
A Rival Penalized EM Algorithm towards Maximizing Weighted Likelihood for
Density Mixture Clustering with Automatic Model Selection∗

Yiu-ming Cheung
Department of Computer Science

Hong Kong Baptist University, Hong Kong, China

Abstract

How to determine the number of clusters is an in-
tractable problem in clustering analysis. In this paper,
we propose a new learning paradigm named Maximum
Weighted Likelihood (MwL), in which the weights are des-
ignable. Accordingly, we develop a novel Rival Penalized
Expectation-Maximization (RPEM) algorithm, whose in-
trinsic rival penalization mechanism enables the redundant
densities in the mixture to be gradually faded out during the
learning. Hence, the RPEM can automatically select an ap-
propriate number of densities in density mixture clustering.
The experiments have shown the promising results.

1. Introduction

Clustering analysis has been widely applied in a vari-
ety of scientific areas such as vector quantization [4], data
mining [3], image processing [5], and so forth. In the liter-
ature, a broad view of clustering problem has been formu-
lated within the framework of density estimates [7, 6], in
which the probability density of inputs is represented by a
finite mixture model. Each mixture component represents
the density distribution of a cluster of data. Consequently,
clustering can therefore be viewed as identifying the dense
regions of the input densities. In the past, the Expectation-
Maximization (EM) algorithm [2] has provided a general
solution for the parameter estimate in a density mixture
model. Unfortunately, it needs to pre-assign a correct num-
ber of densities. Otherwise, the EM will almost always lead
to a poor estimate result.

In this paper, we will propose a new learning paradigm
named Maximum Weighted Likelihood (MwL), under
which a novel Rival Penalized EM (RPEM) algorithm is
developed accordingly. The RPEM has the intrinsic rival
penalization mechanism that enables the algorithm to grad-

∗This work was supported by the Faculty Research Grant of Hong Kong
Baptist University with the Project Code: FRG/02-03/II-40.

ually fade out the redundant densities of a mixture during
the learning process. In other words, the RPEM has the ca-
pability of automatically selecting an appropriate number
of densities in density mixture clustering. The experiments
have demonstrated its outstanding performance on Gaussian
mixture clustering in comparison with the EM.

2 Maximum Weighted Likelihood (MwL): A
New Learning Paradigm

Suppose N i.i.d. observations: x1, x2, . . ., xN are from
a mixture of k∗ densities, written as p(x|Θ∗), where Θ∗ de-
notes the true model parameter set. The ML estimate of Θ∗

can be obtained via maximizing the following cost function

�(x;Θ) =
∫

ln p(x|Θ)dF (x), (1)

with

p(x|Θ) =
k∑

j=1

αjp(x|θj),
k∑

j=1

αj = 1, and αj > 0 for ∀j,

(2)
where F (x) =

∫ x

−∞ p(x)dx is the cumulative probability
function of x. Hereinafter, we suppose that k is no less than
k∗, and p(x|Θ) is an identifiable density with respect to Θ.
It can be seen that Eq.(1) can be further represented as

�(x;Θ) =
∫

ln p(x|Θ)dF (x)

=
∫ k∑

j=1

g(j|x,Θ) ln p(x|Θ)dF (x) (3)

where g(j|x,Θ)s are the designable weights satisfying

k∑
j=1

g(j|x,Θ) = 1. (4)

In general, each of them is a deterministic function with
respect to x and Θ. We name Eq.(3) Weighted Likelihood

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

function. By Baye’s formula, we know that the posterior
probability that x comes from the jth density as given x is

h(j|x,Θ) =
αjp(x|θj)
p(x|Θ)

. (5)

Subsequently, for any 1 ≤ j ≤ k, we then have

p(x|Θ) =
αjp(x|θj)
h(j|x,Θ)

(6)

as long as h(j|x,Θ) is not equal to zero. Putting Eq.(6) into
Eq.(3), we therefore have

�(x;Θ) =
∫

[g(1|x,Θ) ln p(x|Θ) (7)

+ . . . ,+g(k|x,Θ) ln p(x|Θ)]dF (x)

=
∫ k∑

j=1

g(j|x,Θ) ln
αjp(x|θj)
h(j|x,Θ)

dF (x)

=
∫ k∑

j=1

g(j|x,Θ) ln[αjp(x|θj)]dF (x)

−
∫ k∑

j=1

g(j|x,Θ) ln h(j|x,Θ)dF (x).

