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Dual Pursuit for Subspace Learning

Shuangyan Yi, Member, IEEE, Yingyi Liang, Zhenyu He
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Abstract—In general, low-rank representation (LRR) aims to
find the lowest rank representation with respect to a dictionary.
In fact, the dictionary is a key aspect of low-rank representation.
However, a lot of low-rank representation methods usually use
the data itself as a dictionary (i.e., a fixed dictionary), which
may degrade their performances due to the lack of clustering
ability of a fixed dictionary. To this end, we propose learning a
locality-preserving dictionary instead of the fixed dictionary for
low-rank representation, where the locality-preserving dictionary
is constructed by using a graph regularization technique to capture
the intrinsic geometric structure of the dictionary and, hence, the
locality-preserving dictionary has an underlying clustering ability.
In this way, the obtained low-rank representation via the locality-
preserving dictionary has a better grouping-effect representation.
Inversely, a better grouping-effect representation can help to learn
a good dictionary. The locality-preserving dictionary and the
grouping-effect representation interact with each other, where dual
pursuit is called. The proposed method, namely, Dual Pursuit for
Subspace Learning, provides us with a robust method for clustering
and classification simultaneously, and compares favorably with the
other state-of-the-art methods.

Index Terms—Low-rank representation, dual pursuit, graph-
regularization technique.

1. INTRODUCTION

OW-RANK Representation (LRR) [1]-[3], as a promising
L subspace clustering method [4]-[6], aims to capture the
underlying data structure from a global perspective, which has
been reported to be superior to similar methods [7]. Due to
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the effectiveness of LRR, various methods based on it [8]-[12]
have been proposed and widely used in motion segmentation
[13]-[15], face recognition [16]-[18], visual tracking [19], [20],
saliency detection [21], [22], and recommendation system [23],
[24]. Since multimedia data includes texts, images, and videos,
etc. Recently, many machine learning algorithms including low-
rank methods have appeared in multimedia retrieval, such as
image retrieval [25]-[27] and image classification [28]-[30] to
improve the multimedia retrieval performance.

LRR exploits the self-expressive ability of the data itself via
low-rank and finds the underlying low-rank structure. Although
LRR provides us with an efficient way to automatically correct
the corruptions lying in the original data, it only considers the
global structure. Therefore, it is a natural idea to take the local
manifold structure into consideration [2], [20], [31]. Lu et al.
[2] proposed to incorporate a graph Laplacian into LRR and to
enforce the desired low-rank subspace structures. Liu et al. [31]
introduced a manifold regularization into LRR and formed a
non-negative low-rank representation method.

All of the aforementioned methods use the observation data
itself as a dictionary (i.e., a fixed dictionary), however, such
a strategy may degrade their performances, especially when
the intrinsic geometric structures of observations are hidden in
observations. To this end, the idea of constructing a novel dictio-
nary for low-rank representation has appeared in the literature
[9], [32]. For example, latent low-rank representation (LatLRR)
[9] is proposed to construct a dictionary by using both observed
and unobserved data. Similar to LatLRR, the dual low-rank
method in [33] is proposed to learn a set of low-rank features
as a dictionary for detecting the low-rank salient regions. More-
over, a novel low-rank version is constructed in the transformed
data space [34], [35], which uses the transformed data as a dic-
tionary to recover the transformed data itself. In contrast, we
argue that learning a locality-preserving dictionary is necessary
for low-rank representation, because the locality-preserving dic-
tionary has an underlying clustering ability and this will help
learn a good grouping-effect representation. In this paper, the
locality-preserving dictionary is therefore constructed by using
a graph regularization technique, which is able to capture the
intrinsic geometry structure of data and implicitly has a cluster-
ing ability [36]. Based on such a locality-preserving dictionary,
the grouping-effect representation is likely to be in the dense
diagonal blocks due to the stronger discriminative features ex-
tracted by locality-preserving dictionary. Here, the proposed
method, namely dual pursuit, interacts locality-preserving dic-
tionary and grouping-effect representation each other to simul-
taneously obtain the most optimal dictionary and representation.
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Therefore, unlike the traditional subspace learning methods that
usually consider clustering and classification independently, the
proposed method can perform both clustering and classification
simultaneously.

The main contributions of this paper are summarized as
follows:

® We propose to learn a locality-preserving dictionary for

low-rank representation instead of a fixed dictionary. The
learned locality-preserving dictionary can capture the in-
trinsic geometry structure of data, and thus the learned
dictionary has an underlying clustering ability to some
extent.

® We propose a novel constraint term to unify the locality-

preserving dictionary and grouping-effect representation.
Such a strategy can make the locality-preserving dictio-
nary and grouping-effect representation interact with each
other and achieves the most optimal locality-preserving
dictionary and grouping-effect representation.

