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ABSTRACT
Conventional clustering algorithms such ask-means (Forgy
1965, MacQueen 1967) need to know the exact cluster num-
ber k∗ before performing data clustering. Otherwise, they
will lead to a poor clustering performance. Unfortunately,
it is often hard to determinek∗ in advance in many practi-
cal problems. Under the circumstances, Xu et al. in 1993
proposed an approach namedRival Penalized Competitive
Learning (RPCL) algorithm that can perform appropriate
clustering without knowing the cluster number by automat-
ically driving extra seed points far away from the input data
set. Although RPCL has made great success in many ap-
plications, its performance is however much sensitive to the
selection of the de-learning rate. To our best knowledge,
there is still an open problem to guide this rate selection.
In this paper, we further investigate RPCL with present-
ing a mechanism to dynamically control the rival-penalizing
forces. Consequently, we give out a rival penalized con-
trolled competitive learning (RPCCL) approach, which cir-
cumvents the selecting problem of the de-learning rate by
always fixing it at the same value as the learning rate. In
contrast, the RPCL cannot do that in the same way. The ex-
periments have shown the outstanding performance of this
algorithm in comparison with the RPCL.

1. INTRODUCTION

As a statistical tool, clustering analysis has been widely ap-
plied in a variety of scientific areas such as pattern recog-
nition, image processing, information retrieval and biology
analysis. In the literature, thek-means [5] is a typical clus-
tering algorithm, which partitions the input data set{xt}N

t=1

that generally formsk∗ true clusters intok categories (also
simply calledclusterswithout further distinction) with each
represented by its center. Although thek-means has been
widely used due to its easy implementation, it exists a se-
rious potential problem. That is, it needs to pre-assign the
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numberk of clusters. Many experiments have shown that
it can work well only whenk is equal tok∗. However, in
many practical situations, it is hard or becomes impossible
to know the exact cluster number in advance. Under the
circumstances, thek-means algorithm often leads to a poor
clustering performance. In the past decades, some works
have been done along two major directions. The first one is
to provide a way to determine the cluster number by formu-
lating the cluster number selection as the choice of compo-
nent number in a finite mixture model. Consequently, there
have been some criteria proposed for model selection, such
as AIC [1, 2], CAIC [3] and SIC [7]. Often, these existing
criteria may overestimate or underestimate the cluster num-
ber due to the difficulty of choosing an appropriate penalty
function. In recent years, a number selection criterion devel-
oped from a unified statistical learning theory named Ying-
Yang Machine has been proposed and experimentally ver-
ified in [8, 9], whose computing however is laborious. In
contrast, the other direction is to develop new advanced al-
gorithms that perform clustering without pre-deciding the
exact cluster number. For example, the typical incremental
clustering gradually increases the numberk of clusters un-
der the control of a threshold value, which however is hard
to be decided as well ask. Another typical example is the
RPCL algorithm [10] that for each input, not only the win-
ner of the seed points is updated to adapt to the input, but
also its rival (the second winner) is de-learned by a smaller
learning rate (also calledde-learning ratehereafter). Many
experiments have shown that the RPCL can automatically
select the correct cluster number by gradually driving extra
seed points far away from the input data set, but its perfor-
mance is much sensitive to the selection of the de-learning
rate. To our best knowledge, it is still an open problem so
far to guide this rate selection. To circumvent this problem,
the sister paper [4] of this has proposed a new generalized
k-means algorithm namedk∗-meansthat just updates the
winner each time to adapt to the input, and meanwhile ad-
justs the priori probability of each cluster occurrence. Al-
though it has explicitly discarded the de-learning rule like
in the RPCL , it actually penalizes not only the rival each



time, but also all other competitors because of the summa-
tion constraint of the priori probabilities. The experiments
in [4] have shown its success in data clustering.

