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Adversarial Tri-Fusion Hashing Network for
Imbalanced Cross-Modal Retrieval
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Abstract—Cross-modal retrieval has received increasing atten-
tions for efficient retrieval across different modalities, and hash-
ing technique has made significant progress recently due to its
low storage cost and high query speed. However, most existing
cross-modal hashing works still face the challenges of narrowing
down the semantic gap between different modalities and train-
ing with imbalanced multi-modal data. This article presents an
efficient Adversarial Tri-Fusion Hashing Network (ATFH-N) for
cross-modal retrieval, which lies among the early attempts to
incorporate adversarial learning for working with imbalanced
multi-modal data. Specifically, a triple fusion network associated
with zero padding operation is proposed to adapt either balanced
or imbalanced multi-modal training data. At the same time, an
adversarial training mechanism is leveraged to maximally bridge
the semantic gap of the common representations between balanced
and imbalanced data. Further, a label prediction network is uti-
lized to guide the feature learning process and promote hash code
learning, while additionally embedding the manifold structure to
preserve both inter-modal and intra-modal similarities. Through
the joint exploitation of the above, the underlying semantic struc-
ture of multimedia data can be well preserved in Hamming space,
which can benefit various cross-modal retrieval tasks. Extensive
experiments on three benchmark datasets show that the proposed
ATFH-N method yields the comparable performance in balanced
scenario and brings substantial improvements over the state-of-
the-art methods in imbalanced scenarios.

Index Terms—Cross-modal hashing, imbalanced multi-modal
data, adversarial tri-fusion hashing, manifold structure.
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I. INTRODUCTION

THE last decade has witnessed unprecedented growth of
multimedia data on the Internet, and such explosion has

significantly increased the demand for more sophisticated mul-
timedia retrieval technologies. In order to maximally benefit
from the richness of multimedia data, cross-modal retrieval is
becoming more appealing since it enables the similarity search
across different modalities, e.g., a user can specify a query
item of one modality to retrieve semantically relevant items
of another modality. Nevertheless, the heterogeneous data of
different modalities often reside in different feature spaces,
and such heterogeneity has been widely considered as a great
challenge to cross-modal retrieval.

In recent years, a great deal of research has been devoted
to bridge the semantic gap between different modalities. Intu-
itively, a common way is to learn a shared latent subspace to
minimize the heterogeneity such that the mapping features in
this shared subspace can be directly measured [1], [2]. Never-
theless, these subspace methods are computationally inefficient
to process a large scale of high dimensional multi-modal data.
To tackle this problem, cross-modal hashing, favored for its low
storage cost and high query speed, has attracted considerable
attention for efficient cross-modal retrieval on a very large-scale
multimedia data [3]–[5]. More specifically, it aims to learn
a series of hash functions from the training set to map the
heterogeneous multimedia data into a common Hamming space,
whose main challenge is to learn the compact binary codes
that can construct the underlying correlations between different
modalities [6]. It is noted that most existing cross-modal hashing
methods mainly focus on dealing with the balanced multi-modal
data collections and highly depend on the pairwise relationships
to explore the semantical correlation between them. Intuitively,
they may not generalize well on a more practical cross-modal
retrieval scenario, i.e., the heterogeneous data may be practically
imbalanced (e.g., one text document describes multiple pictorial
examples), and little attention has been paid to handle this
challenging scenarios.

In practice, the numbers of relevant multimedia data from
different modalities may vary considerably, and there always ex-
ist the imbalanced relationships among these multi-modal data.
That is, the data items from different modalities are not always
paired. Taking bimodal data (i.e., image and text) for illustration,
their relationships can be further divided into four branches: 1)
one-to-one balanced (i.e., paired) data (Fig. 1(a), where there is
one-to-one correspondence between the data of two modalities;
2) one-to-many imbalanced data (Fig. 1(b), where there is only
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Fig. 1. Balanced and imbalanced relationships between the multi-modal data.

one example in one modality and multiple relevant samples in
another modality; 3) many-to-many imbalanced data (Fig. 1(c)),
where there are many-to-many correspondences between the
data of two modalities, and their data numbers are different;
4) imbalanced data of only one modality (Fig. 1(d)), where
the data is collected from only one modality and there is no
corresponding data item in another modality. Since there is
no relevant connection between the multi-modal data within
the fourth case, this scenario is not generally considered for
cross-modal analysis.

In the literature, most existing cross-modal hashing meth-
ods [7]–[11] mainly focus on dealing with the first kind of bal-
anced multi-modal data, and these methods utilize the pairwise
relationships to explore the semantic correlation across different
modalities. Nevertheless, very few works [12], [13] have been
designed to handle the imbalanced scenario. By class-wise
pairing the data of one modality to match its corresponding
data of another modality, one-to-many or even many-to-many
imbalanced data may be potentially extended to a large number
of one-to-one pairs. Nevertheless, this simple matching op-
eration may mistakenly group the uncorrelated samples from
heterogeneous modalities. For examples, some image examples
belonging to only one semantic label may have significantly
different appearances, e.g., an art image and an old building share
the same semantic history, but they differ a lot in appearance.
Accordingly, the textual description mismatched by this simple
operation will fail to depict the correlated image example. For
multi-label dataset, some imbalanced examples of one modality
annotated with multiple labels may not have the exact one-to-one
correspondence in another modality. Therefore, it is really diffi-
cult and even impossible to exactly correlate these imbalanced
examples from a practical viewpoint. Therefore, the widespread
existence of these complex multi-modal data has significantly
increased the demand of more effective cross-modal hashing
technologies to tackle these challenging scenarios.

In this paper, we address an efficient Adversarial Tri-Fusion
Hashing (ATFH-N) Network for cross-modal retrieval, which
seamlessly treats the balanced or imbalanced multi-modal data
in an integrated way (extension of [14]). Specifically, a triple
fusion network with sharing weights is proposed to adapt either

balanced or imbalanced multi-modal training data, while an
adversarial training mechanism is leveraged to maximally bridge
the semantic gap of the common representations between bal-
anced and imbalanced data. At the same time, a label prediction
network is utilized to guide the feature learning process and
promote hash code learning, while additionally embedding the
inherent manifold structure to preserve both inter-modal and
intra-modal similarities. Consequently, the semantic structure of
multimedia data can be well preserved in Hamming space, and
the derived hash codes are semantically meaningful for benefit-
ing various cross-modal retrieval tasks. The major contributions
are highlighted as follows:
� A novel adversarial tri-fusion hashing network is proposed

to generalize cross-modal retrieval, which lies among the
early attempts to incorporate adversarial learning for work-
ing with imbalanced multi-modal data.