The remainder of this paper is organized as follows. In
Section II, low-rank representation and the graph regularization
technique are reviewed. In Section III, the proposed method and
its optimization algorithm are presented. In Section IV, the dif-
ferences between our method and the related work are discussed.
In Section V, the experiments using the proposed method are
designed to demonstrate its effectiveness. Finally, a conclusion
is drawn in Section VL.

II. BRIEF REVIEW OF LOW-RANK REPRESENTATION AND
GRAPH REGULARIZATION TECHNIQUE

In this section, we briefly review low-rank representation and
graph regularization technique.

A. Low-Rank Representation

Given the observed data X = [x1,2,...,2,] € R™*" (nis
the number of samples and d is the dimension of features),
which is approximately drawn from a mixture of multiple low-
rank subspaces, the LRR method [2] uses the observed data
itself to find the lowest-rank representation matrix Z of all data
jointly as follows:

argmin || Z]], + A[|E[, ;,

s

s.t. X=XZ+E, (1)

where || Z||,, defined as the sum of all singular values of Z, is
the so-called nuclear norm [37], and || - ||, , is the 5 ;-norm to
characterize the error E.

B. Graph Regularization Technique

The graph regularization technique is built on a graph and the
graph is constructed from the data samples. In the graph, the
weight of the edge between data samples x; and x; is usually
defined as:

if x; € Ng (l‘/) orx; € Ny (Jh)
otherwise

©))
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where N (x;) indicates the set of K nearest neighbours of z;.
The set of W;; is denoted as W, which is a sparse symmetric
n X n matrix.

The goal of the graph regularization technique is to preserve
the locality relation among samples in the low-dimensional sub-
space. Assuming that ®; and ®; are any two low-dimensional
subspace points produced by the original samples z; and z;,
where @ is the low-dimensional data of original data X. The
formulation of the graph regularization technique can be gener-
alized as follows:

arglminz | @ —@; |I5Wi;. 3)
ij

The graph regularization technique is able to weaken un-
necessary connections and strengthen the necessary connec-
tions. Generally, Y, || PTx; — PTx; [[5Wi; and 37, || 2 —
z; ||3 W;; are two common graph regularization terms, where
the former imposes the graph regularization technique on the
projection matrix P while the latter imposes the graph regular-
ization technique on the representation coefficient matrix Z.

III. DUAL PURSUIT FOR SUBSPACE LEARNING

In this section, the objective function of dual pursuit is first
constructed and then its optimization algorithm is given.

A. Objective Function of the Proposed Method

Low-rank representation uses the data itself as a fixed dic-
tionary to recover the original data. However, using the data
directly itself as a dictionary may be blind and may degrade
the performance of grouping-effect representation. To this end,
it is necessary to improve the performance of grouping-effect
representation by learning an effective dictionary. In fact, a pri-
ori information (i.e., the grouping-effect) can be used to guide
the learning of the effective dictionary. Fortunately, the graph
regularization term Y-, || P"x; — P"a; ||3Wi; can make the
transformed data P” X have the grouping-effect property. This
is because the transformed data, by preserving the neighbor-
hood structure in the transformed space, implicitly empha-
sizes the data groups that are more correct than the origi-
nal data groups. More specifically, the graph regularization
term . || PTz; — PTz; ||3W;; can make the neighboring
points in the original space nearer in the transformed data
space and the faraway points in the original space further in
the transformed data space [36]. Taking Fig. 1 as an exam-
ple, node3 and nodel are usually classified as one class due to
their nearest Euclidean distance. In fact, node3 and nodel are
not in the same class. However, the graph regularization term
>l PTz; — PTz; ||3W;; will make node4 and node3 nearer
while make node4 and nodel farther. That is, in the transformed
space, node4 and node3 are classified as one class while node4
and nodel are not classified as one class. Naturally, node3 and
nodel are not classified as the same class. Therefore, the learned
data transformed by the graph regularization technique, which
can correctly capture the intrinsic geometric structure of the
data, is called the locality-preserving dictionary. Based on such
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Fig. 1. Illustration of the locality-preserving dictionary. There are a total of
six nodes in the original space, where the red curve line is the neighbourhood
of node4 and the blue curved line is the neighbourhood of node2. Usually,
node3 and nodel would be classified as one class due to their nearest Euclidean
distance. In fact, node3 and nodel are not in the same class. However, the graph
regularization technique can correctly capture the neighbourhood structures of
data.

@ Second class

alocality-preserving dictionary, a more optimal grouping-effect
representation coefficient matrix is expected.