As N is large enough, the MwL cost function of Eq.(7) can
be further approximated by:

Q(XN ;Θ) =
1
N

N∑
t=1

k∑
j=1

g(j|xt,Θ) ln[αjp(xt|θj)]

1
N

N∑
t=1

k∑
j=1

g(j|xt,Θ) ln h(j|xt,Θ), (8)

in which the first term is a generalized version of EM cost
function, and no longer adheres to the mean value to es-
timates the hidden label as given the corresponding input.
Evidently, it degenerates to the latter when g(j|xt,Θ) is
equal to h(j|x,Θ) for any j. The second term is actu-
ally a kind of measures to represent the uncertainty of the
densities that the input xt comes from. For instance, as
g(j|x,Θ) = h(j|x,Θ), the second term is exactly the con-
ditional entropy of the densities. In general, the learning
of Θ towards maximizing the first term of Eq.(8) is to re-
duce such an uncertainty, but the learning of maximizing
Eq.(8) will also increase the value of second term. In other
words, the second term is serving as a regularization term
in the learning of Θ. In Eq.(7) and Eq.(8), we do not con-
sider the case that h(j|x,Θ) = 0 for some j. Clearly, if
h(j|x,Θ) = 0 holds for some j, the maximum function
value of Eq.(8) may not exist. To avoid this awkward situa-
tion, we therefore further request

∀ j, g(j|x,Θ) = 0 if and only if h(j|x,Θ) = 0 (9)

in designing g(j|x,Θ), which has a variety of choices as
long as the conditions stated in Eq.(4) and Eq.(9) are satis-
fied. For instance, we can let g(j|x,Θ) be some probability
function, i.e.,

∑k
j=1 g(j|x,Θ) = 1 and g(j|x,Θ) ≥ 0 for

any 1 ≤ j ≤ k. A typical example is to let g(j|x,Θ) =
h(j|x,Θ), or

I(j|xt,Θ) =
{

1, if j = c = arg max1≤r≤k h(j|xt,Θ)
0, otherwise.

(10)
In the former, Eq.(8) degenerates to the Kullback-Leibler
divergence function derived from Ying-Yang Machine with
the backward architecture, e.g., see [8]. In contrast, the lat-
ter design leads Eq.(8) to be the cost function of hard-cut
EM [8]. In the subsequent sections, we will prefer to inves-
tigate one specific g(j|xt,Θ) only with

g(j|xt,Θ) = 2ϕ(j|xt,Θ) − h(j|xt,Θ), (11)

where ϕ(j|xt,Θ) is a special probability function named
indicator function, i.e., given any input xt, we have∑k

j=1 ϕ(j|xt,Θ) = 1, φ(j|xt,Θ) ≥ 0 for 1 ≤ j ≤ k,
and there is one and only one, denoted as ϕ(c|xt,Θ), equal
to 1. After designing the weights, the learning of Θ can then
be accomplished towards maximizing Eq.(8). We there-
fore name such a learning as Maximum Weighted Likelihood
(MwL) learning approach.

3 Rival Penalized EM Algorithm

By considering the specific weights in Eq.(11) and
putting Eq.(11) into Eq.(8), the cost function of Eq.(8) then
becomes

Q(XN ;Θ) =
1
N

N∑
t=1

qt(xt;Θ) (12)

with

qt(xt;Θ) = (13)
k∑

j=1

[2ϕ(j|xt,Θ) − h(j|xt,Θ)] ln[αjp(xt|θj)]

−
k∑

j=1

[2ϕ(j|xt,Θ) − h(j|xt,Θ)] ln h(j|xt,Θ),

where qt(xt;Θ) is called an instantaneous cost function at
time step t because its value depends on Θ and the cur-
rent input xt only. Before estimating Θ via maximizing
Q(XN ;Θ) in Eq.(12), we need to specify ϕ(j|xt,Θ). One
choice is simply let

ϕ(j|xt,Θ) = I(j|xt,Θ), for 1 ≤ j ≤ k (14)

as given in Eq.(10). It should be note that, if the number
of maximum values of h(j|x,Θ)s is more than one, we

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

can randomly select one index among them as c and let
ϕ(c|xt,Θ) = 1, meanwhile the others are equal to zero.
Subsequently, we can always guarantee ϕ(j|xt,Θ) to be an
indicator function. As a result, we can learn Θ via max-
imizing Eq.(12) adaptively. That is, after assigning some
initial value to Θ, we perform the following two steps as
given an input xt:

Step 1 Fixing Θ(old), we compute h(j|x,Θ(old)) and
ϕ(j|xt,Θ(old)) via Eq.(5) and Eq.(14), respectively.

