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ABSTRACT
As a fundamental tool in the fields of data mining and com-
puter vision, robust low rank subspace learning is to recover
a low rank matrix under gross corruptions that are often
modeled by another sparse matrix. Within this learning, we
investigate the spectral k-support norm, a more appealing
convex relaxation than the popular nuclear norm, as a low
rank penalty in this paper. Despite the better recovering
performance, the spectral k-support norm entails the model
difficult to be optimized efficiently, which severely limits its
scalability from the practical perspective. Therefore, this
paper proposes a scalable and efficient algorithm which con-
siders the dual objective of the original problem that can
take advantage of the more computational efficient linear
oracle of the spectral k-support norm to be evaluated. Fur-
ther, by studying the sub-gradient of the loss of the dual
objective, a line-search strategy is adopted in the algorithm
to enable it to adapt to the Hölder smoothness. Experi-
ments on various tasks demonstrate the superior prediction
performance and computation efficiency of the proposed al-
gorithm.

Keywords
Robust Low Rank Subspace Learning, Spectral k-Support
Norm, Conditional Gradient

1. INTRODUCTION
Recovering low rank matrix from gross corruptions has

been a fundamental problem in machine learning, data min-
ing and computer vision. Representative applications in-
clude collaborative filtering [27], background modeling [4],
face clustering [17], among others. The gross corruption,
also known as outliers, is often modeled by a sparse noise
matrix. The robust low rank subspace learning tasks then
aim to learn the low rank matrix with simultaneously min-
imizing the sparse noise matrix. In general, the low rank
matrix and sparse matrix are required to satisfy certain lin-
ear constraints. With different designs of linear map, various
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tasks can be formulated by this linear constraint joint low
rank and sparse matrix minimization problem, including ro-
bust principal component analysis (RPCA) [4] and low rank
representation (LRR) [17].

Regarding the NP-hard rank minimization, nuclear norm
is the most popular convex relaxation. As pointed out by
[7], nuclear norm is actually the tightest convex relaxation
of the nonconvex cardinality function (i.e. `0 norm function)
of its singular values [7] under unit infinite norm ball. Re-
cently, k-support norm [2], which seeks the tightest convex
relaxation of the `0 norm (being value k) under unit `2-norm
ball rather than infinite norm ball, has been studied. It has
been shown that k-support norm outperforms the other con-
vex relaxations such as `1 norm [24] and elastic net [33] for
sparsity estimation, both theoretically and practically. Mo-
tivated by the success of k-support norm, spectral k-support
norm [7, 18, 19] has been proposed to prompt low rankness
of matrix by applying the k-support norm to the singular
values of the matrix. Compared with nuclear norm, it pro-
vides tight relaxation of the rank k matrices under unit `2
norm ball of its singular values rather than infinite norm
ball, which is often more preferred [7, 18]. Papers [18] and
[19] have studied the spectral k-support norm in low rank
matrix completion task and have reported the performance
against the other convex penalties. [18] also shows the link
of the spectral k-support norm between cluster norm used
in the multi-task learning context. Furthermore, [19] ex-
tends it to spectral (k, p)-support norm to capture the de-
cay of singular values of the underlying low rank matrix.
Despite the superior recovery performance compared with
other convex relaxations like nuclear norm, the spectral k-
support norm is much more difficult to be optimized, which
therefore severely limits its application domain, particularly
for big data analysis. Although methods developed for k-
support norm that relies on proximal map of the squared
k-support norm [2, 7, 13] can be migrated to spectral k-
support norm, its computation is laborious. A major reason
is the full SVD decomposition involved in the proximal map-
ping computation. Furthermore, restricted by the property
of the k-support norm, efficient approximation methods for
nuclear norm (e.g. power method and Lanczos method) that
requires leading singular values only are hardly applicable to
spectral k-support norm. Further, a search operation that
segments singular values into certain groups also needs ad-
ditional computation.

In this paper, we will study the spectral k-support norm
for robust low rank subspace learning task. Regarding op-
timization, it is apparently more challenging to design an
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efficient and scalable algorithm than the previous research
focusing on matrix completion [18, 19], given the additional
linear constraint. We propose two variants for utilizing the
spectral k-support norm, of which one uses the squared form
as previous methods do. In the other variant, we show that
we can also directly design an optimization algorithm for the
original spectral k-support norm, which is hardly possible for
most existing proximal gradient-based methods. We first fol-
low the common practice to get rid of the linear constraint
by Lagrangian dual. Next, instead of directly optimizing
the Lagrangian dual alternatively as common ADM-based
methods do, we further convert the problem by Fenchel con-
jugation [30]. The optimization of the resultant dual objec-
tive can then be solved via accelerated proximal gradient
method (APG) [21], which only requires to evaluate the po-
lar operator of spectral k-support norm, plus the proximal
mapping related to infinity norm. Both of them are more
computational efficient than the proximal map related to
spectral k-support norm, in which the per-iteration cost is
linear instead of superlinear. In principal, we follow the re-
cently proposed primal-dual framework [22, 30] and recover
the primal low rank variable along the dual APG iterations
[30] By studying the (sub)gradient set of the loss function
of the dual objective, we also incorporate the line-search
strategy [30] that can adapt to the smoothness of the dual
objective in the sense of Hölder continuity. Also, please note
that line-search is possible in our method because the dual
norm of the spectral k-support norm is more efficient to com-
pute than itself, which is another advantage brought about
by our dual conversion. Per-iteration complexity analysis
shows that the time complexity of our method is linear with
respect to the size of low rank matrix, whereas ADM-based
methods would involve super-linear complexity.