For the noiseless data, the proposed dual pursuit is written as
follows:

. A
argmin || Z]|, + 5 Z | PTa; — PTa; |3,
Z,P ij
s.t. X=prP'XxZz (4)

Furthermore, when the data is corrupted by noise (i.e., illumi-
nation corruptions or random pixel corruptions), the objective
function of dual pursuit is written as follows:

, A
avgmin || 2], +3 > | Pai = P [3Wi +911 Bl

s.t. X=P'XZ+E, (5)

where A > 0 and v > 0 are two balance parameters, Z is the
low-rank representation coefficient matrix, P € R™*™ is the
transformation matrix, and £ is an error term. Here, W;; defined
in Eq. (2) is used to constrain P”z; and P"z;. The graph
regularization term ), || P"x; — P"a; ||3Wi; is used to find
a transformation matrix P such that, under this transformation
matrix, the sum of Euclidean distances between data pairs that
are local to each other is minimized.

There are two main distinctive aspects of our method: the
graph regularization term (ie. > || PTz;i — PTx; [5Wi))
and the constraint (i.e. X = PT X Z + E). In terms of the graph
regularization term, the graph weight W is used to constrain the
transformed data pairs (e.g., PTz; and P”z;) such that they
preserve the local geometric structure well. One important rea-
son for adding Y, || P"x; — P"x; |3Wi; into our objective
function is to let the learned dictionary P” X have the grouping-
effect property. Based on such a locality-preserving dictionary,
the grouping-effect representation will bring a better clustering
result than that based on a fixed dictionary. On the other hand,
through the constraint X = P7 XZ + E, the dual pursuit is
produced where the optimized variables Z and P interact with
each other. Finally, the optimal Z* can be used for subspace
clustering and the optimal P* can be used for feature extraction.
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B. Optimization

Many algorithms have been developed to optimize the low-
rank representation methods, such as Singular Value Threshold-
ing (SVT) [38], Augmented Lagrange Multiplier (ALM) [39],
Alternating Direction Method (ADM) [40], and Linearized Al-
ternating Direction Method with Adaptive Penalty (LADMAP)
[41]. Recently, in order to deal with multi-block variables, the
Linearized Alternating Direction Method with Parallel Splitting
and Adaptive Penalty (LADMPSAP) [42] has been proposed
with a convergence guarantee.

Using some simple algebraic formulations [31], [43]-[45] for
4| PTz; — PTx; [|3W;;, Eq. (5) is converted into the equiva-
lent optimization formulation as follows:

argmin || Z|, + rtr(PTXLX"P) +~||E|l, ;.
Z.P.E '

s.t. X=P'XZ+E, (6)

where L = D — W is the graph Laplacian matrix [46], D is a
diagonal matrix whose entries are column sums of W, and W
is the weight matrix with W;;.

The main part of the objective function in Eq. (6) is convex,
and the constraint in Eq. (6) is convex only when the variable
P or Z is fixed. For efficiency, we utilize the ALM method
[39] to solve the optimization problem. One trick in applying
ALM is to make the objective function separable. Therefore, we
introduce one auxiliary variable A and reformulate Eq. (6) into
the following equivalent formulation:

argmin || A, + rtr(PT XLXT P) +YEl2,1

IEEEEIE)

s.t. X=P'XZ+E, Z=A. (7)

Then, using the ALM method, we can minimize the following
augmented Lagrange function:

argmin ||Al|, + rtr(PT XLXT P) ++||E||, ,
Z,A,P,E ’

+tr(Y\' (X = PTXZ - B)) +tr(Yy (Z — A))
+ L (lx-P'xZ - Bl + 12 - Al}), ®

where t7(-) and | - || » denote the trace and Frobenious norm
of a matrix respectively, and p > 0 is a penalty parameter. This
augmented Lagrange function is unconstrained, and hence it can
be minimized with respect to Z, A, P and E respectively by fix-
ing other variables. Finally, we update the Lagrange multipliers
Y1 and Y5. The main solving process is given as follows.

Step 1: Fix other variables and update Z. Eq. (8) is reduced

to the following formulation:

v |12
arg min HX—P,‘.TXZ;C—Ek—i-1
7 Hollrp
v |12
+‘Zk—Ak+2 )
Kol

By derivating Eq. (9) with respect to Z be 0, this opti-
mization solution Z; | = (ul + pX' P, Pl X)™!
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(XTBY] + pXTP(X — By) = Y5 + pdAy) s
got.

Fix other variables and update A. Eq. (8) is reduced
to the following formulation:

Step 2:

k 2

Y,
argmin|A||*+MHA—(Z+2) (10)
A 2 1%

F

This optimization solution Ag,q = Ji(Zy11 +
m
.
%), where J is the thresholding operator with re-

spect to the singular value %, can be obtained via

SVT operator [38].
Fix other variables and update P. Eq. (8) is reduced
to the following formulation:

ar(PTXLXT P)

Step 3:

arg min
P
Y|P
+gHX—PTXZ—Ek +L
1

F

an

By derivating Eq. (11) with respect to P be 0,
this optimization solution Py, = (2AXLXT +
uX Zi 1 20 X)X Zyo (X = By + Y /)T
is got.