� An efficient semantic preserving network associated with
manifold embedding is proposed to guide the feature learn-
ing process and promote high-level semantic hash code
learning, which can well narrow the semantic gap between
heterogeneous data samples.

� Extensive experiments conducted on three benchmarks
demonstrate the advantages of ATFH-N under various
cross-modal retrieval tasks, and show its outstanding per-
formance in both balanced and imbalanced datasets.

The remaining part of this paper is structured as follows:
Section II surveys the existing cross-modal hashing methods,
and Section III introduces the proposed ATFH-N algorithm in
detail. The experimental results are provided in Section IV.
Finally, we draw a conclusion in Section V.

II. RELATED WORK

Cross-modal hashing has received a lot of attention for simi-
larity retrieval on large-scale datasets, and existing approaches
roughly fall into training with balanced or imbalanced multi-
modal data. This section surveys the related works concerning
to these two different aspects.

Learning with balanced multi-modal data is an intuitive way
to semantically correlate the data samples from the heteroge-
neous modalities, and different kinds of cross-modal hashing
works have been proposed, either in unsupervised manner or
supervised manner. The former approaches generally utilize the
pairwise relationships to learn the binary codes by mapping
the original feature space to Hamming space. Along this line,
Inter-media Hashing (IMH) [12] obtains a common hamming
space by preserving the inter-view and intra-view consistency,
while Collective Matrix Factorization Hashing (CMFH) [9]
jointly learns the common hash codes and modality-specific
hash projection functions by collective matrix factorization.
Similarly, Latent Semantic Sparse Hashing (LSSH) [15] utilizes
sparse coding and matrix factorization to extract latent semantic
features, while Fusion Similarity Hashing (FSH) [16] maintains
the fusion similarity within the multiple modalities and learns the
semantically correlated hash codes to represent heterogeneous
data items. It is found that these methods are able to correlate
the semantic relationships between heterogeneous modalities.
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However, it should be noted that the binary hash codes produced
in an unsupervised fashion are not discriminative enough such
that their retrieval performances require further improvements.

With the label supervision, supervised cross-modal hashing
methods utilize the semantic information to mitigate the seman-
tic gap between heterogeneous modalities. For instance, Super-
vised Matrix Factorization Hashing (SMFH) [8] utilizes the label
supervision to maintain the semantic consistency, while Co-
Regularized Hashing (CRH) [17] learns hash functions of each
bit sequentially to supervise the hash code learning. In addition,
Semantic Correlation Maximization (SCM) [3] employs the se-
mantic label information to correlate the heterogeneous modal-
ities, while Semantic Preserved Hashing (SePH) [7] and Gen-
eralized Semantic Preserving Hashing (GSePH) [13] construct
an affinity matrix in a supervised manner to approximate hash
codes. Recently, Discrete Cross-modal Hashing (DCH) [18] and
Discrete Latent Semantic Hashing (DLSH) [19] directly learn
the hash codes while retaining the discrete constraints to learn
more compact hash codes. Inspiring from the advancement of
deep learning, deep-networks-based cross-modal hashing meth-
ods integrate feature learning and hash code learning into end-
to-end trainable frameworks, which can handle the insufficient
representation of the hand-crafted features more effectively. For
instance, deep cross-modal hashing (DCMH) [20] utilizes an
end-to-end deep learning framework to learn the feature repre-
sentations and hash codes synchronously, while self-supervised
adversarial hashing [21] proposes a self-supervised adversarial
learning framework to promote the hash code learning, which
can well narrow the semantic gap between the learned repre-
sentations of different modalities. With label information em-
bedding, these supervised methods can well bridge the hetero-
geneity gap between different modalities and achieve impressive
performance. Nevertheless, there still exists a serious limitation
for them. That is, these supervised methods only can deal with
balanced multi-modal data.

Learning with imbalanced multi-modal data is more chal-
lenging because of its relatively complex data connections.
To adapt imbalanced multi-modal data, Inter-media Hashing
(IMH) [12] exploits two selective matrices to tackle imbal-
anced data and utilizes inter-view and intra-view consistency
to generate the hash codes. However, this method generally
ignores nonlinear structure embedded in real-world data, which
often degrades its performance in practice. Differently, GSePH
method [13] utilizes the semantic affinity matrix to learn the
modality-specific hash codes of training instances, and designs a
generalized hashing scheme to handle the unpaired multi-modal
data. Although this approach is able to handle the imbalanced
multi-modal data, it also fails to reduce the semantic gap between
the feature vectors and hash codes, and its performance needs
further improvement.

In a nutshell, on the one hand, most existing cross-modal
hashing methods are mainly designed to deal with the balanced
multi-modal data, but which may not be easily generalized to
handle the imbalanced multi-modal data. On the other hand,
the only generalized methods cannot well preserve the semantic
consistency between the feature vector and hash code. Therefore,
there is still a need to investigate a flexible and generalized cross-
modal hash algorithm.

III. PROPOSED METHOD

Without loss of generality, the proposed framework mainly
studies on bimodal data for cross-modal hashing, and the pro-
posed framework can be easily extended to other kinds of multi-
modal data. Fig. 2 shows the schematic flows of the proposed
cross-modal hashing framework, which mainly consists of two
subnetworks: a triple fusion (tri-fusion) network to adapt dif-
ferent organizations of multi-modal training data, and followed
by a semantic preserving network with manifold embedding to
promote high-level semantic hash code learning.