In summary, we propose a polar operator-based algorithm
featuring the following merits:

1. The proposed algorithm costs only linear per-iteration
complexity rather than super-linear if proximal ADM
method is adopted;

2. Our method is flexible to deal with both squared k-
spectral norm and itself, whereas most of previous
methods are confined with the former form; Also, our
method is general so that it can be adapted to vari-
ous choices of linear map, constant matrix and sparse
norm to suit different model;

3. Our method converts to an equivalent dual form that
deals with the dual spectral k-support norm, which is
easier to compute than the primal norm. This fur-
ther enables us to incorporate a line-search strategy to
adapt to the degree and constant of the smoothness of
the dual objective in the sense of Hölder smoothness.

2. PRELIMINARY
In this paper, we use the following notations. We denote

a vector with a lowercase letter and a matrix with an up-
percase letter. For a vector x, ||x||1, ||x||2 denote its `1 and
`2 norm. For a matrix X, ||X||1, ||X||2,1, ||X||F , ||X||∗ de-
note its `1, `2,1 (sum of `2 norm of each column), Frobenius
and nuclear norm (sum of singular values) correspondingly.
For a particular singular value decomposition (SVD) of ma-
trix X ∈ Rm,n, we denote it as X = Udiag(σ)V T , where

σ = (σ1, ..., σmin(m,n)) is the vector formed by singular val-
ues arranged in nonincreasing order and diag(σ) is the di-
agonal matrix with its i-th diagonal element being σi. For
a function f , we use ∇f(Γ) to denote its gradient or one of
its subgradient at Γ, and use ∂f(Γ) to denote the set of sub-
gradient at Γ. The superscript (·)T denotes the transpose
for a matrix or the adjoint operation for a linear map.

2.1 Robust Low Rank Subspace Learning
In general, robust subspace learning methods seek a low

rank component L plus a sparse component S capturing
grossly corrupted outliers. L and S, together with a constant
matrix M , are related by a linear constraint with constant
linear map B, which can be summarized into the following
nonsmooth linear constraint problem,

arg min
L,S
||L||r + λ||S||s, s.t. B(M − L) = S, (1)

where the penalty || · ||r is used to promote low rankness
of L, which is chosen as the spectral k-support norm || ·
||sp,k [18],[19] in this paper. The second term || · ||s is the
sparsity inducing penalty which can be `1 or `2,1 norm [29].
λ is a constant parameter used to balance low rankness and
sparsity.

In this paper, we focus on the RPCA [4] as a practical
application, where M is the input data matrix D and B is
identity matrix. With spectral k-support norm and `1 norm,
the RPCA problem can be formulated as

arg min
L,S
||L||sp,k + ||S||1, s.t. D − L = S (RPCA). (2)

2.2 Spectral k-Support Norm
We first recall the k-support norm, which is introduced

by [2] as a convex surrogate of the nonconvex cardinality
function (a.k.a. `0 norm) for sparsity vector prediction. [2]
observes that the most popular `1 norm is the convex hull
of `0 norm on unit `∞ ball which assumes each entry to be
bounded,

conv(x ∈ Rd
∣∣||x||0 ≤ k, ||x||∞ ≤ 1). (3)

However, in many cases, we prefer the `2 norm of x to be
bounded, i.e.

conv(x ∈ Rd
∣∣||x||0 ≤ k, ||x||2 ≤ 1), (4)

which can help improve robustness and generalization. In
this perspective, [2] proposes the k-support norm which can
be calculated as follows,

||x||sp,k =
( k−t−1∑

i=1

(xi)
2 +

1

t+ 1

( d∑
i=k−t

xi
)2) 1

2
, (5)

where t is an index satisfying the following relationship,

xk−t−1 >
1

t+ 1

d∑
i=k−t

xi ≥ xk−t. (6)

[18],[19] then extend the k-support norm to low rank pro-
moting purpose for matrices. Similar to the definition of nu-
clear norm, the spectral k-support norm (we use the same
notation || · ||sp,k as the spectral form when the variable is
matrix) is also defined in terms of the matrix singular val-
ues and is thus unitary invariant. In detail, for a matrix
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Z ∈ Rm×n and denoting a particular singular value decom-
position (SVD) as Z = Udiag(σ)V T , the spectral k-support
norm can be computed by

||Z||sp,k =
( k−t−1∑

i=1

(σi)
2 +

1

t+ 1

(min{m,n}∑
i=k−t

σi
)2) 1

2
(7)

where index t ∈ {0, 1, ..., k−1} is searched to satisfy σk−t−1 >
1
t+1

∑min{m,n}
i=k−t σi ≥ σk−t. Apparently, the unit ball of spec-

tral k-support norm is defined in terms of its singular values
and can be expressed as the convex hull of vectors with at
most k cardinality lying within the `2 norm ball, i.e.

D = conv(A), where (8)

A = {A ∈ R(m,n)
∣∣A = Udiag(σ)V T , ||σ||0 ≤ k, ||σ||2 ≤ 1}.

(9)

When k = 1, the spectral k-support norm becomes nuclear
norm, and when k = min{m,n}, it coincides with Frobenius
norm. Intuitively, it penalizes the largest k − t− 1 singular
values with `2 norm while penalizing smaller t + 1 singu-
lar values with `1 norm. The k-support norm and spectral
k-support norm are indeed norm functions [2, 18]. Also, de-
noting the dual norm by || · ||∗sp,k, for any matrix Z with a

particular SVD of Z = Udiag(σ)V T , we have

||Z||∗sp,k =

√√√√ k∑
i=1

σ2
i . (10)

It is obvious that the dual norm can be more efficient to
compute because: 1) it only requires the first k singular
values; 2) it avoids search for index t.

[19] also generalizes the spectral k-support norm to the
so-called spectral (k,p)-support norm by using `p unit norm
ball constraint in eq.(7) instead of the `2 unit norm ball.
This extension can be denoted by || · ||sp,(k,p), under which
the spectral k-support norm is ||·||sp,(k,2). [19] shows that by
varying p, the generalized spectral (k,p)-norm can capture
the decay of singular values of the desired low rank matrix
in a low rank matrix completion task. Most computation
of the spectral (k,p)-support norm is similar with spectral
k-support norm. For example, to calculate the dual norm,
we simply change 2 with q by

||Z||∗sp,(k,p) = (

k∑
i=1

σqi )
1
q , where

1

p
+

1

q
= 1. (11)

.

