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Abstract

The low-contrast and narrow blood vessels in retinal
images are difficult to be extracted but useful in reveal-
ing certain systemic disease. Motivated by the goals of
improving detection of such vessels, we propose the ra-
dial projection method to locate the vessel centerlines.
Then the supervised classification is used for extract-
ing the major structures of vessels. The final segmenta-
tion is obtained by the union of the two types of vessels
after removal schemes. Our approach is tested on the
STARE database, the results demonstrate that our algo-
rithm can yield better segmentation.

1. Introduction

Retinal images provide considerable information on
pathological changes caused by local ocular disease
which reveals diabetes, hypertension, arteriosclerosis,
cardiovascular disease and stroke [1]. Computer-aided
analysis of retinal image plays a central role in diag-
nostic procedures. However, automatic retinal segmen-
tation is complicated by the fact that retinal images are
often noisy, poorly contrasted, and the vessel widths can
vary from very large to very small.

Considerable previous works have endeavored to ad-
dress these issues. The matched filter and the adap-
tive threshold methods have been tried in [2, 3, 4]; and
the classification methods [5, 6, 7] are used. Tracking-
based method [8] also provides a satisfactory descrip-
tion of the vessel network. The existing methods make
greatly progress in the vessel segmentation, including

the SVM [7] and FLUX [9], which are also devoted to
the segmentation.

2. Locating the vessel centerlines using ra-
dial projection

It has been observed that blood vessels in retinal
images have nice properties which are valuable for
mathematic modeling. The blood vessels usually have
small curvatures, they are piecewise linear and gradu-
ally change in intensity along their lengths.

We shall give the mathematical description for the
radial projection. In the spatial domain, f(x, y) repre-
sents an image, (x, y) is associated with a pixel loca-
tion. First, f(x, y) in the Cartesian coordinates is trans-
formed into the polar coordinates:

{
x = γ cos θ
y = γ sin θ

(1)

Hence,
p(x, y) = p(γ cos θ, γ cos θ) (2)

Where γ is the radius of projection , θ is the radial
direction, and p(x, y) is the intensity of a pixel at (x, y).
For any fixed θ, we compute the following summation:

f(θ) =
7∑

γ=0

p(γ cos θ, γ sin θ) (3)

The resulting f(θ) is in fact equal to the total pixels
as distributed along the radial direction θ, also is the
VRP (VRP means the value of radial projection for a
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Figure 1. Illustration of a given pixel (blue color) in
three typical regions and the corresponding projected
curves.

pixel at a specific orientation) in the projected curve at
the θ. Obviously, the value of f(θ) increases signifi-
cantly if this direction is aligned within a vessel. We
set N = 24, so we obtain an angular resolution of 15◦

to span all possible directions. This resolution is sat-
isfactory with respect to the radius of projection, also
a acceptable tradeoff between computational cost and
detection performance.

Each pixel in the regions of interest (ROI) is taken
as the center of radial projection; then, the projection
is performed along different radial directions covering
the whole circular region. Thus, the projected curve of
each pixel consists of 24 VRP. The key idea is that the
projected curve of a pixel usually has prominent peaks
if the pixel belongs to a vessel segment. We exploit this
fact and look for the prominent peaks by comparison
with multi-adjacency values in the curve. Fig.1 illus-
trates three typical positions (linear segment, branching
segment and noisy non-vessel regions) where a pixel
usually is located. If the projected curve of a pixel dis-
plays prominent twin-peaks, the pixel has high possibil-
ity of belonging to a linear vessel segment, see Fig.1(c).
Further, if the pixel is located in the vessel branching,
its projected curve may show three or more prominent
peaks, see Fig.1(a). Otherwise, the pixel may demon-
strates disordered projected curve which is shown in
Fig.1(b). Although some non-vessel pixels’ curves may
reveal the same curve shape like that of a vessel pixel,
our removal scheme can largely clear these false pixels
out.