Suppose the imbalanced multi-modal training data consists
of image data X and text data Y. More specifically, the im-
age training dataset X = [Xp,Xu] contains two parts: image
samples Xp ∈Rn×d1 which have corresponding paired texts
and image samples Xu ∈Rn1×d1 without corresponding texts,
where n and n1 respectively represent the sample numbers
within these two parts and d1 denotes the dimension of image
feature. Similarly, the text training dataset Y = [Yp,Yu] also
includes two parts: text samplesYp ∈Rn×d2 with paired images
and text samples Yu ∈Rn2×d2 without corresponding images,
where n2 is the number of texts without corresponding images
and d2 is the dimension of text feature. The provided semantic
labels of dataX andY are characterized byLx ∈{0, 1}(n+n1)×c

and Ly ∈{0, 1}(n+n2)×c respectively, where c is the number of
the semantic categories. The goal of the proposed cross-modal
hashing method is to learn a common Hamming space for both
balanced and imbalanced multi-modal data, and each instance
can be represented as a compact binary vector b ∈ {0, 1}1×q ,
where q represents the bit length of hash code. Evidently, the
correlations between imbalanced multi-modal data are very
complex and it is imperative to fill the data gap for efficient
cross-modal analysis.

A. Triple Fusion Network

For cross-modal retrieval, most existing methods [9], [21]
often employ the two-stream structure to explore the common
Hamming space for heterogeneous data representation. That
is, as shown in Fig. 3(a), two separate learning branches are
selected to map different modalities into Hamming space. It can
be found that such two-stream learning network highly relies
on the pairwise constraint, which are unsuitable for processing
the imbalanced multi-modal data. In addition, the constraints
imposed at the end of this model are the only tie between these
two branches, which may not well narrow down the semantic
gap between different modalities.

Motivated by the property of GAN [22], some ap-
proaches [23], [24] select the adversarial network to enhance
the relationship between different modalities. However, these
adversarial learning methods are not designed for cross-modal
hashing works, while failing to handle the imbalanced training
data. To tackle these problems, we propose an one-stream fusion
structure to correlate the heterogeneous modalities, which can
evolve the network structure implicitly to learn the semantically
consistent feature representations. As shown in Fig. 3(b), two
learning networks are twisted into a four-layer one-stream fusion
networkGxy(·; θxy) (d1 + d2→1024→512→q) to fuse the fea-
tures from image and text modalities, where θxy is the network
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Fig. 2. The schematic pipeline of the proposed ATFH-N framework, which can handle both balanced and imbalanced multi-modal data.

Fig. 3. The structure differences between the traditional two-stream learning
network and the proposed one-stream fusion learning network.

parameters of Gxy. Consequently, the relationships between
heterogeneous modalities can be well correlated by using both
the fusion network and other semantic constraints.

As shown in Fig. 1, the multi-modal dataset often consists of
balanced and imbalanced instances. For each balanced image-
text samples (i.e., paired) {Xp,Yp}, we concatenate their fea-
tures directly to form the fused feature set Zxy ∈ Rn×(d1+d2):

Z(t)
xy = [X(t)

p ,Y(t)
p ], t = 1, 2, . . ., n (1)

where Z
(t)
xy, X(t)

p and Y
(t)
p are the t-th instances of Zxy, Xp

and Yp, respectively. Accordingly, Zxy can be fed into network
Gxy to get their high-level semantic representations.

For the imbalanced multi-modal dataset, some examples of
one modality may have no corresponding data items in an-
other modality. To solve this problem, another two networks
Gox(·; θox) and Goy(·; θoy) are exploited to individually pro-
cess only image or text samples, where θox and θoy respectively
denote the parameters of these two networks. For semantic con-
sistency mining, these two networks designed for dealing with
imbalanced image and text examples share the same network

structure with Gxy(·; θxy). Nevertheless, the learning structure
of Gxy is a fusion network with balanced multi-modal features,
and the imbalanced samplesXu andYu can not be fed intoGox

and Goy directly. To handle this problem, a multi-modal zero
padding operation is introduced to satisfy the input requirement
of fusion network, and the detail of this operation is given below.

B. Multi-Modal Zero Padding Mechanism

In some feature augmentation methods [25], [26], the uti-
lization of zero-padding operation is proved to be effective for
making the dimensions of the data from two domains become the
same. For simplicity, 0 denotes an all-zero vector or a zero ma-
trix. For the missing modalities, there features are padded with
zeros to balance the demand of input dimension. That is,Xox and
Yoy are respectively concatenated with 0 vector to form longer
representations Zox ∈ Rn1×(d1+d2) and Zoy ∈ Rn2×(d1+d2) as
follows:

Z(i)
ox = [X(i)

ox,0
1×d2 ], i = 1, 2, . . ., n1

Z(j)
oy = [01×d1 ,Y(j)

ox ], j = 1, 2, . . ., n2 (2)

where X
(i)
ox and Y

(j)
ox are respectively the i-th and j-th instance

within dataset Xox and Yoy. In practice, both balanced and
imbalanced examples can be considered as imbalanced data
for enriching the training samples and bridging the semantic
gap between them. Therefore, the imbalanced samples can be
enlarged as Z̄ox∈R(n+n1)×(d1+d2) and Z̄oy∈R(n+n2)×(d1+d2):

Z̄(i)
ox = [X(i),01×d2 ], i = 1, 2, . . ., n+ n1

Z̄(j)
oy = [01×d1 ,Y(j)], j = 1, 2, . . ., n+ n2 (3)
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where the representation of Z̄ox and Z̄oy can be well fed into
networksGox(·; θox) andGoy(·; θoy), respectively. Inspired by
the network architecture in [27], the shared parameters θg are
utilized in these triple networks, i.e., θxy = θox = θoy = θg,
and allow the back-propagation algorithm to update the model
with regard to such tri-fusion network. For simplicity, such tri-
fusion network is denoted as G(·; θg). By feeding the training
data into this framework, the learned high-level semantic feature
representation can be obtained as:

Hxy = G(Zxy), Hox = G(Zox), Hoy = G(Zoy). (4)

Accordingly, the corresponding hash codes can be derived by:

Bxy = sign(Hxy), Box = sign(Hox), Boy = sign(Hoy)
(5)