In this paper, we will study a new alternative way to
solve the selecting problem of the de-learning rate in RPCL.
We have noticed that the RPCL [10] performs the rival pe-
nalization without considering the distance between the win-
ner and the rival as given an input. Actually, the rival should
be more penalized if its distance to the winner is closer than
the one between the winner and the input. This idea is also
consistent with the social scenario in our daily life. For ex-
ample, in an election campaign, the competition between
two candidates (we call the final winning personthe win-
ner and the other onethe rival) will become more intense
if their public opinion polls are closer. Otherwise, the win-
ner will be almost sure to win the election with little pe-
nalizing the rival during the election campaign. Based on
this idea, we therefore present a mechanism, in which the
rival-penalized strength is dynamically adjusted based on
the distance between the winner and the rival relative to the
current input. We have associated this mechanism with the
de-learning rule of the RPCL, whereby a new improved al-
gorithm namedRival Penalization Controlled Competitive
Learning (RPCCL) is proposed. Compared to the RPCL,
this new one always fixes the de-learning rate at the same
value as the learning rate without requesting further deter-
mination. Such a setting is however not allowed in the
RPCL as pointed out in [10]. The experiments have shown
that this algorithm can smoothly work in all cases we have
tried so far, but the RPCL cannot guarantee working given a
pre-assigned de-learning rate. Also, we found that the pro-
posed algorithm often gives correct clustering results much
faster than the RPCL because the former generally gives
stronger rival penalization strength than the latter when the
current clustering partition is not appropriate.

2. OVERVIEW OF RPCL ALGORITHM

Given a set of dataD = {xt}N
t=1 that formsk∗ clusters, the

RPCL algorithm [10] is to perform clustering by learning
k seed points, denoted as{mj}k∗

j=1, whereby a data point
(also calledinput interchangeably) can be correctly classi-
fied into thejth cluster if the indicator functionI(j|xt) = 1,
with

I(j|xt) =
{

1, if j = arg minr ‖xt −mr‖2
0, otherwise.

(1)

The basic idea of RPCL is that for each input, not only
the winner seed point is modified to adapt to the input, but
also its rival (the 2nd winner) is de-learned by a smaller
learning rate. Specifically, the algorithm is:

Step 1: Randomly take a samplext from the data setD,

let

I(j|xt) =





1, if j = c,
−1, if y = r,
0, otherwise,

1 ≤ j ≤ k

(2)
with

c = arg min
j

γj‖xt −mj‖2,

r = arg min
j 6=c

γj‖xt −mj‖2, (3)

whereγj = njPk
r=1 nr

is the relative winning fre-

quency of the seed pointmj in the past, andnj

is the cumulative number of the occurrences of
I(j|xt) = 1 in the past.

Step 2: Update the winnermc (i.e., I(c|xt) = 1) and its
rival mr only by

mnew
τ = mold

τ + ∆mτ , τ = c, r (4)

with

∆mc = αc(xt −mc)
∆mr = −αr(xt −mr), (5)

whereαc andαr are both the small positive learn-
ing rate, and often setαr << αc as shown in
[10]. Hereafter,αc is simply called the learning
rate, whereasαr is calledde-learning rateupon
the fact that the rival is penalized by Eq.(5).

The experimental results in [10] have shown that, so long
ask is initialized larger than the true onek∗, the RPCL can
perform correctly clustering by driving extra seed points far
away from the input data set. However, many experiments
have also found that the performance of RPCL is sensitive
to the selection of the de-learning rateαr. In general,αr

needs to be re-selected appropriately not only for different
clustering problems, but also for different initial positions
of the seed points. Unfortunately, such an appropriate re-
selection is not easy to do. To our best knowledge, there has
not been an efficient way to chooseαr so far.

3. RPCCL ALGORITHM

The RPCCL approach invokes a new mechanism to control
the rival penalization. The underlying idea of this mecha-
nism is that the rival should be fully penalized if its distance
to the winner is closer than the distance between the winner
and the input; otherwise the penalization strength will be
gradually attenuated when the distance between the winner
and the rival increases. Sinceαr is generally smaller than
αc, we can regardαr = αc as a kind of fully penalization.