2.3 Scalable Algorithm with Spectral
k-Support Norm

With the spectral k-support norm, the robust low rank
subspace learning problem in eq.(1), featuring a nonsmooth
and linear constraint optimization problem, is difficult to
be solved in a scalable way, which severely limits the ap-
plication of the spectral k-support norm from the practi-
cal perspective. In this subsection, we will explain that
popular approaches to scaling nuclear norm regularization
under this model is not applicable to spectral k-support
norm. Specially, for nuclear norm, matrix factorization-
based methods and ADM-type methods are both effective
algorithms for solving eq.(1) efficiently, but none of them
can be applied to solve spectral k-support norm regularized

problem efficiently. The matrix factorization-based meth-
ods crucially rely on the following property of nuclear norm:
||Z||∗ = minP,Q

1
2
||P ||2F + 1

2
||Q||2F , s.t.Z = PQ, which is

not applicable to spectral k-support norm. For the ADM-
type methods, we argue that the proximal operator-based
ADM method and its variants cannot optimize the spectral
k-support norm regularized robust subspace learning prob-
lem in a scalable way by briefly deriving such an algorithm
based on a particular linearized ADMM scheme [16] as fol-
lows:

||L||sp,k + λ||S||1 + 〈Γ,BL+ S −M〉+ ρ

2
||BL+ S −BM ||2F .

(12)
Then, it will update L, S,Γ in an alternate fashion. In par-
ticular, to optimize L, we linearize the squared Frobenius
norm term

arg min
L
||L||sp,k + 〈BTΓt, L〉+ ρBT (〈BLt + St − BM,L〉)

+
η

2
||L− Lt||2F .

(13)

This will require the proximal operator related to || · ||sp,k,

Lt+1 = arg min
L
||L||2sp,k +

η

2
||L− Ct||2F . (14)

Please note that eq.(14) uses the squared spectral k-support
norm instead, which has yet to know whether a closed-form
solution exits for this norm in the literature. Actually, all ex-
isting methods resort to the squared k-support norm, which
has closed-form solution. It is not difficult to adapt the
proximal operators for the squared k-support norm [2, 13,
7] for spectral k-support norm. However, all existing prox-
imal mappings cannot be computed in a scalable way. The
main bottleneck is that proximal mapping would require a
full SVD decomposition plus a searching step to segment
the singular values into three different groups for different
types of computation. [13] improves upon [2] by using binary
search instead of the exhaustive search, and [7] proposes to
solve the proximal mapping of the spectral k-support norm
by computing the proximal mapping of its dual norm. How-
ever, none of these methods are able to avoid the full SVD
because the search step and the subsequent computation
both rely on all of the singular values. Nuclear norm-based
ADM method is able to avoid such full SVD by an ap-
proximation technique that only requires to compute a few
leading singular values, which is, unfortunately, not appli-
cable here for spectral k-support norm. As a result, such
ADM-based method would incur super-linear per-iteration
cost that severely limits the scalability of spectral k-support
norm’s utilization under this model.

3. THE PROPOSED METHOD
In this section, we present our proposed method for learn-

ing robust low rank subspace with spectral k-support norm
regularization in an efficient way. We begin with two refor-
mulations and derive the corresponding equivalent problem
based on Fenchel dual, one of which uses the squared spec-
tral k-support norm and the other uses the original spectral
k-support norm. The reformulated equivalent problems, re-
ferred as dual objectives, allow more efficient computation,
in which the per-iteration cost hinges on solving a linear sub-
problem, referred as linear oracle evaluation of the spectral
k-support norm. The linear oracle evaluation only needs to
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compute the leading k-singular value decomposition (SVD),
avoiding the full SVD computation otherwise required by
proximal mapping-based ADM methods, is known to be
more efficient to compute, especially with Lanczos method
or power method techniques. Also, our method does not re-
quire the search step of the proximal mapping of spectral k-
support norm. In addition, we study the smoothness of our
loss function of the dual objective and incorporate a line-
search strategy that can adapt to the smoothness change
in the sense of Hölder continuity to further accelerate the
algorithm.

3.1 Formulation I: Usage with Squared Spec-
tral k-Support Norm

In our first formulation, we utilize the squared spectral
k-support norm, which is adopted by almost all proximal
mapping-based methods [2, 13, 7]. Let L denote the target
low rank variable, we are solving the following constraint
form of robust low rank subspace model:

min
L

1

2
||L||2sp,k, s.t. ||S||s ≤ τ, B(M − L) = S. (15)

The above formulation amounts to the constraint ||B(M −
L)||s, which is considered more natural than regularization
formulation because it directly signifies the tolerance on the
misfit [1]. With a proper choice of τ , it is equivalent to the
regularized form in eq.(1). Denoting the dual variable by
Γ, by using the Lagrangian dual to handle the linear con-
straint B(M −L) = S, we also get the following Lagrangian
formulation,

max
Γ

min
S,L,||S||s≤τ

[1

2
||L||2sp,k + 〈Γ,BL+ S − BM〉

]
. (16)

However, instead of performing alternative updating strat-
egy which would incur the usage of the expensive proximal
map of the square form of the spectral k-support norm, we
further convert eq.(16) by Fenchel conjugation, as summa-
rized in the following proposition.