Since the zero-padding mechanism is applied in both modal-
ities and this type of method is also named as multi-modal
zero-padding mechanism, which can make neural networks
more flexible in processing the imbalanced multi-modal data.
In addition, there often exist a dominant domain problem in
multi-modal feature fusion strategy. That is, if the features of one
modality are more semantically meaningful than that of another
modality, the corresponding weights of networks assigned to
the former modality would be greater than that allocated to
the latter one. Consequently, the modality with larger weights
shall become the dominant domain and its features play an
important role in decision task, while the features of another
modality make less sense to the final decision. Fortunately, the
proposed multi-modal zero-padding scheme is able to well solve
such dominant domain problem in heterogeneous feature fusion.
The main reason lies that the zero-padding scheme is applied
in both modalities, and the tri-fusion networks with shared
parameters can well balance the importance of heterogeneous
modalities. To be specific, if the weights allocated to image
sample are much larger than that to text samples in Gox, the
embedding of data Zoy would disable the networks. That is
because the weights belonging to image modality will multiply
zero vector in Goy, which makes less contribution to the fusion
network. On the contrary, if the text modality becomes the
dominant domain, the embedding of data Zox will disable the
networks as well. Therefore, the proposed triple fusion network
associated with multi-modal zero-padding mechanism is able
to automatically adjust the weight values allocated to the fused
features and therefore balance the importance between different
modalities. Consequently, the high-level representations with
semantic consistency can be well obtained for heterogeneous
data representation.

C. Adversarial Learning Mechanism

1) Data Classifiers: The goal of the proposed framework is
to learn the similar representations between the balanced and
imbalanced data, whereby the semantic consistency between
different modalities can be well maintained. To this end, two
data classification networks D1(·; θd1

) (l→64→32→2) and
D2(·; θd2

) (l→64→32→2) are defined to act as the discrimina-
tor, where θd1

and θd2
are the parameters of these two networks

respectively. The former discriminator D1(·; θd1
) is designed to

discriminate the data of only image samples from the balanced
image-text instances. Under such circumstances, the former data
can be regarded as the fake samples while the latter data as real
samples. Therefore, the following adversarial loss is obtained:

L(1)
adv =

∑
h∈�Hxy

∑
h1∈�Hox

(logD1(h; θd1
) + log(1−D1(h1; θd1

)))

(6)
where �Hxy and �Hox respectively denote all row vectors of

matrices Hxy and Hox, i.e., �Hxy = {H(i)
xy|i = 1, 2, . . ., n},

�Hox = {H(j)
ox |j = 1, 2, . . ., n1}.

Further, D2(·; θd2
) is utilized to discriminate the data of only

text modality from the balanced image-text instances, where the
former data is regarded as the fake samples while the latter is
considered as real samples. Therefore, the following adversarial
loss is obtained:

L(2)
adv =

∑
h∈�Hxy

∑
h2∈�Hoy

(logD2(h; θd2
) + log(1−D2(h2; θd2

)))

(7)
Since the networks Gox and Goy play an equal role to the

feature learning, the overall adversarial loss can now be modeled
as a combination of L(1)

adv and L(2)
adv:

LD
adv = L(1)

adv + L(2)
adv (8)

Within this minimax game, the adversarial loss is utilized for
narrowing the gap between balanced and imbalanced data.

2) Modality Classifier: Further, a modality discriminator
D3(·; θd3

) with parameters θd3
is difined to discriminate the

data of only image modality from the text modality, which also
acts as an adversary. Therefore, the former image data can be
regarded as the fake samples while the latter text data as real
samples. Similarly, the following adversarial loss is obtained:

LM
adv =

∑
h1∈�Hox

∑
h2∈�Hoy

(logD3(h1; θd3
)

+ log(1−D3(h2; θd3
))) (9)

Within such minimax game, the adversarial loss is utilized for
bridging the semantic gap between different modality.

D. Label Prediction

The semantic label information not only can promote the
hash code learning, but also could mitigate the semantic gap
between heterogeneous modalities. In order to ensure that the
discrimination in data representation is preserved after feature
projection, it is reasonable to assume that the semantic cate-
gories can be directly predicted from the high-level feature rep-
resentations. Accordingly, a three-layer classification network
C(·; θc) (p→p/2→c) is utilized to predict the semantic label of
each instance, where θc is the network parameter. To main the
semantic consistency, both balanced data and imbalanced data
should share the similar representations under the supervision of
data classifiers. Therefore, the long representations of data items
Zxy, Zox and Zoy are all fed into the same classifier C(·; θc)
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Fig. 4. Illustration of manifold embedding for hash code learning.

for semantic label prediction. Accordingly, the following clas-
sification loss is obtained for minimization:

Lclass =
∑

h∈�Hxy

||C(h; θc)− lh||22 +
∑

h1∈�Hox

||C(h1; θc)− lh1
||22

+
∑

h2∈�Hoy

||C(h2; θc)− lh2
||22 (10)

where lh, lh1
and lh2

are the corresponding true labels of h, h1

and h2, respectively.

E. Manifold Embedding

Recent studies have demonstrated that it is beneficial for
a retrieval model to exploit the manifold structure embedded
in multimedia data, and many methods leverage the manifold
learning to generate the hash codes. The goal of the proposed
framework is to minimize the semantic gap among the high-level
representations of all semantically similar samples from hetero-
geneous modalities. Accordingly, the intrinsic manifold struc-
ture residing in different modalities is able to promote the hash
code learning. To embed the manifold structure into the binary
codes learning process, two manifold regularizers that model
the manifold structure of both the inter-modal similarity and
inter-modal similarity are seamlessly integrated to the network,
featuring on preserving the geometric structures of the training
data in different modalities. More specifically, the preservation
of inter-modal similarity ensures that the representations of
multi-modal data with the same semantical category should be
close to each other, while the preservation of intra-modal simi-
larity is often utilized to maintain the neighborhood relationships
within the training data points. To this end, as shown in Fig. 4, the
balanced data is utilized to preserve the inter-modal similarity
and the semantic labels are selected to construct the semantic
affinity matrix Sxy:

S(ij)
xy =

{
1, if X(i)

p and Y
(j)
p have the same category

0. otherwise
(11)

where X
(i)
p and Y

(j)
p are respectively the i-th and j-th instance

of Xp and Yp. Accordingly, the following objection function

is obtained for minimization:

Linter =

n∑
i=1

n∑
j=1

S(ij)
xy ||H(i)

xy −H(j)
xy ||22

= Tr(Hxy(Wxy − Sxy)H
T
xy) (12)

where H
(i)
xy denotes the i-th instance of Hxy, Wxy ∈ Rn×n is

a diagonal matrix whose entries are the column sum of Sxy, and
Tr(·) is the trace norm. Accordingly, Eq. (12) implicitly reflects
the manifold structure of semantic embedding space.