In this way, we can realize such a penalization mechanism
by αcpr(xt) with

pr(xt) =
min(|mc −mr|, |mc − xt|)

|mc −mr| , (6)

where we have used Euclidean distance to measure the dis-
tance between two seed points. It can be seen that as|mc−
mr| ≤ |mc − xt|, the rival will be fully penalized with
the rateαc. Otherwise, the rival will be penalized with the
rate αc

|mc−xt|
|mc−mr| , which is gradually attenuated as|mc −

mr| increases. Hereafter, we also callαcpr(xt) the rival-
penalization strength. We then associate this mechanism
into the RPCL learning rules as given in Eq.(5). Conse-
quently, the detailed RPCCL algorithm is as follows:

step 1: Randomly take an inputxt from the data setD =
{xt}N

t=1, calculateI(j|xt) by Eq.(2).

step 2: Update the winnermc and the rivalmr only by
Eq.(4), but Eq.(5) becomes

∆mc = αc(xt −mc)
∆mr = −αcpr(xt)(xt −mr). (7)

These two steps are repeated for each input until
I(j|xt)’s converge.

It can be seen that if we fixpr(xt) at a value smaller than
1, Eq.(7) is then equal to Eq.(5) withαr = αcpr(xt). That
is, RPCCL is actually a generalization of the RPCL with in-
cluding it as a special case. Moreover, it should be noted
that when RPCCL gives an unappropriate clustering at cur-
rent time step, i.e., there are two or more seed points located
in one true cluster, the rival penalization strength in Eq.(7) is
not less than0.25αc in average if the data are uniformly dis-
tributed in the cluster. Such a big rival penalization strength
however can lead the RPCL to break down totally. Hence,
theαr in Eq.(5) is generally much smaller than0.25αc, re-
sulting in the RPCCL driving the extra seed points far away
from the clusters much faster than the RPCL in general.

In addition, please note that the value ofpr(xt) in Eq.(6)
is always between0 and1, which can be therefore regarded
as the probability of rival penalization. As a result, we
can alternatively give out a stochastic version of RPCCL
named Stochastic RPCL (S-RPCL), whose algorithm is as
follows:

Step 1: This step is the same as that of RPCCL.

Step 2: Update the winnermc by Eq.(7). Then uniformly
generate a random numberν ∈ [0, 1]. Let

% =
{

1, if ν ≤ pr(xt);
0, otherwise.

(8)

We update the rivalmr by

∆mr = −αc%(xt −mr). (9)

In Eq.(8), the value of% is switched between0 and1, which
makes the rival penalization in Eq.(9) is implemented dis-
continuously. Actually, it can be seen that Eq.(9) is exactly
equal to the de-learning rule of the RPCL in Eq.(5) with
the de-learning rateαr = αc if we always set% = 1. As
pointed out in [10], we have known that the RPCL cannot
work completely ifαr = αc. But, one interesting thing
is that the S-RPCL can work well by just letting the rival
penalization be done discontinuously under this controlled
way. Since the rival effects of S-RPCL as a whole are the
same as the RPCCL, it is generally expected that the perfor-
mance of S-RPCL is the same as RPCCL. In the following,
due to the space limit, we will just show the performance of
RPCCL in comparison with the RPCL.

4. EXPERIMENTAL RESULTS

To compare RPCCL with the RPCL, we conducted four ex-
periments. In each one, we used a set of data points with
the sizeN = 1, 000. Furthermore, we used six seed points,
whose initial positions are all randomly assigned in the in-
put data space. In addition, we randomly set the learning
rateαc = 0.001 while lettingαr = 0.0001 by default for
the RPCL.

4.1. Experiment 1

We used the1, 000 data points from a mixture of three Gaus-
sian distributions with the true means:(1, 1)T , (1, 5)T and
(5, 5)T , respectively. As shown in Fig. 1(a), the data form
three well-separated clusters with the six seed pointsm1,
m2, . . ., m6 randomly located at:

m1 =
(

2.2580
1.9849

)
, m2 =

(
1.4659
5.1359

)
,

m3 =
(

0.6893
5.0331

)
, m4 =

(
5.2045
5.1298

)
,

m5 =
(

1.9193
5.4489

)
, m6 =

(
5.5869
5.1937

)
.(10)

After 100 epoches (The1, 000 data points are scanned once
is calledan epoch), the six seed points learned by RPCCL
have been converged to:

m1 =
(

1.0131
0.9806

)
, m2 =

(
0.9845
4.9823

)
,

m3 =
( −3.5557

5.4466

)
, m4 =

(
5.0180
5.0043

)
,

m5 =
(

5.7498
25.0371

)
, m6 =

(
11.4483
7.2208

)
.(11)