Proposition 1. To solve the maximization problem in
eq.(16), it is equivalent to solve the following minimization
problem w.r.t the Lagrangian dual variable Γ,

min
Γ
f(Γ) + r(Γ), where (17)

f(Γ) =
1

2
(|| − BTΓ||∗sp,k)2 + 〈Γ,BM〉, (18)

r(Γ) = τ || − Γ||∗s . (19)

In eq.(19), || · ||∗s denotes the dual norm of || · ||s, e.g.
|| · ||∞ for || · ||1 norm and || · ||2,∞ for || · ||2,1 norm. Propo-
sition 1 converts the optimization of eq.(16) to eq.(17) that
is referred as dual objective in the sequel. To solve eq.(16)
with respect to Lagrangian dual variable Γ, we can apply
the proximal gradient descent algorithm [21]. The proximal
map is now related to || · ||∗s , which is essentially equivalent
to projection onto || · ||∗s unit ball and is not expensive [6,
25]. Hence another major per-iteration cost would be the
gradient evaluation of f(Γ). Before proceeding to the com-
putation of the gradient, we give a brief proof of Proposition
1, which would reveal a particular choice of (sub)gradient of
the loss function f(Γ).

Proof. To prove Proposition 1, we begin with the following

sequence of equivalence relations:

max
Γ

min
S,L,||S||s≤τ

[1

2
||L||2sp,k + 〈Γ,BL+ S − BM〉

]
⇐⇒max

Γ

[
min
L

(1

2
||L||2sp,k + 〈Γ,BL〉

)
− 〈Γ,BM〉

+ min
||S||s≤τ

(
〈Γ, S〉

)]
⇐⇒max

Γ

[
min
L
−
(
〈−BTΓ, L〉 − 1

2
||L||2sp,k

)
− 〈Γ,BM〉

+ min
||S||s≤τ

−
(
〈−Γ, S〉

)]
⇐⇒max

Γ
−
[

max
L

(
〈−BTΓ, L〉 − 1

2
||L||2sp,k

)
+ 〈Γ,BM〉

+ max
||S||s≤τ

(
〈−Γ, S〉

)]
.

(20)

The first and the second term in the square bracket can be
combined and converted as follows:

max
L

(
〈−BTΓ, L〉 − 1

2
||L||2sp,k

)
+ 〈Γ,BM〉

=
1

2
(|| − BTΓ||∗sp,k)2 + 〈Γ,BM〉 := f(Γ)

(21)

The third term in the square bracket can be rewritten based
on the definition of dual norm of || · ||s, i.e.

max
||S||s≤τ

〈−Γ, S〉 = max
||S/τ ||s≤1

(
〈−τΓ, S/τ〉

)
= τ ||−Γ||∗s := r(Γ).

(22)
By combining the above derivation together, we can solve
the right-hand side problem to equivalently solve the orig-
inal Lagrangian dual problem on the left-hand side of the
following equation:

max
Γ

min
S,L,||S||s≤τ

[1

2
||L||2sp,k + 〈Γ,BL+ S − BM〉

]
(23)

⇐⇒ −min
Γ

(
f(Γ) + r(Γ)). (24)

Based on eq.(21) (i.e. taking the derivative of the first
line in eq.(21) w.r.t. Γ), we have a particular choice of the
(sub)gradient of the dual loss function f(Γ), as shown in the
following corollary.

Corollary 1. Denote a particular subgradient of ∂f(Γ) by
g(Γ), then it can be computed as

g(Γ) = −BL# +BM, where L# = arg max
||A||sp,k≤1

〈−BTΓ, A〉.

(25)

According to Proposition (1), the computation of com-
puting the (sub)gradient of the dual objective comes from
computing L#, which requires to solve a linear problem
arg max||A||sp,k≤1〈−BTΓ, A〉. The spectral k-support norm,
as an gauge function [9] (i.e. nonnegative, positively homo-
geneous convex functions vanishing at the origin), allows the
linear subproblem to be equivalently solved by the following
polar operator:

arg max
A∈A
〈−BTΓ, A〉. (26)

Recall that A is the set of “atoms” of the spectral k-support
norm defined in eq.(9) and also note that the structure of
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the A ∈ A constraint set is much simpler to deal with than
||A||sp,k ≤ 1. In fact, the polar operator has closed-form
solution which only computes top k-SVD of matrix BTΓ in
eq.(25), as shown in the following lemma from [19]:

Lemma 1. Denote a particular SVD of an arbitrary matrix
X ∈ R(m,n) by X = Udiag(σ)V T . Then the polar operator
of the spectral (k,p)-support norm, i.e. L# = arg supA∈A〈X,A〉
(recall that A is the “atomic” set in eq.(9)), admits the closed-
form solution as L# = Udiag(s)V T , where

si =

{
( σi
||σ||∗

sp,(k,p)
)

1
p−1 , i = 1, ..., k

0, i = k + 1, ...min{m,n}.
(27)

Recall that ||σ||∗sp,(k,p) is the dual spectral (k,p) support
norm of X in eq.(11) and simply set p = q = 2 for spectral
k-support norm. According to Lemma (1), the computation
of the polar operator, and thus the gradient of the dual ob-
jective, only involves the top k-SVD, which is more efficient
to evaluate than full SVD, especially with Lanczos [14] or
perhaps power method [10] techniques. Please note that al-
though [19] also utilizes the polar operator, their methods
are based on vanilla Frank-Wolfe algorithm, which is not
applicable when additional linear constraint is involved.

3.2 Formulation II: Usage with Spectral
k-Support Norm

In this subsection, we propose our second formulation that
utilizes the spectral k-support norm itself, which is impos-
sible for proximal mapping-based approach due to the lack
of known closed-form proximal mapping. Again, we begin
with the following constraint formulation:

min
L
||L||sp,k, s.t. ||S||s ≤ τ, B(M − L) = S. (28)

Before converting it to Lagrangian dual form to get rid of
the equality constraint, we introduce an auxiliary variable
vl with:

min
vl

vl, s.t. ||S||1 ≤ τ, B(M − L) = S, ||L||sp,k ≤ vl ≤ Ql,

(29)
where Ql is a constant estimation of the upper bound of
||L||sp,k. This technique has been previously introduced by
[11] and later also adopted by [20] for extending Frank-Wolfe
algorithms [12] to norm regularization problem. Again, de-
noting the Lagrangian dual variable by Γ, we have

max
Γ

min
L,vl,S

[
vl+〈Γ,BL+S−BM〉

∣∣∣||L||sp,k ≤ vl ≤ Ql, ||S||s ≤ τ].
(30)

We then further transform the above formulation by Fenchel
conjugation summarized by the following proposition.