Fix other variables and update E. Eq. (8) is reduced
to the following formulation:

Step 4:

k12

Y,
arg min || B[, ; + gHX -P'xz-E+ L
E 7

)

F
12)

which has the closed-form solution FEj.; =
S (X = P71 X Zy1 4 X=) using the shrink-
agle operator [39], where S is the ¢5; minimization
operator [10].

The complete solving process is shown in Algorithm 1. The
major computation of Algorithm 1 is at Step 2, which requires
computation of the Singular Value Decomposition (SVD) of the
matrix Zj. 1 + Yy /j € R™*", where k is the number of iter-
ations. Therefore, the complexity of this algorithm is O(kn?).
When n is large, its computational cost is very high. Some refer-
ences [3], [47] provide a way to reduce the computational cost.
Moreover, the most optimized solutions Zy. 1, Ax+1, Pr41,and
E}. 1 are denoted as Z*, A*, P*, and E*.

IV. COMPARISONS TO RELATED WORK

A. Comparison to LRR

LRR (See Eq. (1)) uses the observation data X itself as a
dictionary to globally represent the original data. When the
observation data is embedded in a low-dimensional manifold,
LRR may degrade its performance [45]. In contrast, our method
(see Eq. (5)) learns the transformed data PTX as a locality-
preserving dictionary to represent the original data. Moreover,
LRR only provides a way to cluster the given data but can not
directly classify the new coming data samples. For a new datum,
LRR needs to recalculate over all the data, and results in high

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 6, JUNE 2019

Algorithm 1: Optimization Algorithm
Initialize: Z, = Ay = 0,F, =0,Y =0,Yy =0,
Py=1 py = 10’3,max,, =105, p=1.1,
e=10"%k =0;
While not converged do
1: Fix the others and update Z by setting:

Zpv1 = (I + m XTP,PIX) !

< (XTBYF + e XT P (X — By) = YF + pp Ay);
2: Fix the others and update A by setting:

Yk
Apr1=J 0 (Zk+1 + 2) ;
33 Nk

where .J is the thresholding operator [38] with respect to
the singular value u%
3: Fix the others and update P by setting:

Poy1 = AXLX" + X Zp i Z1  XT) !
x e X Zyi1(X — By + Y /)™
4: Fix the others and update E by setting:
Y1*
Epy1 =85+ (X — Pl X2 + ) ;
o Mk
where S is the {51 minimization operator [10].
5: Update the multipliers:
Y1k+1 = Ylk + Hk(X - P1<,T+1XZk+1 - EL:+1)
Y =Y+ i (Zi — Argr);

6: Update the parameter (i, 4 1: ftg41 = min(ppuy, max,, )
7: Check the convergence conditions:

IX — P!, XZy11 — Egq1||, <eand
1 Zk+1 — Akl <&

8: Update k : k «— k+1;
End while

computational cost. Therefore, it is limited in application that
require fast online computation. However, our method can si-
multaneously cluster the given data and classify the new coming
data samples via the learned transformation matrix P.

B. Comparison to LatLRR
LatLRR proposes the dual low-rank optimization problem as
follows:

argmin || Z]], + ||G], + A E|l;,
Z.G.E

s.t. X=XZ+GX +E, (13)
where || - ||, is the ¢;-norm to characterize the error E, Z is a
low-rank representation coefficient matrix and G is a low-rank
transformation matrix.
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LatLRR (See Eq. (13)) is proposed to construct a novel dic-
tionary by using the observed and unobserved data, where the
effect of unobserved data is reflected by a low-rank transforma-
tion matrix G. From Eq. (13), the data recovered by LatLRR
is decomposed into two terms; that is, the recovered data is the
sum of X7 and GX. Our method (see Eq. (5)), in contrast,
integrates the transformed data P X and the representation co-
efficient matrix Z into one united term; that is, the recovered
data is PT X Z. Through P X Z, the dual pursuit is formed
and hence our method can be regarded as learning a locality-
preserving dictionary for grouping-effect representation.

C. Comparison to Graph-Regularized LRR or LatLRR

In recent years, the graph regularization technique has been
frequently introduced into the low-rank representation [7],
[31], [44], [45], [48]. For example, Lu et al. [44] proposed a
novel graph-regularized LRR approach by incorporating a graph
Laplacian into LRR. Yin et al. [45] proposed a general Lapla-
cian regularized low-rank representation method by using both
a pairwise graph and hypergraph regularizers. These methods
aim to incorporate a graph regularization technique into LRR,
which can be generalized as follows:

. A
argmin | Z],+5 D1 % = 2 I5W, + 11
) ZJ
X=XZ+E,

s.t. (14)

where A and -y are two balance parameters, z; and z; are the i-th
column and j-th column of Z, respectively. Here, W;;, defined
in Eq. (2), is imposed on representation coefficient z; and z;.