For imbalanced data of only one modality, if two instances are
close on the intrinsic data manifold, their semantic categories
should be close as well. Under the manifold assumption, the
geometric structure of one instance can be modeled by a nearest
neighbor graph in the instance space. For imbalanced data Xu,
the local similarity metric is utilized to model the intra-modal
similarity:

S(ij)
ox =

{
1, if X(i)

u ∈ Nk(X
(j)
u ) or X(j)

u ∈ Nk(X
(i)
u )

0. otherwise
(13)

where Nk(·) is the top-k nearest neighbor set. Similarly, for the
imbalanced data Yu, the local similarity metric is employed to
model the intra-modal similarity:

S(ij)
oy =

{
1, if Y(i)

u ∈ Nk(Y
(j)
u ) or Y(j)

u ∈ Nk(Y
(i)
u )

0. otherwise
(14)

It is noted that Eq. (13) and Eq. (14) implicitly reflect the
manifold structure of feature embedding space. To preserve
the manifold structure in mapping features, both balanced and
imbalanced examples can be regarded as imbalanced data for
enriching the training samples and bridging the semantic gap
between them. Therefore, the whole data X and Y are respec-
tively utilized to replace Xu and Yu to construct Sox and Soy,
and the following objective function is obtained to preserve the
manifold structure embedded in the data:

Lintra =

n+n1∑
i=1

n+n1∑
j=1

S(ij)
ox ||H(i)

ox −H(j)
ox ||22

+

n+n2∑
i=1

n+n2∑
j=1

S(ij)
oy ||H(i)

oy −H(j)
oy ||22

= Tr(Hox(Wox − Sox)H
T
ox)

+ Tr(Hoy(Woy − Soy)H
T
oy)

(15)

where Wox∈R(n+n1)×(n+n1) is a diagonal matrix whose en-
tities are the column sum of Sox and Woy ∈ R(n+n2)×(n+n2)

is a diagonal matrix whose entities are the column sum of Soy.
By minimizing Eq. (12) and Eq. (15), the networks can well
preserve both inter-modal similarity and intra-modal similarity.
For cross-modal retrieval task, the embedded inter-modal and
intra-modal manifold structure should be exploited in an inte-
grated way. That is, through the joint exploitation of the Eq. (12)
and Eq. (15), the underlying manifold structures of multimedia
data are well preserved in Hamming space.
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F. Optimization

By integrating the tri-fusion network G(·; θg), semantic
prediction network C(·; θc), adversarial learning networks
D1(·; θd1

), D1(·; θd2
) and D1(·; θd3

), the process of learning
the high-level representations and optimal hash codes can be
conducted by jointly minimizing the label prediction loss, man-
ifold embedding loss and adversarial loss. Since the optimization
goal between the adversarial loss and other two embedding
loss are different, the learning process runs as a minimax game
between these concurrent sub-processes:

Lall = Lclass + βLinter + γLintra − μ1LD
adv − μ2LM

adv

(16)
where β, γ, μ1 and μ2 are balance parameters. Consequently,
both the manifold structure and semantic information are seam-
lessly embedded into the final hash codes, and such optimiza-
tion problem can be efficiently solved by an iterative updating
scheme.

θg = argmin
θg
Lall (17)

θc = argmin
θc
Lall = argmin

θc
Lclass (18)

(θd1
, θd2

) = arg max
θd1

,θd2

Lall = arg min
θd1

,θd2

LD
adv (19)

θd3
= argmax

θd3

Lall = argmin
θd3

LM
adv (20)

This minimax game can be efficiently implemented using
a stochastic gradient descent (SGD) optimization solver, e.g.,
Adam optimizer [28] (the default value of α = 0.001 is utilized
for all experiments), and these optimization problems can be
iteratively solved until the convergence is reached. Let α be the
learning rate in Adam optimizer, the optimal parameters can be
well obtained via Algorithm 1. It is noted that the adversarial
loss, label prediction loss and manifold embedding loss are
integrated in Hamming space to guide the high-level feature
learning process, and the proposed optimization process can well
preserve the semantic consistency between continues features
and discrete hash codes. As a result, in Eq. (5) the quantitation
errors resulted by performing sign function between features
and hash codes are not significant, and the derived hash codes
are semantically meaningful for benefiting various cross-modal
retrieval tasks.

IV. EXPERIMENT

This section conducts a series of quantitative experiments
to verify the robustness of the proposed framework on both
balanced and imbalanced multi-modal datasets.

A. Datasets and Protocol

Three public available multi-modal datasets, i.e., Wiki, MIR-
Flickr and NUS-WIDE, are chosen in the experiments, and their
main descriptions are briefly described as follows:

Wiki [29] consists of 2,866 image-text pairs from ten classes,
where each image is represented by 128-d SIFT descriptor and
each text by a 10-dimensional Latent Dirichlet Allocation (LDA)

Algorithm 1: Optimization Pseudocode for ATFH-N.
input: Image data X with labels Lx and text data Y with
labels Ly, parameters β, γ, μ1 and μ2;
output: Network parameters θg, θc, θd1

, θd2
, θd3

1: Initialize θg, θc, θd1
, θd2

, θd3
with random values;

2: Extract representative image features and text features;
3: repeat

4: update θt as: θt ← θd1
− α

∂L(1)adv

∂θt
;

5: update θc as: θc ← θc − α∂Lclass

∂θc
;

6: update θd1
as θd1

← θd1
− α

∂L(1)adv

∂θd1
;

7: update θd2
as: θd2

←θd2
− α

∂L(2)adv

∂θd2
;;

8: update θd3
as θd3

← θd3
− α

∂LMadv

∂θd3
;

9: until (convergency or reaching maximum iterations)
10: return θg, θc, θd1

, θd2
, θd3

.

vector. The whole dataset is divided into a training set of 2,173
instances and a test set of 693 instances.

MIRFlickr [30] includes 25,000 image-text pairs from Flickr
website, and each instance is annotated with at least one of 24
categories. Specifically, the samples without labels or textual
tags appearing less than 20 times are removed. Each image is
characterized by a 150-dimensional edge histogram descriptor
while the text is annotated by a 500-dimensional tagging vector.
We randomly choose 5% of the data pairs as the query set and
the remaining parts as the training set.