To illustrate this process, an example for an image re-
gion containing a tree-like vessel with a narrow branch
is shown in Fig. 2(a). The initial location of the most
likely vessel centerlines are presented in Fig. 2 (b). The
pruning operation is then carried out to remove the spu-
riously detected vessel pixels according to intensity of
the pixel and length of the segment. Each candidate
point is confirmed or rejected as a valid one based on

(b)(a) (c)

Figure 2. Locating the candidate centerline points.
(a) Fragment of the inverted green channel of retinal
image. (b) The image with centerline candidates after
radial projection. (c) The image with centerline candi-
dates are pruned according to intensity of the pixel and
length of the segment.

these two features.
Firstly, we compute the median value in eight-

connected neighborhood, the intensity of the candidate
should be greater than the median value so as to pass
the first artifact removal scheme.

Secondly, the length of the candidate pixel set is
measured by counting the candidate pixels along the
24 orientations within eight pixels length, retaining the
maximum directional counts as the length of the local
segment, so the perfect vessel segment has eight pix-
els. In this removal step, if the length of any segment
is smaller than � = 5, it should be removed. Here, � is
a user-defined threshold. This process is repeated and
most of noisy pixels can be cleared out in Fig. 2 (c).

After the removal stage, most of the spurious objects
are pruned. This de-noising strategy effectively protect
the low contrast vessel pixels from clearing out com-
pared to the conventional connected region method, be-
cause it allows for isolated vessel pixels near the vessel
segment in addition to the local connectivity.

3. Extraction of the major structures of ves-
sels

The supervised method [5],[7] is able to capture the
major structures of vessels and produces good results
near blood vessel edges, but it has limitations for the
thinnest vessels that has been solved by the radial pro-
jection. In this part, supervised method is applied to
obtain the major vessels. Each pixel is represented by a
feature vector including line strength at different scales
from the steerable complex wavelet transform. The re-
sulting feature space is used to classify each pixel as ei-
ther a vessel or non-vessel pixel using a support vector
machine (SVM) classifier. A more detailed description
for the approach will be provided.

1) Steerable Complex Wavelet Transform: Steerable
filters provide a efficient way to compute the response
of an oriented filter in an arbitrary orientation using a
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finite number of basis filters with different orientations
by Freeman and Adelson [10]. To seek a construc-
tion whose orientation selectivity is specified indepen-
dently of radial frequency (or scale) selectivity, a steer-
able complex wavelet construction was developed by
Bharath [11]. It has the ability to independently study
orientation and scale selection paradigms.

For convenience in tuning angular and radial char-
acteristics of the filters, Bharath imposed domain po-
lar separability, so that an analysis filter G0,k(ω, φ) in
the kth direction in a filter set can be specified as the
product of a radial frequency function Ω0(ω) and an-
gular frequency function Φ0,k(φ), i.e., G0,k(ω, φ) =
Ω0(ω)Φ0,k(φ). More details can be found in [11]. The
radial frequency function Ω0(ω) is based on Erlang
functions which are one-sided density functions. We
chose the Quadratic B-spline instead of Erlang func-
tions in this work due to its smooth and compactly sup-
ported properties. It illustrates better directional selec-
tiveness capability of detecting oriented features. The
radial frequency functions are generated by the scale
and translation of the Quadratic B-spline. It is defined
as

Ω0 = θ(
ω − ω0

S(ω0)
) (4)

Where θ(·) is the Quadratic B-spline, and the ω0 is
frequency-shifting factor which indicates the center
frequency of the bandpass filter. In retinal images,
the vessels have various widths, we simply define the
ω0 = 1/width which is proportional to the vessel
width. Denote S(ω0) as scale function, i.e., S(ω0) =√

2 ln(2)w0/2. We use the same angular frequency
characteristic in [11]:

Φ0(φ) = cos3(φ)rect(φ/π) (5)

Where rect(φ) = U(φ + (1/2))U((1/2) − φ) and
U(·) is the unit step function. So the analysis fil-
ter G0,k(ω, φ) can be formed by the radial frequency
function and angular frequency function. We apply
the improved steerable filters to adaptively enhance the
oriented vessels at different scales (the different ves-
sel width), the corresponding center frequency ω0 is
1, 1/2, 1/3, 1/5, 1/7. So five enhanced retinal images
with different scales can obtained using the steer com-
plex wavelet transform.