However, these graph-regularized low-rank representation
methods can not deal with the new coming data samples and
limit their applications in classification. To this end, the graph
regularization technique is introduced into the LatLRR method
as follows:

argmin || Z]|, + |G| + I El,
Z,G,E

+ gtr(ZLZZT) + gtr(GLgGT),

s.t. X=GX+XZ+FE. (15)

Both Eq. (14) and Eq. (15) focus on imposing a graph reg-
ularization constraint of Z to expect to obtain an effective
Z. In contrast, our method uses the graph regularization term
> Il PTai — P [[5W;; to learn a dictionary, and then ex-
pect to obtain an effective Z.

V. EXPERIMENTS

Databases: In our experiments, four databases are adopted:
PIE, Extended Yale B, COIL20, and USPS. Some image ex-
amples from Extended Yale B and COIL20 are displayed in
Fig. 2.

Implementation Details: For each database, all the data is ran-
domly divided into two groups. More specifically, for the PIE
database, 15 images per class, that is, a total of 15 x 68 = 1020
images, are randomly selected as the first group of data and
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(c) COIL20

(d) USPS

Fig. 2.  Some image examples from four databases.

the remaining 612 images are randomly selected as the second
group of data; for Extended Yale B, 30 images per class, that is,
a total of 30 x 38 = 1140 images, are randomly selected as the
first group of data and the remaining 1274 images are randomly
selected as the second group of data; for COIL20, 5 images per
class, that is, a total of 5 x 20 = 100 images, are randomly se-
lected as the first group of data and the remaining 1340 images
are randomly selected as the second group of data; for USPS,
20 images per class, that is, a total of 20 x 10 = 200 images,
are randomly selected as the first group of data and the remain-
ing 9098 images are randomly selected as the second group of
data.

In our experiments, the proposed method is optimized on the
first group of data of each database, and then, the optimized
variables Z* and P* are simultaneously obtained for the same
database and the same parameters. After the optimized variables
Z* and P* have been simultaneously obtained under the same
parameters, Z* is used to perform data clustering on the first
group of data while P* is used to perform data classification
on the second group of data. Before that, we first discuss the
effectiveness of the proposed dual pursuit.

A. Discussion About Dual Pursuit

In order to show the effectiveness of the proposed dual pur-
suit, it is compared with LatLRR and LRR in Fig. 3, where
the optimal solution (L*, Z*) of LatLRR is visualized in the
first row, the optimal solution (P*, Z*) of our method is visu-
alized in the second row, and the optimal solution (Z*) of LRR
is visualized in the third row. From both the second and third
rows, we can see that our method uses the transformed data
(P*)T X as a dictionary while LRR uses the data X itself as
a dictionary (see the region marked by a dashed line). Since
the three faces in X marked by yellow, blue, and green boxes
are heavily illuminated, they are easily classified as the same
group. In fact, the faces marked by yellow and blue boxes are
in the same class while the face marked in the green box is
in another class. Obviously, the dictionary used by LRR does
not have the grouping-effect property. However, in our method,
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Fig. 3.
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Visualization of LatLRR and our method on Extended Yale B with 30 training samples. The optimal solution (L*, Z*) of LatLRR is shown in the first

row and the optimal solution (P*, Z*) of our method is shown in the second row. The regions marked by red boxes are the enlarged areas. Moreover, a total
of sixteen training samples from two classes are selected as X, where each class includes eight images. Based on such X, the corresponding (L*X, X Z*) of
LatLRR and ((P*)T X, X Z*) of our method are visualized to show the superiority of our method compared to LatLRR.

the intrinsic geometric structure of these three faces is captured
by (P*)T X and they are implicitly grouped into their respec-
tive classes. Therefore, we say that the dictionary (P*)” X in
our method has the grouping-effect property. Based on such a
locality-preserving dictionary, our method will have an strong
power to push the illumination corruptions into its error term
while LRR will have a weak power to push the illumination
corruptions into its error term. Hence, our method has a better
grouping-effect representation than LRR based on a fixed dic-
tionary, and this can also be observed from their optimized term
X7

From both the first and second rows, we can see the two
transformation matrices L* and (P*)” and their corresponding
performance on feature extraction, as can be seen from (P*)7 X
and L*X in Fig. 3. Comparing the transformed data (P*)" X
with L* X, it can be seen that our method can capture the impor-
tant features, such as the eyes, nose, and mouth of a face, while
LatLRR captures many redundant features of the face. This is
because our method imposes a graph regularization technique
on P while LatLRR enforces a low-rank criterion on L. More-
over, the performance of X Z* in our method is also better than
that of LatLRR. Therefore, our method with the dual pursuit
compares favourably with LatLRR.

