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ABSTRACT
This paper presents a new independency metric for blind
source separation (BSS) problem. It is mathematically
proved that the metric value of any linear combination of
source signals is less than the largest one of sources un-
der a loose condition. Further, the global optimization of
this new metric is achieved by formulating it as a general-
ized eigenvalue problem. Subsequently, we guarantee to
find out a correct de-mixing matrix through maximizing
the proposed metric to separate the sources. The simula-
tion results have shown its success in separating the linear
combinations of sub-Gaussian and super-Gaussian sources
with at most one Gaussian signal.
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1 Introduction

Since Jutten and Herault published their seminal work [1]
in 1991, blind source separation (BSS) has been receiving
wide attention in the fields of signal processing and neu-
ral networks because of their potential attractive applica-
tions in wireless communications, biomedicine, speech sig-
nal processing, earthquake reconnoitering, and so forth. In
the literature, blind source separation with an instantaneous
linear mixture has been formulated as an independent com-
ponent analysis (ICA) problem: Suppose there aren chan-
nels of non-Gaussian source signals with at most one Gaus-
sian one, denoted ass1, s2, . . ., sn, which are statistically
independent each other. The sources are instantaneously
and linearly mixed by an unknown full-rank square matrix
A and observed as:

x = As, (1)

wheres = [s1, s2, . . . , sn]T , x = [x1, x2, . . . , xn]T , and
T is a transpose operation of a matrix. The objective of an
ICA approach is to recovers’s up to a constant scale and
any permutation of indices through a set of observations

∗The work described in this paper was supported by Faculty Research
Grant of Hong Kong Baptist University with Project Number: FRG/01-
02/II-24.

{xi}N
i=0 by finding out a de-mixing matrixW such that

y = Wx, (2)

wherey = [y1, y2, . . . , yn]T is a recovered signal ofs.
In the past decade, a number of ICA algorithms based

on different methodologies and theories have been pro-
posed. For example, Bell and Sejnowski [2] presented the
INFOMAX algorithm to maximize the mutual information
betweenx andy. Amari et al. [3] presented an MMI algo-
rithm to minimize the mutual information betweeny and
their componentsyj ’s with using a natural gradient descent
learning rule. Furthermore, Gaeta et al. [4] and Pham et
al. [5] proposed the approaches based on maximum likeli-
hood (ML) estimation, which was later to be shown [6] that
this approach is equivalent to the INFOMAX. Girolami and
Fyfe [7] used marginal negentropy as a projection index
and showed that maximization of negentropy can reach the
separation of the source signals. Lee et al. [8] have shown
that INFOMAX, MMI, ML and Negentropy Maximization
algorithms can be all unified in an information-theoretic
framework. Further examples are nonlinear PCA algo-
rithms for ICA [9, 10] and the cumulant-based algorithms
[11], both of which are actually to approximately minimize
the mutual information of the recovered signals. Empiri-
cal studies have shown the success of these algorithms in
separating the sources. Unfortunately, the analysis of these
algorithms’ performance is intrinsically difficult upon the
complicated nonlinearity of the contrast functions they use.
To our best knowledge, from a theoretical viewpoint, it is
still an open problem thus far when an ICA algorithm guar-
antees to separate the source signals, and when not.

In this paper, we therefore present a new ICA algo-
rithm using a novel metric namedIndependency Metric,
which is defined as a logarithm of a ratio of two covari-
ances. The numerator is the covariance of a transform of
y’s componenty, whereas the denominator is the covari-
ance ofy itself. It has been mathematically proved that the
metric value of any linear combination of source signals is
less than the largest one of sources under a loose condi-
tion. Since this metric is a quadratic form with respect to
the de-mixing matrixW, the global solution ofW can be
easily achieved by formulating the metric optimization as a
generalized eigenvalue problem. We have given out a new
ICA algorithm accordingly. In the literature, a related work



has been recently done by J.V. Stone [12]. In his paper, a
metric namedTemporal Predictabilityhas been presented
as a logarithm of a ratio of two prediction error terms. The
numerator is the summation of long-term prediction errors
of ay’s component, while the numerator is the summation
of its short-term prediction errors. Essentially, his work is
based on the conjecture that,given any set of statistically
independent source signals, the temporal predictability of
any signal mixture is less than (or equal to) that of any
of its component source signals. Unfortunately, although
a number of experiments have reported its success, some
experimental simulations have found that this conjecture is
not always true. Instead, we have found that the temporal
predictability of a signal mixture is larger than that of some
source signals in some cases. For example, as shown in Ta-
ble 1, the value of temporal predictabilityF of observation
signalx is greater than that of source signalss1 ands2, re-
spectively. Table 2 shows thatF (x) is greater thanF (s2).
In contrast, the truth of the proposed Independency Met-
ric has been proved, but not a conjecture. The experimen-
tal simulations in Section 4 have further shown its success
in separating the linear combinations of sub-Gaussian and
super-Gaussian sources with at most one Gaussian signal.