Proposition 2. To solve the maximization problem in eq.(30),
it is equivalent to solve the following minimization problem
with respect to the Lagrangian dual variable Γ:

min
Γ
f(Γ) + r(Γ), where (31)

f(Γ) = max{0, (Ql|| − BTΓ||∗sp.k − 1)}+ 〈Γ,BM〉, (32)

r(Γ) = τ || − Γ||∗s . (33)

Proof. To prove Proposition 2, we begin with the follow-
ing equivalent relationship, which is related to the low rank

component L and vl:

min
vl,L

[
vl + 〈Γ,BL〉

∣∣∣|L||sp,k ≤ vl ≤ Ql]
= min
vl,A

[
vl
(
1 + 〈BTΓ, A〉

)∣∣∣||A||sp,k ≤ 1, 0 ≤ vl ≤ Ql
]

= min
0≤vl≤Ql

[
vl
(
1−max

A∈A
〈−BTΓ, A〉

)]
=− max

0≤vl≤Ql

[
vl(|| − BTΓ||∗sp,k − 1)

]
.

(34)

If l(Γ) := (|| − BTΓ||∗sp,k − 1) > 0, max0≤vl≤Ql
[
vll(Γ)

]
=

Qll(Γ) because the optimal v#
l = Ql; Otherwise,

max0≤vl≤Ql
[
vll(Γ)

]
= 0 because the optimal v#

l = 0. That
is,

min
vl,L

[
vl + 〈Γ,BL〉

∣∣∣|L||sp,k ≤ vl ≤ Ql] = −max{0, Qll(Γ)}.

(35)
As for the sparse component S, we can obtain the refor-

mulation similar to Formulation I in the previous subsection,
i.e.

min
||S||s≤τ

〈Γ, S〉 = − max
||S||s≤τ

〈−Γ, S〉 = −τ || − Γ||∗s := −r(Γ).

(36)
Combining the above together, we have the following dual

problem:

max
Γ
−
[

max{0, Qll(Γ)}+ 〈Γ,BM〉+ r(Γ)
]

= −min
Γ

[
max{0, Qll(Γ)}+ 〈Γ,BM〉+ r(Γ)

]
.

(37)

Therefore, we can equivalently solve

min
Γ

[(
max{0, Qll(Γ)}+〈Γ,BM〉

)
+r(Γ)

]
:= min

Γ
f(Γ)+r(Γ).

(38)

The next corollary shows a particular choice of (sub)gra-
dient for f(Γ).

Corollary 2. A particular choice of the (sub)gradient for
f(Γ) is given by g(Γ):

g(Γ) =


BM −QlBL#, (|| − BTΓ||∗sp,k − 1) > 0

BM − conv{0, QlBL#}, (|| − BTΓ||∗sp,k − 1) = 0

BM, (|| − BTΓ||∗sp,k − 1) < 0

,

(39)
where L# = arg maxA∈A〈−BTΓ, A〉 can be computed accord-
ing to Lemma 1.

Corollary 2 shows that the major computational cost of
the (sub)gradient for f(Γ) depends again on the linear opti-
mization problem of evaluating the polar operator of spectral
k-support norm. Compared with Formulation I in the pre-
vious subsection, to learn with the spectral k-support norm
itself, we need to tune one more parameter Ql, which is used
in eq.(34).

3.3 Algorithm

3.3.1 APG for the Dual Objective
Following [22, 30], we can then solve the converted dual

objective with the accelerated proximal gradient descent
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(APG) [3, 21]. The gradient of each step can be evaluated
according to Corollary 1 and Corollary 2. In detail, we keep
two interpolation sequences Γ̂t and Γt, which is typical for
APG-type methods. Specifically, in each iteration, the algo-
rithm updates the dual variable Γt by,

Γt+1 = arg min
Γ
f(Γ̂t) + 〈g(Γ̂t),Γ− Γ̂t〉+

Ht+1

2
||Γ− Γ̂t||2F

+ r(Γ);

(40)

Γ̂t+1 = Γt+1 +
λt − 1

λt+1
(Γt+1 − Γt), (41)

where λt is a scalar sequence updated iteratively as λt+1 =
1+
√

1+4λt
2

2
with the initial value 1. Ht is the reciprocal of

the step size. Also, recall that g(Γ̂t) is the gradient of f at

Γ̂t which can be evaluated by eq.(25) and eq.(39).
The subproblem eq.(40) is actually the proximal mapping

related to the dual norm of the sparsity inducing norm,
which is essentially to compute the projection onto `1 norm
ball. In detail, eq.(40) is the proximal mapping corresponds

to || · ||∗s that is denoted as prox
H−1
t+1r(Γ)

(
Γ̂t − g(Γ̂t)/Ht+1),

Γt+1 = arg min
Γ

1

2
||Γ− (Γ̂t − g(Γ̂t)/Ht+1)||2F +

τ

Ht+1
||Γ||∗s ,

(42)
which can be equivalently evaluated by the projection on
the unit || · ||s norm ball according to

Γt+1 =
(
Γ̂t−

g(Γ̂t)

Ht+1

)
− τ

Ht+1
proj

( 1
τ

Ht+1

(
Γ̂t−

g(Γ̂t)

Ht+1

))
, (43)

where proj(X) denotes the projection operation, e.g. projects
onto `1-ball or `2,1-ball, both of which allow efficient compu-
tation that costs linear complexity with respect to the size
of X, i.e. O(mn) for X ∈ R(m,n) [25].