Step 2 Fixing h(j|xt,Θ)s calculated in Step 1, we update
Θ with a small step towards the direction of maxi-
mizing Eq.(13). To avoid the constraint on αjs during
the optimization, we therefore let αjs be the soft-max
function of k new free variables βjs with

αj =
exp(βj)∑k

r=1 exp(βr)
, for 1 ≤ j ≤ k, (15)

and update βjs directly instead of αjs. As a result, we
update Θ by

β(new)
c = β(old)

c + η
∂qt(xt;Θ)

∂βc
|Θ(old)

= β(old)
c + η[2 − h(c|xt,Θ(old)) − α(old)

c]

θ(new)
c = θ(old)

c + η
∂qt(xt;Θ)

∂θc
|Θ(old)

= θ(old)
c + η[2 − h(c|xt,Θ(old))]

∂ ln p(xt|θc)
∂θc

,

meanwhile

β(new)
r = β(old)

r + η
∂qt(xt;Θ)

∂βr
|Θ(old)

= β(old)
r − η[h(r|xt,Θ(old)) + α(old)

r]

θ(new)
r = θ(old)

r + η
∂qt(xt;Θ)

∂θr
|Θ(old)

= θ(old)
r − ηh(r|xt,Θ(old))

∂ ln p(xt|θr)
∂θr

,

where η is a small positive learning rate, α
(old)
j is

computed via Eq.(15) in terms of β
(old)
j , c is given in

Eq.(10), and r = 1, 2, ..., k but r �= c.

The above two steps are iteratively implemented for each
input until Θ converges. It can be seen that, at each time
step t, Step 2 not only updates the associated parameters
of the winning mixture component to adapt to the input,
but all those of rival components are also penalized towards
minimizing the value of p(xt|Θ) with the force strength
proportional to h(r|xt,Θ)s, respectively. The larger the
h(r|xt,Θ) is, the stronger the penalized force is. We
therefore name this algorithm Rival Penalized EM (RPEM),

whose intrinsic rival-penalized mechanism, as shown in the
next section, enables the RPEM to gradually fade the redun-
dant components out in a density mixture. In the following,
we will further study RPEM in more details under the Gaus-
sian density mixtures.

Suppose each mixture component p(xt|θj) of Eq.(8) is
Gaussian, denoted as G(xt|mj ,Σj), where mj and Σj are
the means and covariance matrices, respectively. As a re-
sult, the details of the previous Step 1 and Step 2 can be
given as follows:

Step 1 Given an input xt, we fix Θ(old), and calculate

h(j|xt,Θ(old)) =
α

(old)
j G(xt|m(old)

j ,Σ(old)
j)∑k

i=1 α
(old)
i G(xt|m(old)

i ,Σ(old)
i)

,

where 1 ≤ j ≤ k, and αjs are calculated by Eq.(15).
Furthermore, ϕ(j|xt,Θ(old)) = I(j|xt,Θ(old)) as
given by Eq.(10).

Step 2 Fixing h(j|xt,Θ(old))s, we update Θ. We have no-
ticed that all subsequent computations involve Σ−1

j s
only rather than Σjs. To save computing costs and en-
sure the learning of Σj stable, we therefore directly
update Σ−1

j s rather than Σjs. Consequently, the de-
tails of updating Θ are given as follows:

β
(new)
j = β

(old)
j + η[g(j|xt,Θ(old)) − α

(old)
j]

m(new)
j = m(old)

j + ηg(j|xt,Θ(old))Σ−1
j

(old)

(xt − m(old)
j)

Σ−1
j

(new)
= [1 + ηg(j|xt,Θ(old))]Σ−1

j

(old)

−ηg(j|xt,Θ(old))Ut,j (16)

with

Ut,j = [Σ−1
j

(old)
(xt − m(old)

j)(xt − m(old)
j)T

Σ−1
j

(old)
], 1 ≤ j ≤ k, (17)

where g(j|xt,Θ(old)) is given by Eq.(11).

Please note that, to simplify the computation of Σ−1
j s’

update, Eq.(16) has updated Σ−1
j along the direction of

Σ−1
j

∂qt(xt;Θ)

∂Σ−1
j

Σ−1
j , i.e, along the direction with an acute

angle of ∂qt(xt;Θ)

∂Σ−1
j

.