B. Experiment on Subspace Clustering

Data clustering aims to group samples into different groups.
In this paper, after the low-rank representation coefficient matrix
Z is obtained, K-means is used to cluster data points and then the
values of two criteria, i.e., accuracy (AC) and normalized mu-

tual information (NMI) are obtained to evaluate the clustering
performance.

Given a data point x;, let / and / be the ground truth label
and the label produced by a clustering approach, respectively.
Then the AC measure is defined by

>ioy 0(F (i), Matehy - (1))

AC = :
n

where n is the total number of samples and d(a,b) is equal
to 1if a = b and O otherwise. The Match (i) is the best
permutation mapping function that maps each cluster label F'(i)
to the equivalent label from the database, which is fulfilled by
the Kuhn-Munkres algorithm [49].

The NMI measure between two index sets K and K is defined
as

MI(K,K)

max(H(K), H(K"))’

where H(K) and H(K') denote the entropy of K and K,
respectively. Ml is defined as

MI(K,K) =YY" p(z,y)log, (M) :

Z P)p(y)

NMI(K,K') =

where p(y) and p(z) denote the marginal probability distribu-
tion functions of K and K, respectively, and p(z,y) is the
joint probability distribution function of K and K . Usually,
NMI(K, K') ranges from 0 to 1, where the value 1 means that
the two clusters are identical and the value O means that the two
clusters are independent.
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TABLE I
CLUSTERING ACCURACY (%) ON THE FIRST GROUP OF DATA OF THE PIE DATABASE, WHERE NUM.# IS THE NUMBER OF CLUSTERS

Cluster | AC(%) | NMI(%)
Num# | LRR LatLRR SMR(J1) DGLRR Ours | LRR LatLRR SMR(I1) DGLRR Ours
4 95.00 86.67 71.67 93.33 95.00 88.10 73.48 71.36 83.24 88.10
30 63.33 60.89 57.11 72.67 71.78 79.49 76.32 75.47 83.09 81.12
56 60.71 60.48 59.64 65.24 68.36 75.51 75.19 78.56 79.66 81.26
68 60.85 61.57 63.04 62.84 68.33 75.43 79.09 80.88 80.36 81.61
TABLE II

CLUSTERING ACCURACY (%) ON THE FIRST GROUP OF DATA OF THE EXTENDED YALE B DATABASE, WHERE NUM.# IS THE NUMBER OF CLUSTERS

Cluster | AC(%) | NMI(%)

Num# | LRR LatLRR SMR(J1) DGLRR Ours | LRR LatLRR SMR(I1) DGLRR Ours
10 63.67 77.07 56.67 70.33 77.33 67.17 73.19 60.11 69.56 74.38
20 59.50 63.67 52.17 67.17 68.00 68.72 70.66 63.10 69.49 70.82
30 46.56 50.44 55.44 59.78 63.44 66.74 67.70 68.19 67.44 68.37
38 56.14 57.02 50.79 58.07 57.28 64.07 61.86 65.22 63.49 62.02

TABLE III

CLUSTERING ACCURACY (%) ON THE FIRST GROUP OF DATA OF THE COIL20 DATABASE, WHERE NUM.# IS THE NUMBER OF CLUSTERS

Cluster | AC(%) | NMI(%)

Num# | LRR LatLRR ~ SMR(J1)  DGLRR  Owrs | LRR LaLRR ~ SMR(J1)  DGLRR  Owurs
5 60.00 64.00 72.00 56.00 80.00 53.57 58.66 66.10 62.87 69.52
10 60.00 62.00 60.00 70.00 72.00 69.65 72.11 66.04 79.53 76.85
15 62.67 6533 61.33 66.67 72.00 74.02 77.40 74.58 7742 79.33
20 65.00 62.00 68.00 73.00 71.00 79.51 75.90 79.00 83.21 80.02

Experimental Results: The proposed method is compared
with four state-of-the-art subspace clustering methods based
on low-rank representation LRR, LatLRR, smooth represen-
tation clustering (SMR) [48], and dual graph regularized latent
low-rank representation (DGLRR) [7]. Here, SMR provides two
ways to compute the edge weights of an undirected graph, and
here we use the popular J1 for a fair comparison.

In order to show the robustness of the proposed method, the
clustering experiments are implemented with different number
of clusters. More specifically, on the first group data of each
database, we use its first k& classes for the corresponding data
clustering experiments. The detailed clustering results are re-
ported in four tables, where the red typeface indicates the best
clustering result. From Tables I and III, it can be seen that our
method basically outperforms the other state-of-the-art meth-
ods. From Table 1II, it can be seen that our method obviously
outperforms LRR and LatLLRR, but gives a comparable result to
SMR and DGLRR when the number of clusters is £ = 38. From
Table IV, it can be seen that our method compares favorably with
LRR. To sum up, our method gives the better clustering results
than the other methods overall.