3.3.2 Line-search
In the following, we study the (sub)gra-

dient set of f(Γ), which apparently depends on the structure
of the (sub)gradient of the dual norm || · ||∗sp,k (see eq.(18)
and eq.(32)). To keep the study more general, the following
lemma shows the form of (sub)gradient of the dual norm of
spectral (k, p)-norm || · ||∗sp,(k,p), which is generalized from
Proposition 5 in [5] and also see [26].

Proposition 3. For Γ 6= 0, denote a particular singular
value decomposition of Γ by Γ = Udiag(σ)V T and suppose
the singular values satisfies σ1 ≥ σ2 ≥ ... > σk−a+1 = ... =
σk = ... = σk+b > ... ≥ σd. q satisfies 1

p
+ 1

q
= 1. Then, the

subgradient set of the dual norm of the spectral (k, p)-support
norm at Γ is

1

||Γ||∗(q−1)

sp,(k,p)

{
U[:,1:k−a]diag(σq−1

[1:k−a])V
T
[:,1:k−a]

+ U[:,k−a+1:k+b]RV
T
[:,k−b+1:k+b]

}
,

(44)

where R is a symmetric matrix and satisfies ||R||2 ≤ 1 and
||R||∗ = a. In particular, it is differentiable when σk > σk+1

or σk = 0 with the gradient equal to

1

||Γ||∗(q−1)

sp,(k,p)

{
U[:,1:k]diag(σq−1

[1:k])V
T
[:,1:k]

}
. (45)

According to Proposition (3), we actually choose eq.(45)
as the (sub)gradient in computing the gradient of g(Γ). The
conditions of the uniqueness of the subgradient set, i.e. whe-
ther σk > σk+1 or σk = 0 is satisfied, can be interpreted
as whether the first k singular vales of Γ are well-separated
with the remaining singular values. Proposition (3) indicates
that, when the first k singular values are well-separated,
g(Γ) would be differentiable. In practice, initializing with
a low rank matrix Γ (e.g. all-zero matrix), we would ex-
pect that the singular values of Γ change from satisfying the
uniqueness condition (e.g. σk = 0) to dissatisfying across
iterations.

Therefore, the smoothness of the dual objective loss g(Γ)
would change from differentiable to subdifferentiable across
iterations, which corresponds to degree ν = 1 to degree ν =
0 in the sense of Hölder continuity, which guarantees the
following relationship (for more detailed properties, please
see [22]), ||∇f(x) − ∇f(y)|| ≤ Hν ||x − y||ν , ∀x, y, where
ν ∈ [0, 1] is referred as the degree of smoothness and Hν is
assumed finite that is defined by

Hν := Hν(f) = sup
x6=y∈D

||∇f(x)−∇f(y)||
||x− y||ν . (46)

Next, we utilize a line-search scheme proposed recently by
[30], which is able to automatically adapt to both the degree
and constant of the Hölder continuity of the dual objective
and thus chooses more optimal step size. We denote the
reciprocal of the step size at iteration t by Ht. According to
proximal gradient update related to r(Γ), we have

QHt(Γ; Γ̂t) = f(Γ̂t)+〈g(Γ̂t),Γ−Γ̂t〉+
Ht+1

2
||Γ−Γ̂t||2F . (47)

In essence, the line search aims to find the minimum Ht+1

(corresponding to the largest step size) that satisfies the fol-
lowing criterion:

f(Γt+1) ≤ QHt+1(Γt+1; Γ̂t) +
ε

2λt
, (48)

where ε is the error tolerance and λt is the sequence kept by
APG algorithm.

3.3.3 Primal Variable Recovery
Thus far, we have dealt with the dual objective and dual

variable. However, our ultimate goal is the primal variable
L. To do so, we follow [30] to simultaneously maintain the
primal variable sequence Lt across dual variable updating
procedure, i.e. Lt+1 = (1 − γt)Lt + γtL

#, where γt is the
weighting parameter and L# is the polar operator result
computed during the gradient evaluation. According to [30],
γt is constructed by also taking information from the adap-
tive step size

γt =
λt/Ht∑t
i=1 λi/Hi

. (49)

This primal update step is similar to the Frank-Wolfe al-
gorithm. With a constant step size, the weighting strategy
would look even more similar to the“standard”Frank- Wolfe
weighting strategy 2

t+1
. By combining the above parts, the

complete procedure is summarized in Algorithm 1.
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Algorithm 1 Proposed algorithm

Input: Γ0, Γ̂0, L0 = 0(m,n), λ0 = 1, vl, Ql, τ, ε >
0, tmax;

1: for t = 0, 1, ..., tmax do
2: Compute L# by evaluating the polar operator in eq.

(26) at Γ̂t ;

3: Compute the (sub)gradient g(Γ̂t) of f(Γ) at Γ̂t by
eq.(25) (for Formulation I) or eq.(39) (for Formulation
II);

4: Compute Γt+1 = prox
H−1
t+1r(Γ)

(
Γ̂t − H−1

t+1g(Γ̂t)
)

by

eq.(43), where Ht+1 is decided by line-search subrou-

tine: line-search(Γ̂t, g(Γ̂t), Ht, ε, λt);
5: Update the weight γt for primal recovery by eq.(49);

6: Update the sequence λt+1: λt+1 =
1+
√

1+4λ2
t

2
;

7: Update interpolation sequence Γ̂t+1 = Γt+1 +
λt−1
λt+1

(Γt+1 − Γt);

8: Update the primal sequence Lt+1 = (1−γt)Lt+γtL#.
9: end for

10: Return: Ltmax ;

The following is the line-search subroutine.