In the above algorithm, if we ignore the difference be-
tween h(c|xt,Θ) and I(c|xt), the g(j|xt,Θ) in Eq.(11)
then becomes

g(j|xt,Θ) ≈
{

1, if j = c,
−h(j|xt,Θ), otherwise.

(18)

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

Eventually, the RPEM algorithm will become a generalized
version of the Rival Penalization Controlled Competitive
Learning (RPCCL)[1]. Also, it will include the existing
RPCL [9] and its Type A variant [8] as its special cases,
but meanwhile providing a theoretical guidance to choose
their awkward de-learning rate. We will go into the details
elsewhere because of the space limitation.

4 Simulation Results

To demonstrate the performance of RPEM, we generated
1, 000 synthetic data points from a mixture of three bivariate
Gaussian density distributions with the true mixture propor-
tions α∗

1 = 0.3, α∗
2 = 0.4, and α∗

3 = 0.3. Furthermore, we
set η = 0.001, and randomly assigned 7 seed points in the
input space as shown in Fig. 1(a). After 250 epoches, Fig.
1(b) shows the stable positions of 7 seed points learned by
RPEM, where three of them are located at the correspond-
ing cluster centers, while the other four stay at the outside
of the clusters. Furthermore, a snapshot of αjs is:

α1 = 0.023, α2 = 0.342, α3 = 0.287, α4 = 0.293,

α5 = 0.019, α6 = 0.018, α7 = 0.018,

we found that α1, α5, α6 and α7 are learned towards zero.
In other words, the input data set is recognized from the
mixture of the three densities: 2, 3, 4. Hence, the RPEM has
the robust performance without knowing the true mixture
number.

For comparison, we also demonstrated the EM perfor-
mance under the same experimental environment. Fig. 1(c)
shows the final positions of 7 seed points in the input space,
where they are all biased from the cluster centers. Also,
none of αjs was approached to zero through the learning.
Instead, the EM led 7 densities to compete each other with-
out making extra densities die. That is, the EM cannot work
at all in this case.

5 Conclusion

We have proposed a new MwL learning paradigm, un-
der which the RPEM algorithm has been developed accord-
ingly. Compared to the EM, the RPEM has the intrinsic
rival penalization mechanism, which enables the algorithm
to automatically select an appropriate number of densities
by gradually fading the redundant densities out in a den-
sity mixture. The experiments have shown the outstanding
performance of RPEM in Gaussian mixture clustering.

References

[1] Y. M. Cheung. Rival penalization controlled competitive
learning for data clustering with unknown cluster number. In

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Initial Positions of Parameter m
j
s in Input Space

(a)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

Positions of Parameter m
j
s in Input Space

(b)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Positions of Parameter m
j
s in Input Space

(c)

Figure 1. The positions of 7 seed points
marked by ‘*’ in the input data space: (a) the
initial random positions, (b) the final position
obtained via the RPEM, (c) the final position
obtained via the EM.

Proceedings of 9th International Conference on Neural Infor-
mation Processing (Paper ID: 1983 in CD-ROM Proceeding),
November 18-22, 2002.

[2] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of Royal
Statistical Society, 39:1–38, 1977.

[3] U. Fayyad, G. Piatetsky-Shpiro, P. Smyth, and R. Uthu-
rusamy. Advances in Knowledge Discovery and Data Mining.
MIT Press, 1996.

[4] B. Fritzke. The lbg-u method for vector quantization – an
improvement over lbg inspired from neural networks. Neural
Processing Letters, 5(1):35–45, 1997.

[5] Y. Lim and S. Lee. On the color image segmentation algo-
rithm based on the thresholding and the fuzzy c-means tech-
niques. Pattern Recognition, 23(9):935–952, 1990.

[6] G. McLachlan and K. Basford. Mixture Models: Inference
and Application to Clustering. Dekker, 1988.

[7] B. Silverman. Density Estimation for Statistics and Data
Analysis. London: Chapman & Hall, 1986.

[8] L. Xu. Bayesian ying-yang machine, clustering and num-
ber of clusters. Pattern Recognition Letters, 18(11-13):1167–
1178, 1997.

[9] L. Xu, A. Krzyzak, and E. Oja. Rival penalized competitive
learning for clustering analysis, rbf net, and curve detection.
IEEE Transaction on Neural Networks, 4:636–648, 1993.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

