COCO with Lin-

ear Minimization: WDP-COCOL

Input: x1 = x̂1, T,W, μ, L, c, d, ε or (ε, δ), loss function

sequence f1, f2, ..., fT .

1: initialize: ρ = c
√
d (c is a geometry constant of P), α =

1
5ρ2 , C0 = (25ρ2)2;

2: initialize (cont.): CW =
2αd log1.5

2 W ln d
β

(1−α)ε (for W-ε-DP); or

CW =
2α

√
d log1.5

2 W ln 1
δ ln d

β

(1−α)ε (for W-(ε, δ)-DP);

3: initialize (cont.): C1 = 26ρ2(L+ μD)(1 + CW );
4: for t = 1, 2, ..., T do
5: Construct ĝt by window tree mechanism WT M:

OPTION I: WT MGamma(∇ft(x̂t),W, ε) for window

ε-DP;

OPTION II: WT MGaussian(∇ft(x̂t),W, ε, δ) for win-

dow (ε, δ)-DP;

6: ηt =
C2

1

μ(t+C0)
; rt =

√
4ηt

μ(t+C0)
+ 2(L+μD)

μ(t+C0)
;

7: p̂t = LLOO(x̂t, rt, (
∑t

τ=1 x̂τ + C0x1 − ĝt/μ));
8: x̂t+1 = (1− α)x̂t + αp̂t
9: Output: x̂t+1;

10: end for

Privacy Guarantee: The following theorem guarantees the

window differential privacy of the DP projection-free COCO.

Theorem 5: (window differential privacy of Algorithm 2)

Under the same condition as in Theorem 1 and 2 (with C
replaced by P), Algorithm 2 with Option I and Option II is

window ε-differential privacy and window (ε, δ)-differential

privacy with window size W correspondingly.

Regret Analysis: We present the regret analysis of Algorithm

2 in the following.

Theorem 6: (regret guarantee with window ε-DP) Under

the same condition as in Theorem 5, for any β > 0 and a

window size W , with probability at least 1− β, Algorithm 2

with OPTION I has the following regret bound at a particular

iteration T ≥ W ,

Regret(T ) = O((d(L+ μD)2 log1.52 W ln(d/β) lnT )/(με)).

Theorem 7: (regret guarantee with window (ε, δ)-DP) Under

the same condition as in Theorem 5, for any β > 0 and a

window size W , with probability at least 1 − β, Algorithm

2 with OPTION II has the following regret bound with the

sequence length T ≥ W , Regret(T ) =

O
(
max

(√
dε, log1.52 W ln

1

δ

√
ln

1

β

)
·
√
d(L+ μD)2 lnT

με

)
.

Discussion: The regret in this part for both privacy types

matches nonprivate optimal O(lnT ) with a fixed window size,

confirming that online CG can indeed be privatized and broad-

en the applicability of private COCO to many applications with

LO-friendly constraints. Again, the term log1.52 W captures

the trade-off between privacy coverage and utility with the

regret bound scaling with a polylog term of window size W .

Considering ε-DP, our regret bound is as good as [30] even

when privacy window extends to the full sequence. When

relaxing to (ε, δ)-DP, our method can have better dependence

on the dimension d by Theorem 7.

IV. CONCLUSION

In this paper, we have developed the projection-free COCO

under differential privacy restriction. To further improve its

utility, we have also investigated the potential to trade pri-

vacy of remote input instances. We have adopted a window

tree mechanism with Gamma and Gaussian perturbation to

efficiently maintain the window private gradient summation.

The regret bound has shown that the proposed algorithm can

adaptively adjust the trade-off between privacy coverage and

utility. Meanwhile, with the fixed window size, the regret

bound growth matches the nonprivate optimal O(lnT ). In

particular, as the first DP COCO method is designed for

problems with linear oracle-friendly constraints, it effectively

broadens the applicability of private COCO methods.

APPENDIX

In the appendix, we recall some additional results from

differential privacy. In addition, all proofs of the result-

s in this paper can be found in the Supplement via the

link: http://www.comp.hkbu.edu.hk/∼ymc/papers/conference/

wi20/wi20-supplement.pdf.

A. Gamma mechanism

Let f : N
|X | → R

d be an arbitrary d-dimensional

function, and define its �2 sensitivity to be Δ2f =
maxajacentx,y ||f(x)− f(y)||2. The Gamma Mechanism with

the parameter c adds noise n ∈ R
d from distribution e−||n||2/c

to the output.

Proposition A1: For any ε ∈ (0, 1), the Gamma Mechanism

with parameter c = Δ2f/ε is ε-differentially private.

The following is the concentration property of Gamma

distribution ( [39]).

Proposition A2: Let X be a random variable drawn from

the distribution Γ(k, θ), where k is an integer. We have,

P (X ≤ kθ ln(
k

β
)) ≥ 1− δ. (19)

B. Gaussian mechanism

Let f : N
|X | → R

d be an arbitrary d-dimensional

function, and define its �2 sensitivity to be Δ2f =
maxajacent x,y ||f(x) − f(y)||2. The Gaussian Mechanism
with parameter σ adds noise n ∈ R

d with each component

scaled to N (0, σ2) to the output.
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Proposition A3: For any ε ∈ (0, 1), if c2 > 2 ln(1.25/δ), the

Gaussian Mechanism with parameter σ ≥ cΔ2f/ε is (ε, δ)-
differentially private.

We also need the following concentration property of the

Gaussian distribution.

Proposition A4: Let X be a random variable drawn from

the distribution N (0, Id). We have,

P (||X||2 ≤
√
2d ln

1

δ
) ≥ 1− δ. (20)

C. Composition theorems

Proposition A5: (simple composition theorem [12]) Let A1

be ε1-differential privacy and A2 be ε2-differential privacy.

Then, their combination is (ε1 + ε2)-differential privacy.

Proposition A6: (advanced composition theorem [12]) For

all ε, δ1, δ2 ≥ 0, the class of (ε, δ1)-differentially private

mechanisms satisfies (ε′, kδ1 + δ2)-differential privacy under

the k-fold adaptive composition for:

ε =
√
2k ln(1/δ2)ε+ kε(eε − 1). (21)

It can be seen that the advanced composition theorem roughly

provides (
√
2k ln(1/δ2)ε), kδ1 + δ2)-differential privacy.
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