Generally, the clustering performance decreases as the num-
ber of clusters increases. As can be seen, the AC result obtained
by the proposed method decreases as the number of clusters

increases. However, it can be observed that there exists a fluctu-
ation in terms of NMI in our proposed method. The phenomenon
could be interpreted by the use of K-means, whose result may
be different under different initializations of cluster centers. A
similar phenomenon occurred strongly in the other methods in
terms of both AC and NMI. This also shows that our method is
more robust than the other methods.

Furthermore, the data decomposition abilities of the proposed
method and LRR are compared in Fig. 4. By comparing the re-
covered data of our method (i.e., (P*)? X Z*) with that of LRR
(i.e., X Z%), it can be seen that both two methods have good per-
formance and our method is slightly better than LRR (see the red
and yellow boxes). This is because both LRR and our method
use the same low-rank representation, which can well separate
the noise image from the original image to obtain a good re-
covery. Since the result of subspace clustering depends on the
optimized representation coefficient matrix Z*, we additionally
display our X Z* under the (P*)” X Z* (see the grey arrow). By
comparing our X Z* with that of LRR, it can be seen that our
X Z* can capture the generality characteristic of the intraclass
faces/objects and achieves a high clustering accuracy. This is
because, being based on a learned locality-preserving dictio-
nary, our dictionary can capture the neighbor relation existing
in original data (e.g., Extended Yale B and COIL20 databases)
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TABLE IV
CLUSTERING ACCURACY (%) ON THE FIRST GROUP OF DATA OF THE USPS DATABASE, WHERE NUM.# IS THE NUMBER OF CLUSTERS

Cluster | AC(%) | NMI(%)

Num.# | LRR LatLRR SMR(J1) DGLRR Ours | LRR LatLRR SMR(J1) DGLRR Ours

4 92.50 65.00 85.00 88.75 91.25 81.17 63.20 67.71 77.52 80.51
6 78.33 81.67 83.33 81.67 85.00 68.26 73.78 73.60 71.49 77.35
8 81.87 72.50 73.12 83.13 84.38 73.65 67.70 70.18 75.24 78.21
10 77.00 63.00 67.50 68.50 76.00 73.79 60.41 70.34 68.07 74.36

E*

Fig. 4. Visualization of data decomposition of some samples from both the Extended Yale B and the COIL20 databases. A total of twenty samples from two
databases (each database includes two classes and each class includes five images) are selected to display the performance of our method and LRR. For this total
of twenty samples, the data decomposition of LRR is shown in the first row while ours is shown in the second row.

and thus our method may have a strong power to obtain the bet- C. Experiment on Feature Extraction
ter global recovery than LRR based on a fixed dictionary (see
the term X Z*). Therefore, our method can obtain the better
clustering result than LRR.

In this section, we use P* to perform classification for the
second group of data. That is, for a training sample or testing
sample z, the transformed feature vector y can be calculated as
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TABLE V
CLASSIFICATION ACCURACY ON FOUR DATABASES. THE OPTIMAL DIMENSION IS SHOWN IN BRACKETS

Database | LPP NPE LatLRR Ours

PIE 89.38(300D) 90.36(358D) 91.67(1024D) 92.81(1024D)

Extended Yale B 90.42(350D) 87.44(415D) 85.95(1024D) 90.74(1024D)

COIL20 74.18(35D) 73.06(47D) 83.06(1024D) 81.04(1024D)

USPS 76.28(50D) 76.42(68D) 88.70(256D) 84.03(256D)
follows: 100
906
y=(P) . (16) ,
soR

It is worth noting that ¢ has the same dimension as z, unlike in
the general dimension reduction methods. After all the training
samples (i.e., the first group data) and testing samples (i.e.,
the second group of data) have been transformed by P*, the
1-nearest neighbour classifier is used to classify these testing
samples in the transformed space.

Experimental Results: The proposed method is compared
with LatLRR and two popular dimension reduction methods,
including Locality Preserving Projection (LPP) [36] and Neigh-
bourhood Preserving Embedding (NPE) [50]. For each database,
the first group of data is used as the training samples and the
second group of data is used as the testing samples. More specif-
ically, for the PIE database, the selected 15 images per class are
used as the training samples and the remaining images are used
as the testing samples; on the Extended Yale B database, the
selected 30 images per class are used as the training samples
and the remaining images are used as the testing samples; for
the COIL20 database, the selected five images per class are used
as the training samples and the remaining images are used as the
testing samples; for the USPS database, the selected 20 images
per class are used as the training samples and the remaining
images are used as the testing samples.