Algorithm 2 line-search subroutine

Input: Γ̂, g(Γ̂), H0, ε, λ;
1: for i = 0, 1, ..., imax do
2: Γi+1 = prox

H−1
i r(Γ)

(
Γ̂−H−1

i g(Γ̂)
)
;

3: if f(Γi+1) ≤ f(Γ̂)+〈g(Γ̂),Γi+1−Γ̂〉+Hi
2
||Γi+1−Γ̂||2F+

ε
2λ

then
4: break;
5: else
6: Hi+1 = 2Hi;
7: end if
8: end for
9: Return: Γi, Hi;

3.3.4 Algorithm Analysis
To recover an underlying low rank matrix of size (m,n),

the time complexity of each part of Algorithm 1 is as fol-
lows: step 2 costs O(kmn) to compute the top k SVD; step
3 is simply the point-wise multiplication and summation,
which costs O(mn); the proximal map of r(Γ) in step 4 takes
O(mn) which mainly comes from projection onto sparse
norm ball [25]; the line search in step 4 costs O(imaxkmn)
to compute at most imax times dual loss value that requires
top k SVD; step 8 costs O(mn). Therefore, the per-iteration
complexity is O(imaxkmn), where imax is 2 on average as ob-
served by [30]. Recall that proximal map-based ADM meth-
ods would cost O(min{m,n}mn) to compute the full SVD
and min{m,n}log(min{m,n}) to compute the proximal map
of the singular values of the target matrix [18]. For practical
applications, k is often much smaller than min{m,n}, e.g.
we set k=3 for tasks in subsection (4.2), (4.3). Hence, the
proposed method enjoys much lower per-iteration cost.

Now we discuss the convergence behavior of the proposed
method by Theorem 2 from [30], depicted by the following
theorem.

Theorem 1. The primal sequence Lt generated by Algo-
rithm 1 converges with the worst case iteration number to

achieve ε error with tmax = O(infν∈[0,1](
Hν
ε

)
2

1+ν ).

With the smooth objective, i.e. ν = 1, the worst-case it-
eration number is the same as the one of Frank-Wolfe type
algorithms that trade off lower per-iteration complexity with
slower convergence rate to scale to larger problem. Also, in
practice we find the line-search condition is too conserva-
tive. Actually, more efficient implementation can be made
by checking the line-search condition every 5 to 10 iterations
instead of one per-iteration.

4. EXPERIMENT
In this section, we study the empirical performance of the

proposed method on both synthetic and real datasets to test
on the RPCA model in eq.(2). In our implementation, we
solve the k-SVD by the lansvd function in the PROPACK
package [10] 1. We empirically set k to be equal or slightly
larger than the desired rank of the low rank matrix, which
can also be selected by cross-validation. All experiments are
done on a laptop computer running MATLAB.

We compare with 1) IALM [15] uses nuclear norm as low
rank penalty; 2) PSSV 2[23] uses partial sum of singular
values, i.e. omits the leading singular values in the nuclear
norm, which is nonconvex; 3) FWT 3 [20] also uses nuclear
norm, but it is an FW-based method instead of proximal
mapping. We use recommended or default parameter set-
tings for these compared methods. We do not compare with
neither Reg`1-ALM [32] which imposes additional assump-
tion that L = PZ, where P is orthogonal and Z is low
rank, nor the composition of nuclear norm with nonconvex
functions [28] like SCAD [8] and MCP [31] functions. For
the former, we can expect performance gain if we substitute
the nuclear norm penalty with spectral k-support norm for
the corresponding low rank part. For the latter, we omit
them because this paper focuses only on studying whether
the spectral k-support can be a better and computational
feasible convex relaxation than nuclear norm for the robust
subspace learning problems.

Also, we would like to point out that our algorithm can
actually be applied to more general joint low rank and sparse
minimization model by taking different linear map and con-
stant matrix in eq.(1). A representative problem is the low
rank representation problem (LRR) [17], where M can be
identity matrix I and B equals input data matrix D. With
`2,1 norm [29] to promote column-wise sparsity, the prob-
lem becomes arg minL,S ||L||sp,k + ||S||2,1, s.t. D−DL = S.
In this regard, the proposed method is more favorable than
algorithms dedicated only to RPCA problem.

4.1 Synthetic Data
This subsection evaluates the performance of the proposed

algorithm on synthetic data. We generated the ground truth
d× d low rank matrix G by first generating random matrix
uniformly sampled within 0 to 1, which was then truncated
by lansvd with the various rank ratio r. We added ran-
dom Gaussian noise N (0, 0.1) to G. Finally, we obtained
the input matrix M for testing by randomly setting matrix
elements to either -20 or +20 in G with a series of corruption
ratio c, which are outliers.

Figure 1 reports the recovery performance under a series

1http://sun.stanford.edu/˜rmunk/PROPACK/
2http://thoh.kaist.ac.kr/Research/PartialSum/PartialSum.
htm
3https://sites.google.com/site/mucun1988/publi
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Figure 1: Corruption ratio versus relative error.
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Figure 2: Rank ratio versus relative error.

degree of corruption. We varied the corruption percent-
age from 1% to 10%. The data dimension was fixed with
1000×1000 and the rank ratio was set at 10%. We measured
the reconstruction performance by `1 relative error ||L−G||1

d×d

(left subplot) and `2 relative error ||L−G||2||G||F
(right subplot),

where G is the ground truth matrix and L is the output of
algorithms. From Figure 1, it can be seen that the recovery
error increases with the more outliers. The two formulations
of the spectral k-support norm regularized RPCA algorithm
perform closely and are better than proximal mapping-based
nuclear norm regularized (solved by IALM) and partial sin-
gular value sum regularizer algorithms (solved by PSSV).
Note that the performance of PSSV is close to that of IALM,
both of which are slightly worse. Among these algorithms,
the performance of the FWT method is the worst. Al-
though it uses proximal step for the sparse matrix update,
the low rank part is still updated by pure Frank-Wolfe strat-
egy, which is slow and cannot obtain enough decease of the
objective compared to proximal algorithm for either primal
(like ALM/ADMM) or for the dual form without further lo-
cal refinement [12]. In Figure 2, we compared the algorithms
with rank ratio varying from 1% to 10%, while fixing cor-
ruption ratio to 5% and data dimension to 1000×1000. Re-
covery performance under `1 (left) and `2 norm (right) are
reported. Again, the proposed method with two formula-
tions performs closely and are better than the counterparts.
Therefore, the spectral k-support norm is superior to nuclear
norm for RPCA task in terms of recovering performance.