Table 1. Temporal predictabilityF of the source and ob-
servation signals, wheres1 is a Gaussian signal with zero
mean and unit variance,s2 = cos(t) is a Sub-Gaussian
signal, and the observationx = 0.3710 s1 + 0.8297 s2.

No. of samples 5000 10000 20000 30000
F (s1) 4.0735 4.1970 4.2501 4.2447
F (s2 5.1386 6.4758 8.0768 8.6829
F (x) 5.2647 6.6670 8.4009 9.1150

Table 2. Temporal predictability of the source and observa-
tion signals, wheres1 ands2 are the human speech signals
recorded at16k sampling rate respectively, and the obser-
vationx = 0.5669 s1 − 1.2025 s2.

No. of samples 10000 20000 30000 40000
F (s2) 2.1437 1.7607 1.8414 1.8656
F (x) 2.2805 1.8553 1.9131 1.9220

2 A General Form of Independency Metric

Suppose the recovered signaly is from Eq.(2). Hence,
from Eq.(1), we know that each componenty of y is a lin-
ear mixture ofn sources with:

y = c1s1 + c2s2 + . . . , +cnsn,

= cT s, (3)

wherec = [c1, c2, . . . , cn]T is an n-dimension nonzero
vector. Suppose there exists a functiong such thatg(s1),

g(s2), . . ., g(sn) are uncorrelated each other, and satisfy

g(y) = c1g(s1) + c2g(s2) + . . . + cng(sn) (4)

and

cov(g(s1))
cov(s1)

,
cov(g(s2))
cov(s2)

, . . . ,
cov(g(sn))
cov(sn)

(5)

are not equal each other. We then define a general form of
Independency Metric as

L(y) =
cov(g(y))
cov(y)

. (6)

Subsequently, we have the following Theorem:

Theorem 1 Suppose the source signalss1, s2, . . ., sn are
uncorrelated each other, and there exists a functiong sat-
isfying Eq.(4) so thatg(s1), g(s2), . . ., g(sn) are uncorre-
lated signals, andL(s1), L(s2), . . ., L(sn) are not equal
each other. We denote

L(si0) = max{L(s1), L(s2), . . . , L(sn)}. (7)

For any recovered signaly described in Eq.(3), we then
have

L(y) ≤ L(si0). (8)

Wheny 6= asi0 , wherea is any non-zero constant, then

L(y) < L(si0). (9)

Proof:
Let g(s) = [g(s1), g(s2), . . . , g(sn)]T . Sinces andg(s)
are both uncorrelated each other, we have the following di-
agonal matrices:

cov(s) = diag([cov(s1), . . . , cov(sn)]) (10)

cov(g(s)) = diag([cov(g(s1)), . . . , cov(g(sn))])

where diag[a1, a2, . . . , an] denotes the diagonal matrix
whosejth main diagonal element isaj . From the defini-
tion of L, we thus have

L(si) =
cov(g(si))
cov(si)

, i = 1, 2, . . . , n. (11)

That is,
cov(g(si)) = L(si)cov(si). (12)

Following Eq.(10), we then have

cov(g(s)) = diag([L(s1)cov(s1), . . . , L(sn)cov(sn)]).
(13)

Furthermore, based on Eq.(3), we have

cov(y) = cT cov(s)c
cov(g(y)) = cT cov(g(s))c. (14)

Subsequently, from Eq.(7), we obtain

cov(g(y)) = cT diag[L(s1)cov(s1), . . . , L(sn)cov(sn)]c
≤ cT diag[L(si0)cov(s1), . . . , L(si0)cov(sn)]c
= L(si0)cov(y). (15)



Consequently, we have

L(y) =
cov(g(y))
cov(y)

≤ L(si0), (16)

where “=” is held if and only ify = asi0 with a being a
non-zero constant. Hence, we can recover the sourcesi0

by maximizing the following contrast function:

Q(w) = log L(y), (17)

wherey = wT x. After extractingsi0 , we can then ex-
tract the other source with the second largest Independency
Metric value in the same way. Finally, we can acquire
the correct de-mixing matrixW, meanwhile recovering all
sources.

2.1 A General ICA Algorithm via Maximiz-
ing Independency Metric

SinceL(sj)’s are not equal each other, without loss of gen-
erality, we assume

L(s1) > L(s2) > . . . > L(sn). (18)

We denote theith column ofWT is wi. According to The-
orem 1, we therefore have

Q(w1) = log L(w1x) ≤ log L(s1). (19)

SinceA is ann× n nonsingular square matrix, thus

max
w1 6=0

Q(w1) = log L(s1). (20)

Suppose thatw0 is an optimal solution of the following
optimization problem:

max
w1 6=0

Q(w1). (21)

As a result,
max
w1 6=0

Q(w1) = Q(w0). (22)

In case ofw0x 6= as1, we obtainL(w0x) < L(s1) from
Theorem 1. Consequently,

max
w1 6=0

Q(w1) = Q(w0) < log L(s1) = max
w1 6=0

Q(w1),

(23)
which leads to a contradiction. This implies that the source
signal s1 can be extracted through solving optimization
problem in Eq.(20).