NUS-WIDE-100 k [31] consists of 269,548 image-text pairs
from 81 concepts. As a large part of concepts contain little sam-
ples, we randomly select 100,000 labeled image-text pairs from
the top 10 most frequent concepts for evaluation. Specifically,
every image is described by a 500-dimensional SIFT feature
vector and each text by a 1000-dimensional BoW feature vector.
We randomly select 5% of the pairs as the query set and the
remaining pairs as the training set.

It should be noted that the deep cross-modal hashing works
learn the high-level feature representations and hash codes to-
gether [20], [21], and the proposed framework is significantly
different from those works. In that sense, it is inappropriate
to perform a relatively fair and meaningful comparison with
these deep approaches. In particular, we compare the proposed
ATFH-N method with state-of-the-art competing methods, i.e.,
CCA [1], CMFH [9], SCM [3], SePH [7], SMFH [8] and
GSePH [13]. For most baselines, the source codes kindly pro-
vided by respective authors are selected for implementation, and
the training samples are initialized as the same as the description
of dataset. Since SMFH and SePH are very computationally
intensive, it is impossible for these two methods to perform the
training process on very large datasets. Therefore, as suggested
in their original works [8], [13], we randomly choose a subset
of 5000 instances, respectively from the larger MIRFlickr and
NUS-WIDE-100 k datasets, to form the training sets. Mean-
while, the popular mean average precision (mAP) [9] score
is selected as evaluation metric to validate the cross-modal
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TABLE I
QUANTITATIVE EVALUATIONS OF BALANCED SCENARIO ON DIFFERENT DATASETS, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

performance, indexing the relevant text samples by given image
query (I→T) and vice versa (T→I). In the experiments, β = 0.1,
γ = 0.3, μ1 = 2 and μ2 = 0.1, are empirically set for imple-
mentation, while top-25, top-10 and top-25 nearest neighbors
are chosen for Wiki, MIRFlickr and NUS-WIDE-100 k datasets,
respectively. In the experiment, we perform five runs for each
algorithm and take the average performance for illustration.

B. Results of Balanced Scenario

For the balanced scenario, we set n1 = n2 = 0 to equalize
the training numbers of both modalities and utilize all the
paired dataset for testing. That is, each data instance of one
modality has the corresponding paired data item in another
modality. Accordingly, the mAP scores are recorded on all
three benchmark datasets and the baseline methods, CCA [1],
CMFH [9], SMFH [8], SCM [3], FSH [16], SePH [7], and
GSePH [13] are selected for comparison. The I→T and T→I
retrieval performances tested with different hash lengths (i.e., 16
bits, 32 bits, 64 bits and 128 bits) are shown in Table. I, it can be
observed that the proposed ATFH-N method has achieved very
competitive cross-modal retrieval performances in different hash
length settings, and generally performed better than the selected
baselines.

For the small Wiki dataset, each instance is annotated with
a single label and some examples sharing the same semantic
category may have significantly diverse feature representations.
For instance, an artist image and a building image share the same
semantic category ‘art,’ but there appearances are totally differ-
ent. Consequently, most existing cross-modal hashing methods
often degrade their retrieval performance to some degree. For
instance, SePH [7] and GSePH [13] utilize the semantic affinity
matrix to produce the hash codes, and the derived hash codes
are not discriminative enough for measuring the cross-modal
similarity. For instance, SePH [7] and GSePH [13] have yielded
a bit lower mAP score in I→T task (i.e., 16 and 32 bits). In
contrast to this, the proposed ATFH-N framework has yielded
very competitive cross-modal retrieval performance when tested

on Wiki dataset, and mAP scores obtained from 64 and 128 bits
respectively reach up to 0.7030 and 0.7014 when tested on T→I
task.

For the larger MIRFlickr and NUS-WIDE-100 k, each in-
stance is annotated with multiple labels. Although each instance
can be well described by the semantic labels, the hash codes
learned only from such supervised information often fail to
correlate the heterogeneous samples. In contrast to this, the hash
codes derived from the proposed ATFH-N approach are more
semantically meaningful than those generated from SePH and
GSePH. As a result, the proposed ATFH-N method has yielded
the best retrieval performance on the larger datasets. For in-
stance, when the hash length is set at 64, the mAP values obtained
by baseline approaches are respectively less than 0.73 and 0.66,
respectively tested on the MIRFlickr and NUS-WIDE-100 k
datasets, in T→I task. By contrast, the mAP scores obtained by
the proposed ATFH-N approach are higher than 0.79 and 0.72,
respectively evaluated on the MIRFlickr and NUS-WIDE-100 k
datasets. Meanwhile, the precision-recall curves are recorded in
Fig. 5, it can be observed that the proposed ATFH-N approach
always yields the highest precision scores than those baselines
under the similar recall values. This indicates that the proposed
ATFH-N framework has strong ability to return much more
similar samples in the retrieval results, which plays an important
role for a practical retrieval system. The main superiorities con-
tributed to these very competitive performances are two-fold: 1)
ATFH-N learns the common embedding from the fused features
of two modalities, whereby the semantic consistency between
heterogeneous modalities can be well exploited. 2) The joint
exploitation of label prediction module and manifold embedding
module is able to well guide the high-level feature learning
process and promote compact hash code learning, which can
well preserve both the inter-modal and intra-modal similarities.
Consequently, the hash codes learned by the proposed ATFH-N
framework are more semantically meaningful for efficient cross-
modal retrieval.

Further, it has been demonstrated that the visual features
obtained from the pretrained or fine-tuned CNN models have
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Fig. 5. Precision-recall curves generated by different approaches and tested with different code lengths (32, 64 and 128 bits).