Furthermore, we also studied the scalability of the pro-
posed method, which is another key issue determining the
feasibility for adopting spectral k-support norm in RPCA
task. We generated the data with the sizes of 1000×1000 to
3000 × 3000 and set the corruption ratio to 1%, rank ratio
to 10%. As shown in Figure 3, the proposed method is more
efficient than IALM and PSSV. In the experiment, we also
used the truncated SVD to approximately solve the SVT
operator, i.e. proximal mapping of nuclear norm. There-
fore, the proposed method costs comparable computation
of per-iteration. Nevertheless, our method chooses optimal
step size adaptive to the smoothness of the dual objective,
which can explain why it is faster than IALM and PSSV. By
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Table 1: Videos used in the experiment
campus lobby

frame size 160× 128 160× 128
# of frames 1, 439 1, 536

M size 20, 480× 4, 317 20, 480× 4, 608

contrast, FWT is much faster than all algorithms because
it only computes the top singular value and corresponding
vector that can be much more efficient than truncated SVD.
As a result, our method, by avoiding full SVD if otherwise
ADM is applied, makes the spectral k-support norm efficient
enough to use compared to prevalent proximal mapping-
based nuclear norm regularized methods. Although not as
fast as FWT, the proposed method has the better recovery
performance.

4.2 Background Modeling on Surveillance
Videos

In this experiment, we considered modeling background
in surveillance videos captured by a fixed camera. When
stacking each frame as column vectors to form the input
data matrix, the relative static background can be assumed
to be low rank, while the foreground (e.g. human, car move-
ments) can be modeled as sparse noise. Table 1 summarizes
the dataset 4 used in this experiment. Since we dealt with
color videos, in which each frame is described by three sub-
matrices, we vectorized these matrices from each frame and
stack them together to form a large matrix. Therefore, the
row size of large input matrix equals length times width of
the frame and the column size is three times of the frame
number in the video.

Figure 4 shows the extraction performance of a sample
frame of the campus dataset (left three columns) and lobby
dataset (right three columns). In the raw image, the fore-
ground mainly contains two pedestrians in the middle of the
frame, one in dark shirts, while the other is in white, and
a car at the left corner of the frame. The background ex-
tracted by spectral k-support norm is obviously better than
that by (partial) nuclear norm, in which there are still vague
contours of the pedestrian in white shirt in the middle and
car in the left from the background extracted by (partial) nu-
clear norm. The rightmost three columns of Figure 4 present
a pretty challenging sample frame from lobby dataset, where
the two men stand in the middle of the frame for a moment
leading them hard to be separate from background. In this

4http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.
html
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Figure 4: Background modeling results on campus and lobby dataset, where the first, second and third
row corresponds to nuclear norm by IALM (1.62e+04 seconds/1.62e+04 seconds), partial singular value
by PSSV (1.18+e04 seconds/1.18+e04 seconds) and spectral k-support norm by proposed I (6.33e+03 sec-
onds/2.91+e03 seconds) correspondingly. The first three columns show original sample frame (file:trees1831)
from campus and the corresponding background and foreground; the last three columns show sample frame
(file:SwitchLight2457) from lobby and the corresponding background and foreground.

case, (partial) nuclear norm is unable to remove these two
men from the background. The spectral k-support norm is
able to completely remove the man on the right and the
man on the left only leaves with a vague contour. As a re-
sult, the spectral k-support norm has better recovery perfor-
mance. Also, the running time indicates that our algorithm
is efficient.

In conclusion, this experiment indicates that spectral k-
support norm is superior than (partial) nuclear norm for
recovering low rank matrix under sparse noise. Also, the
proposed method is scalable to large scale tasks that makes
the spectral k-support norm feasible to be applied for robust
low rank subspace learning.

4.3 Face Reconstruction
In this experiment, we consider the face reconstruction

task, where front face images are taken under varying con-
ditions like changing illumination. When stacking all vec-
torized face together, the shadow and specularity caused by
changing environment can be treated as sparse noise and
the underling low rank matrix is the desired face image to
be recovered. We used part of the Extended Yale-B Face
Database-B (i.e. subjects 1 to 10 of 38 subjects in total),
which contains 64 frontal face pictures of 192 × 168 pixels
in each subject. When stacking them together, the input
matrix is of size 32256 × 640, which is not very large com-
pared to experiment in the previous subsection. In this case,
IALM and PSSV are faster than the proposed method. A
snapshot of the reconstruction result on sample images is il-
lustrated in Figure 5. Visually, the spectral k-support norm
outperforms both nuclear norm and partial sum of nuclear
norm.

5. CONCLUSION
In this paper, we have studied robust low rank subspace

learning problem with spectral k-support norm to promote
the low rank property. Our method can utilize both the
squared spectral k-support norm and itself. For both for-
mulations, we consider a sparse norm fitting error ball con-

Figure 5: Face reconstruction result on Extended
yale B face dataset. In each group of sample faces,
the first, second and third column correspond to nu-
clear norm by IALM, partial sum of singular values
by PSSV, and k-support norm by our Formulation
I, respectively.

strained low rank optimization problem and transform it
to the dual objective form. Solving the dual problem only
involves a linear subproblem called polar operator and a
projection onto the unit sparse ball, which allow us to avoid
expensive proximal mapping of the spectral k-support norm.
Furthermore, by studying the (sub)gradient of the dual norm
of the more generalized spectral k-support norm, we have
incorporated a line search strategy that is able to adapt to
smoothness change. Experiment result on both synthetic
and real datasets with background modeling and face recon-
struction have successfully demonstrated the superiority of
the proposed method in comparison with the existing coun-
terparts.
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