Table V shows that our method gives the best classification
accuracy on the Extended Yale B and PIE databases. As is well
known, the face images may reside on a nonlinear submanifold
[51], [52] and the local feature extraction method may achieve a
good classification performance. Therefore, LPP and NPE have
achieved a good classification accuracy. However, our method
outperforms them by 0.32-3.45%. This is because our method
not only uses P to capture the local geometric structure but also
uses Z to capture the global structures, and hence our method
is likely to achieve the best performance on these two facial
databases. On the COIL20 and USPS databases, our method
has approximately the same performance to LatLRR. This is
because both the COIL20 and USPS databases have a big dis-
tance between inter-classes and LatLRR is likely to achieve the
best performance as a global feature extraction method.

Robustness to Noise: In order to test the robustness of our
method to noise, which possibly appears in testing data, we de-
sign an additional experiment on the Extended Yale B database
with 30 training samples per class. For each testing sample, we
randomly corrupt some pixels. The value of a corrupted pixel
is replaced by a random value that ranges uniformly from 0

50

40t

Classification accuracy(%)

30

20

0 10 20 30 40 50
Percentage corruption(%)

Fig.5. Testing the robustness of all methods on the Extended Yale B database
with 30 training samples. The classification accuracy (averaged over 20 runs)
of all methods is drawn with different percentage corruption.

to 1. We implement all methods on this noisy testing data and
record the best result of each method. Fig. 5 shows that both
our method and LatLRR are robust to noise, but our method
outperforms LatLRR.

D. Parameter Settings and Convergence

There are two parameters in our objective function, namely
A and . To demonstrate the effects of these two parame-
ters for experiments, different combinations of these values
selected from a reasonable discrete set {1e 6, 1e™?, 1le ™, 1le73,
le 2, 1e 1, 1€, 1et, 1e?, 1e3, 1e!} are evaluated on each
database. Specifically, the classification accuracy of each com-
bination of parameter values is shown in Fig. 6, in which both
the first and second columns represent the clustering perfor-
mance of subspace clustering, and the third column represents
the classification performance of feature extraction. In terms of
subspace clustering experiments, there are different optimal pa-
rameters with different number of clusters k on the first group of
data. Here, we give the clustering performance of each database
with the largest number of clusters, that is, the PIE database with
k = 68, the Extended Yale B database with k = 38, the COIL20
database with k = 20, and the USPS database with &£ = 10. In
the case of the largest number of clusters, the AC performance
is given in the first column of Fig. 6, and the NMI performance
is given in the second column of Fig. 6. Comparing the first
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Clustering_PIE

Fig. 6.

column with the second column, we can see that the AC per-
formance and NMI performance have almost the same optimal
parameters. Moreover, we give the classification performance
of each database in the third column of Fig. 6. From the third
column of Fig. 6, we can see that the classification performance
is roughly consistent over a wide parameter range, which over-
laps with the optimal parameter for the clustering performance.
Therefore, we use the same parameter for subspace cluster-
ing and feature extraction. For example, for the PIE database,
when k = 68, the parameters used are A = 0.032and v = 107°.
For the Extended Yale B database, when k = 38, the parame-
ters used are A = 0.0007 and v = 0.00003. On the COIL20
database, when k& = 20, the parameters used are A = 1076 and

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 6, JUNE 2019
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The clustering and classification performances of our method versus the parameters A and ~ on four databases.

v = 10~*. For the USPS database, when k = 10, the parameters
used are A = 10% and v = 107°.

The convergence curves of our method are visualized in Fig. 7,
where the maximum iteration number is 250. Generally speak-
ing, the objective function value decreases as the number of
iterations increases. As can be observed, our method achieves
a fast convergence on both the Extended Yale B and COIL20
databases. However, on the PIE and USPS databases, the ob-
jective function value has a violent vibration. This phenomenon
can be interpreted as the consequence of the inexact solution
of Eq. (11), that is, the exact solution is permutated a little
in our method by adding a Tikhonov regularization n! to the
inverse of the matrix 22 X LXT + ;LXZkHZkTHXT. In this
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paper, 77 = 0.001 is used. In fact, the larger 7 is, the more vi-
olent the vibration is. But eventually, we can observe that the
objective function value decreases steadily as the number of
iterations continues to increase. This indicates that our method
may achieve the final convergence after a long time.

VI. CONCLUSION

In this paper, from the view of learning a dictionary, we
integrate the traditional subspace learning method into the low-
rank representation and produce a dual pursuit for clustering
and classification simultaneously. The proposed method pro-
vides us a robust unsupervised subspace clustering algorithm as
well as a robust unsupervised feature extraction algorithm si-
multaneously. As an unsupervised feature extraction algorithm,
our method shows the robustness to the noise and produces the
compared classification results with the previous methods. As an
unsupervised subspace clustering algorithm, our method shows
a better clustering results than previous methods.
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