TABLE II
RESULTS (MAP) OF CROSS-MODAL RETRIEVAL ON CNN VISUAL FEATURES,

AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

demonstrated to be effective for cross-modal retrieval [32],
and the improved performance can be obtained by traditional
cross-modal retrieval methods. Accordingly, we further extract
the 4096-d CNN visual features from the last fully connected
layer by VGG19 model, and compare the proposed ATFH-N
method with state-of-the-art competing methods. The repre-
sentative cross-modal retrieval performances evaluated on the
fine-tuned CNN visual features and tested on Wiki dataset are
shown in Table II, it can be found that the competing SePH [7],
GSePH [13]) methods and the proposed ATFH-N approach have
yielded the better retrieval performances than the results pro-
duced by hand-craft features. Remarkably, the proposed ATFH-
N method with CNN visual features often boosts the retrieval
performances in different hash length settings, and significantly
outperforms the competing state-of-the-art baselines. That is,
the proposed learning framework is adaptive to various kinds
of visual features, and the experimental results have shown its
outstanding performances.

C. Evaluation of Imbalanced Scenario

As discussed in Section I, the imbalanced multi-modal sam-
ples are public available, where the data of two modalities
does not exist one-to-one correspondence. For instance, e.g.,
ten images and five text documents share the same semantic tag
‘history’. In the literature, except for IMH [12] and GSePH [13],

most existing cross-modal hashing algorithms developed for
balanced multi-modal collections are not applicable to handle
this imbalanced scenario. Fortunately, the proposed ATFH-N
method is able to well handle such imbalanced data collections.
Similar to [13], we keep the text dataset unchanged and randomly
choose 90% of images as ‘imbalanced-1’ and vice verse as
‘imbalanced-2’. Specifically, the training set itself serves as
the retrieval set while the query set is kept unchanged as in
the balanced cases. It is noted that GSePH cannot handle all
the training samples of a larger dataset. Therefore, Wiki and
MIRFlickr datasets are selected for evaluations. To maintain
the consistency with balanced scenario, mAP@all is selected to
evaluate the imbalanced cross-modal retrieval performance.

The cross-modal retrieval performances tested on imbalanced
datasets are shown in Table III, it can be observed that IMH and
GSePH methods have delivered relatively lower mAP scores,
for reason that the correlation between the imbalanced data
is relatively complex. Specifically, IMH generally ignores the
nonlinear structure embedded in real-world data, which often
degrades its performance in practice. Although the performance
delivered by GSePH is much better than that obtained by IMH,
there still exist a huge gap between the performance within the
balanced and imbalanced scenarios, especially for T→I task
tested on Wiki dataset. For instance, the mAP scores obtained by
GSePH methods are only equal to 0.438 and 0.456, respectively,
tested on 32 and 64 hash bits, which are significantly lower than
that obtained within the balanced case. The main reason lies that
GSePH utilizes two-stage learning schemes to produce the hash
codes, which may result a bit large semantic gap between the
feature vectors and hash codes. Accordingly, its performance
is a bit poor. Comparatively speaking, our proposed ATFH-N
method delivers almost the similar retrieval performances with
the balanced scenario and considerably outperforms these two
baselines. For T→I task, the mAP scores obtained by the the pro-
posed ATFH-N approach and tested on MIRFlickr datasets reach
up to 0.789 and 0.783, respectively evaluated on ‘imbalanced-1’
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TABLE III
QUANTITATIVE EVALUATIONS OF IMBALANCED SCENARIO ON WIKI AND MIRFLICKR DATASETS. BEST RESULTS ARE MARKED IN BOLD

Fig. 6. Retrieval performances obtained by ATFH-N method and tested on Wiki dataset with different ratios of balanced data.

and ‘imbalanced-2’ cases. That is, our proposed ATFH-N
method can not only handle the imbalanced multi-modal data
collections, but also could produce relatively stable retrieval
performance on different retrieval tasks.

In above imbalanced experiments, 10% data of one modality
are discarded and data imbalances between different modalities
are slight. Evidently, it is difficult to correlate the multi-modal
data if the imbalanced ratio between heterogeneous data is very
large. To show the flexibility of the proposed framework to
process the imbalanced multi-modal data, we increase the ratio
of imbalanced data and further evaluate the effectiveness of
the proposed framework. The representative results with ratio
ranging from 50% to 100% are presented in Fig. 6, it can
be observed that the mAP scores obtained by the proposed
ATFH-N method slightly decline as the ratio of imbalanced
data increase, this is because the lack of balanced data naturally
makes it difficult to correlate the heterogeneous data points
from different modalities. Fortunately, the mAP scores obtained
by ATFH-N does not substantially change even if the ratios
between the imbalanced multi-modal data are very large. For
instance, the mAP scores obtained by ATFH-N almost remain
the same with the increase of imbalanced-2 ratio. That is, our
proposed ATFH-N method has achieved very stable performance
on various imbalanced data collections, and it indicates that the
proposed ATFH-N method is effective to handle the imbalanced
retrieval task.

D. Evaluation of Different Pairwise Constraints

It is noted that most cross-modal hashing methods highly
depend on the pairwise relationships to explore the correla-
tion between multi-modal data. That is, there is one-to-one

Fig. 7. Evaluation of pairwise constraint with different percentages.

correspondence between the data of two modalities. In practice,
the data from the heterogeneous modalities may be collected
with none pairwise constraint, and this kind of data can be
considered as imbalanced data as well. Fortunately, the proposed
ATFH-N method is able to handle different kinds of multi-modal
data. To verify the flexibility of the proposed ATFH-N frame-
work, we maintain the number of training data unchanged, and
gradually reduce the percentage of pairwise relationship ( n

n+n1

and n
n+n2

). More specifically, the whole dataset is selected as
the training dataset and some pairwise relationships (e.g., 10%)
are randomly removed to form the new training dataset. Accord-
ingly, the data without pairwise relationship can be reasonably
regarded as imbalanced data.

The representative cross-modal retrieval performances eval-
uated on different pairwise constraints are shown in Fig. 7, it
can be observed that the mAP scores drop only a little with the
decreasing of pairwise constraint. It is noted that such decline
is interpretable because the pairwise constraint is of crucial
importance to the correlation mining between the multi-modal
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TABLE IV
PERFORMANCE OF ATFH-N UNDER DIFFERENT LEARNING COMBINATIONS

(HASH LENGTH: 64)

data. Fortunately, the retrieval performance has no substantial
changes, and the mAP scores almost resides in the same interval
even a large part of pairwise relationships are removed. For
instance, if the percentage of pairwise constraint is set at 70%,
the proposed ATFH-N method has produced a relatively stable
I→T performance when tested on MIRFlickr dataset, and the
mAP values derived from different hash lengths do not change
significantly. Further, as shown in Table. I, it is noted that the
proposed ATFH-N method with less pairwise relationships has
delivered the comparable or even better retrieval performances in
comparison with the competing baselines. That is, the proposed
approach is insensitive to the pairwise relationships among
the multi-modal data, which is adaptive to more challenging
multi-modal datasets.