2) Feature Selection and Classification: The line
strength of the pixel [7] is a good feature to discrim-
inate vessel pixels from the non-vessel pixels. Then
based on the above five enhanced retinal images S and
the original image I(i, j), we construct the feature vec-
tor x = [S1(i, j), S2(i, j), · · · , S5(i, j), I(i, j)], used to
train a supervised classifier. The feature vector needs to
be normalized which helps to compensate for intrinsic

Method Accuracy sensitivity specificity

Hoover 0.9267 0.6751 0.9567
Soares 0.9480 0.7103 0.9737
Mendonça 0.9440 0.6996 0.9730
Proposed 0.9492 0.7256 0.9750
Second observer 0.9354 0.8949 0.9390

Table 1. Performance of vessel segmenta-
tion methods.

variation between images. Training is performed using
20 000 manually segmented pixels randomly extracted
from the 20 images (500 vessel pixels and 500 non-
vessel pixels per image), yielding the SVM classifier.

4. Union of the vessel centerlines and the
major structures of vessels

We obtain the final segmentation vessels of retinal
image by combining the vessel centerlines image with
the major structures of vessels image which are derived
from the above phases.

First, we roughly compute the width, length and the
area of each vessel segment. Second, if any vessel
segment in the major structures images is not near to
any vessel centerlines and its width, length as well as
area can’t meet a user defined threshold, it will be re-
moved. Then, the morphological “bridge” operation is
performed on the image. This operation bridges uncon-
nected pixels, that is, sets 0-valued pixels to 1 if they
have two nonzero neighbors that are not connected. Fi-
nally, the pixels nearly surrounded by vessel points but
not labeled as part of a vessel are considered, they are
taken back using the four neighborhood connectivity.
The complete vessel segmentation is obtained by per-
forming a logical “or” operation on the vessel center-
lines image and the denoised major structures of vessels
image.

5. Experiments and results

The method described in the previous sections is
evaluated on the STARE database. Performance is com-
puted with the segmentations of the first observer as
ground truth.

To facilitate the comparison with other retinal vessel
segmentation approaches, the performances are evalu-
ated using three different measures. In Table 1, our ap-
proach are compared with the most recent methods in
terms of accuracy, sensitivity and specificity. The pro-
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(c) (d)

(e)

Figure 3. Results of a retinal image using different
methods. (a) Retinal image (Im0255). (b) Hoover et
al. method. (c) Soares et al. method. (d) Proposed
method. (e) Ground truth 1.

posed algorithm gives higher average sensitivity rate in
the same range of specificity and accuracy.

Fig. 3(b)-(d) show an example of results using dif-
ferent methods. Fig. 3(b) contains a few narrow ves-
sels while Fig. 3(c) has more small ones. This is be-
cause a training image set is used in the latter method.
The result of the proposed method is shown in Fig.
3(d), which is very close to the manual segmentation.
We can see that the proposed method is able to detect
many narrow and low-contrast vessels without produc-
ing many spurious spots. However, if there are more
thread-like objects near the wide vessels, artifacts still
can be formed.

6. Conclusions and discussions

In this paper we combine the radial projection and
the supervised method to yield vessel segmentation. We
detect the narrow vessels with low contrast based on the
radial projection which is performed by the sum of a
series of intensity of pixels along different radial direc-
tions. Thus, this operation can distinguish between ves-
sel points and the background points, allowing the nar-
row vessel to stand out from the background. And the
supervised method is applied to obtain the major struc-

tures of vessels, because it learns from human-labeled
data, so it is able to extract better major vessels and de-
crease the false detection.
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