As shown in Fig. 1(b), RPCCL put three seed points:m1,
m2 and m4 into the appropriate positions of three clus-
ters meanwhile driving the other three extra seed points:



m3, m5 andm6 far away from the input data set. That
is, RPCCL has successfully worked in this case. However,
after100 epoches, RPCL just led the six seed points to:

m1 =
(

1.0131
0.9806

)
, m2 =

(
0.9862
5.1899

)
,

m3 =
( −0.2110

7.2922

)
, m4 =

(
4.7637
5.0947

)
,

m5 =
(

8.9795
42.2057

)
, m6 =

(
5.3665
4.9695

)
.(12)

As shown in Figure 2(a), the RPCL drove only one seed
pointm5 far away from the input data set. We then further
learned the seed points to the200 epoch number. In this
case, the RPCL has successfully driven three extra points
m3, m5 andm6 to

m3 =
( −3.0326

13.2891

)
, m5 =

(
14.4600
70.6014

)
,

m6 =
(

10.4714
5.2240

)
, (13)

which are far away from the input data set as shown in Fig-
ure 2(b), while the other three seed points located at the
correct positions as follows:

m1 =
(

1.0167
0.9321

)
, m2 =

(
0.9752
5.3068

)
,

m4 =
(

5.4022
5.0054

)
. (14)

It should be noted that RPCL can work well in Experiment
1, but it needs more computing costs in comparison with
RPCCL and S-RPCL.
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Figure 1: The positions of six seed points marked by ’*’
in the input data space at different steps in Experiment 1:
(a) the initial positions, (b) the final position obtained via
RPCCL.
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Figure 2: (a)The experimental results of RPCL in Experi-
ment 1. (a) The final position of six seed points obtained
via RPCL with epoch =100, where only one seed point is
far away from the input set; (b) The final position obtained
via RPCL with epoch =200, where three extra seed points
have been all driven away from the input set.

4.2. Experiment 2

Also, we used the1, 000 data points from a mixture of an-
other three Gaussian distributions with true means respec-
tively: (1, 1)T , (1, 2.5)T and(2.5, 2.5)T , which form three
ball-shaped cluster but with serious overlapping area as shown
in Figure 3(a) in comparison with the case in Experiment1.
After 100 epoches, we found that the RPCCL has given out
the correct results as shown in Figure 3(b), but RPCL can-
not work even if we increase the epoch number to1, 000.
Also, we further tested RPCL by adjustingαr from 0.0009
to 0.00001 with a constant decreased step:0.00001. Unfor-
tunately, we could not find out an appropriateαr in all cases
we have tried so far to let RPCL successfully work.
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Figure 3: The positions of six seed points marked by ’*’
in the input data space at different steps in Experiment 2:
(a) the initial positions, (b) the final position obtained via
RPCCL.



4.3. Experiment 3 and 4

In the previous two experiments, we assume that each clus-
ter is ball-shaped, but which is not always true in many prac-
tical clustering problems, where the data may form ellipse-
shaped clusters. Although we can modify the updating rule
of the seed points in Eq.(7) by considering the data covari-
ance matrices. Here, we prefer to the simple rule structure,
and we would show the robust performance of RPCCL in
two more general situations.

Similarly to Experiment 1 and Experiment 2, Experi-
ment 3 considers the ellipse-shaped clusters with well sep-
arated, whereas Experiment 4 deals with the case with data
clusters seriously overlapped. Again, under the same exper-
imental environment, we performed the clustering by us-
ing RPCCL. Figure 4(a) and Figure 4(b) all showed that the
RPCCL have successfully drove the three extra seed points
far away from the input data set, meanwhile locating the
other three seed points at the correct positions.
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Figure 4: The final positions of six seed points marked by
’*’ in the input data space, obtained by (a) Experiment 3;
(b) Experiment 4.

5. CONCLUSION

We have further investigated the RPCL with presenting a
mechanism to dynamically control the rival-penalizing forces.
Consequently, we have given out the RPCCL algorithm and
its stochastic version. Compared to the RPCL, the main ad-
vantage of the proposed algorithm is that it need not deter-
mine the value of de-learning rate, while performing correct
clustering without knowing exact cluster number. The ex-
periments have demonstrated its outstanding performance.
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