E. Ablation Studies and Parameter Analysis

Within the proposed framework, the adversarial learning
mechanism, label prediction module and manifold embedding
module, are efficiently considered for achieving cross-modal
hashing. Next, we further evaluate the effectiveness of each
learning module and validate the performance of different learn-
ing combinations: 1) Without label prediction module, the ad-
versarial learning mechanism and manifold embedding module
are integrated to achieve cross-modal retrieval (abbreviated as
N-L.+ATFH-N). 2) Without adversarial learning module, the
label prediction module and manifold embedding module are
integrated to achieve cross-modal retrieval (abbreviated as N-
A.+ATFH-N). Meanwhile, we also evaluate the cross-modal
hashing performance by respectively removing the data clas-
sifiers (abbreviated as N-ADC.+ATFH-N) and the modality clas-
sifier (abbreviated as N-AMC.+ATFH-N). 3) Without manifold
embedding module, the adversarial learning mechanism and
label prediction module are integrated to realize cross-modal
retrieval (abbreviated as N-M.+ATFH-N). Meanwhile, we also
report the cross-modal retrieval performance by respectively
removing the inter-modal manifold embedding (abbreviated as
N-Minter.+ATFH-N) and intra-modal manifold embedding (ab-
breviated as N-Mintra.+ATFH-N). Accordingly, the mAP scores
are recorded to validate these different learning combinations.

Table IV displays the cross-modal retrieval performances
obtained by different learning combinations. It can be found
that the label prediction module plays an important role for
cross-modal retrieval tasks. For instance, the mAP scores of

both I→T and T→I tasks derived from the N-L.+ATFH-N and
tested with different hash lengths are lower than 0.2, which lead
to very poor retrieval performance. In contrast to this, the mAP
scores of T→I task derived from N-M.+ATFH-N reach up to
0.6431 and 0.6486, respectively tested on 32 and 64 hash bits.
Meanwhile, adversarial learning mechanism also serves an im-
portant role within the proposed framework, and the adversarial
loss generated by data classifiers or modality classifier often
contributes to a higher retrieval performance than the model
without adversarial learning module. For example, the average
mAP scores derived from N-A.+ATFH-N, N-A.+ATFH-N and
are lower than 0.5.

In addition, the utilization of manifold embedding module
incorporating the inter-modal or intra-modal preservation also
improves the cross-modal performance than that obtained by
the non-manifold embedding module. For instance, the mAP
scores of T→I task obtained by N-Mintra.+ATFH-N reach up to
0.6678, which is higher than that obtained from N-M.+ATFH-N.
Importantly, the proposed framework performs better in differ-
ent cross-modal retrieval tasks and generally outperforms these
different learning combinations. For instance, the T→I retrieval
scores (i.e., mAP values) obtained by the proposed method
reach up to 0.6945 and 0.7030, respectively tested on 32 and 64
hash bits. That is, the proposed ATFH-N approach is capable of
producing more effective hash codes for improving cross-modal
retrieval performance.

Within the proposed ATFH-N learning framework, four pa-
rameters, i.e., β, γ, μ1 and μ2 are involved, where β and γ are
utilized to balance two manifold embedding items in Eq. (16).
On the one hand, a larger β may emphasize more in preserving
the inter-modal similarity, while a larger γ shall focus more
on preserving the intra-modal similarity. In the experiments,
different values of β and γ are attempted, by varying the value
of one parameter while fixing the another one. It is noted that
the results perform well when β is selected within the range
of [0.05, 0.2] and β is chosen within the range of [0.2, 0.4].
On the other hand, μ1 and μ2 balances two adversarial learning
mechanism in Eq. (16). Since the proposed ATFH-N learning
framework mainly utilizes tri-fusion networks to process both
balanced and imbalanced multi-modal data, μ1 naturally plays
an important role to discriminate the data of only modality from
the paired image-text instances and it is generally set a larger μ1

value in comparison with μ2. As pointed in [23], μ2 is usually
set at 0.1 in most cases because it is insensitive to the least square
optimization. Since μ1 is generally larger than μ2, different μ1

values are experimented and it is found that the results perform
well within the range of [1, 3]. In addition, we also assess the
parameter k that influences the manifold embedding module of
nearest neighbors, and empirically find that the different settings
of k within the range of [10, 30] only induce a minor fluctuation
to the retrieval performance. Therefore, these parameters are
generally insensitive to the cross-modal retrieval performances
within a wide range of values.

V. CONCLUSION

This paper has proposed an Adversarial Tri-Fusion Hashing
Network (ATFH-N) for efficient cross-modal retrieval, which
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can seamlessly work in balanced or imbalanced multi-modal
data collections. Within the proposed ATFH-N framework, a
triple fusion network associated with multi-modal zero padding
mechanism is exploited to adapt either balanced or imbalanced
multi-modal training data. At the same time, an adversarial
training mechanism is leveraged to maximally bridge the gap
of the representations between balanced and imbalanced data,
while a label prediction network is efficiently utilized to guide
the feature learning process and promote hash code learning. By
embedding the manifold structure within the learning process,
the underlying semantic structure of multimedia data can be
well preserved in Hamming space, which can benefit various
cross-modal retrieval tasks. To the best of our knowledge, this
work is the early attempt to incorporate adversarial learning
for working with imbalanced multi-modal data. Extensive ex-
periments on various kinds of retrieval tasks have shown its
outstanding performance.

Further research is anticipated along the present lines of
work in order to solve several problems. For example, if new
multi-modal data samples of other semantics are added into the
training database, then the proposed model will have to learn
the network parameters again, which would be time-consuming.
Therefore, it would be necessary to extend the network model
so as to handle the new multi-modal data adaptively. In addition,
questions like how to further increase the cross-modal retrieval
performance, and how to handle extremely imbalanced data are
yet to be solved.
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