Since the functionQ(w1) is a logarithm of ratio of
two quadratic forms, the optimal solutions of Eq.(20) must
be a stable point. With some mathematical computations,
we can finally obtain the gradient ofQ(w1):

∇Q(w1) =
2cov(g(x))w1

wT
1 cov(g(x))w1

− 2cov(x)w1

wT
1 cov(x)w1

. (24)

Let∇Q(w1) = 0, we thus obtain

cov(g(x))w1 = L(w1x)cov(x)w1. (25)

Note thatcov(x) and cov(g(x)) are all positive definite
matric. Solving Eq. (25) actually becomes a generalized
eigenvalue problem. Through solving it, we can obtain
w1, which is an eigenvector corresponding to the maxi-
mum eigenvalue in Eq.(20).

According to the property of generalized eigenvalue
problem, eigenvector corresponding to second large eigen-
value isw2, eigenvector corresponding to third large eigen-
value isw3, and so on. Finally, we can obtain a correctW,
whereby all of the source signals are recovered. In the next
section, we will give out a specificg function, whereby the
optimal solution ofW is acquired.

3 A Detailed Implementation of Indepen-
dency Metric

Suppose each recovered signaly is a function of timet. We
then chooseg(y) =

∫ t

0
ydt, which can be further approxi-

mated by ∫ t

0

ydt =
t∑

i=1

yi

N
, (26)

whereN is the number of samples, andyi’s are the in-
stances ofy over the integral range. It can be seen that
such ag function satisfies the requirement in Section 2. By
putting it into Eq.(16) and Eq.(17), Eq.(24) subsequently
becomes

∇Q(w1) =
2cov(

∫ t

0
xdt)w1

wT
1 cov(

∫ t

0
xdt)w1

− 2cov(x)w1

wT
1 cov(x)w1

. (27)

Thus, let∇Q(w1) = 0, we then obtain

cov(
∫ t

0

xdt)w1 = L(w1x)cov(x)w1, (28)

which can therefore be solved by formulating it as a gener-
alized eigenvalue problem as shown in Section 2.1.

4 Simulation Results

To investigate the performance of the proposed Indepen-
dency Metric, two experiments were conducted in this sec-
tion, in which sources signals are a combination of super-
Gaussian and sub-Gaussian signals with at most one Gaus-
sian signal.

4.1 Experiment 1

This experimental simulation comes from [12] (URL:
www.shef.ac.uk/˜pc1jvs/). There are three independent
source signals: a sub-Gaussian signal denoted ass1 (a sine
signal), a super-Gaussian signals2 (a speech sound), and a
Gaussian signals3, and temporal structure was imposed on
the signal by sorting its values in the ascending order (De-
tails can be seen in [12]). In this experiment, the mixing



matrixA was randomly generated, and the number of sam-
ples was5, 000. With the de-mixing matrixW achieved by
using Independency Metric, the final correlation between
source signalss and recovered signalsy is

Corr(s,y) =




0.0000 1.0000 0.0000
0.9998 0.0172 0.0022
0.0036 0.0413 0.9991


 . (29)

Figure 1(a) shows the first1, 000 samples of observations,
and Figure 1(b) shows the source signals (solid line), and
its corresponding recovered signals (dot line) obtained via
Independency Metric. It can be seen that maximizing Inde-
pendency Metric has successfully separated those sources.

4.2 Experiment 2

In this experiment, we used two speech signals as sources,
which was from a man and a woman, respectively. The
sampling rate is16kHz and are10 seconds long (i.e.,
160, 000 samples in total). These two source speeches were
mixed by a randomly generated mixing matrixA. The final
correlation between source signals and recovered signals
using Independency Metric is

Corr(s,y) =
(

0.0330 0.9995
0.9995 −0.0330

)
. (30)

Figure 2(a) shows the first1, 000 samples of each mix-
ture, while Figure 2(b) gives out each source signal (solid
line) and its corresponding recovered signal (dot line) ob-
tained via Independency Metric. Once again, it can be seen
that Independency Metric has successfully recovered the
sources.

5 Conclusion

In this paper, we have presented a novel Independency Met-
ric for ICA. It has been mathematically proved that the met-
ric value of any linear combination of source signals is less
than the largest one of sources under a loose condition. Fur-
ther, the metric optimization can be formulated as a gener-
alized eigenvalue problem, whereby an optimal solution is
just those eigenvectors. Subsequently, we can guarantee
to find out a correct de-mixing matrix through maximizing
the proposed metric to separate the sources. The simula-
tion results have shown its success in separating the linear
combinations of sub-Gaussian and super-Gaussian sources
with at most one Gaussian signal.
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