
2764 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Adaptive Chunk-Based Dynamic Weighted Majority
for Imbalanced Data Streams With Concept Drift

Yang Lu , Member, IEEE, Yiu-Ming Cheung , Fellow, IEEE, and Yuan Yan Tang, Life Fellow, IEEE

Abstract— One of the most challenging problems in the field
of online learning is concept drift, which deeply influences the
classification stability of streaming data. If the data stream is
imbalanced, it is even more difficult to detect concept drifts and
make an online learner adapt to them. Ensemble algorithms
have been found effective for the classification of streaming
data with concept drift, whereby an individual classifier is built
for each incoming data chunk and its associated weight is
adjusted to manage the drift. However, it is difficult to adjust
the weights to achieve a balance between the stability and
adaptability of the ensemble classifiers. In addition, when the
data stream is imbalanced, the use of a size-fixed chunk to
build a single classifier can create further problems; the data
chunk may contain too few or even no minority class samples
(i.e., only majority class samples). A classifier built on such a
chunk is unstable in the ensemble. In this article, we propose
a chunk-based incremental learning method called adaptive
chunk-based dynamic weighted majority (ACDWM) to deal with
imbalanced streaming data containing concept drift. ACDWM
utilizes an ensemble framework by dynamically weighting the
individual classifiers according to their classification performance
on the current data chunk. The chunk size is adaptively selected
by statistical hypothesis tests to access whether the classifier
built on the current data chunk is sufficiently stable. ACDWM
has four advantages compared with the existing methods as
follows: 1) it can maintain stability when processing nondrifted
streams and rapidly adapt to the new concept; 2) it is entirely
incremental, i.e., no previous data need to be stored; 3) it stores
a limited number of classifiers to ensure high efficiency; and 4) it
adaptively selects the chunk size in the concept drift environment.
Experiments on both synthetic and real data sets containing

Manuscript received April 30, 2018; revised January 29, 2019 and
September 12, 2019; accepted November 2, 2019. Date of publication
December 5, 2019; date of current version August 4, 2020. This work was
supported in part by the National Natural Science Foundation of China
under Grant 61672444 and Grant 61272366, in part by the Hong Kong
Baptist University (HKBU), Research Committee, Initiation Grant—Faculty
Niche Research Areas (IG-FNRA) 2018/2019 under Grant RC-FNRA-IG/18-
19/SCI/03, in part by the Innovation and Technology Fund of the Innovation
and Technology Commission of the Government of the Hong Kong SAR under
Project ITS/339/18, in part by the Faculty Research Grant of HKBU under
Project FRG2/17-18/082, and in part by the Shenzhen Science, Technology
and Innovation Committee (SZSTI) under Grant JCYJ20160531194006833.
(Corresponding author: Yiu-Ming Cheung.)

Y. Lu is with the Fujian Key Laboratory of Sensing and Computing for
Smart City, School of Informatics, Xiamen University, Xiamen 361005, China,
and also with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong (e-mail: lylylytc@gmail.com).

Y.-M. Cheung is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong (e-mail: ymc@comp.hkbu.edu.hk).

Y. Y. Tang is with the Faculty of Science and Technology, UOW Col-
lege Hong Kong/Community College of City University, Hong Kong, and
also with the Department of Computer and Information Science, Faculty
of Science and Technology, University of Macau, Macau, China (e-mail:
yytang@cityu.edu.hk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2951814

concept drift show that ACDWM outperforms both state-of-the-
art chunk-based and online methods.

Index Terms— Concept drift, ensemble methods, imbalance
learning, online learning.

I. INTRODUCTION

IN RECENT years, the challenge of learning from streaming
data with concept drift has attracted more interest in the

field of online learning because this phenomenon occurs in
real machine learning applications, where the underlying data
distribution changes over time [1], [2]. For example, spammers
continuously improve the quality of the spam they post on
Twitter to avoid being blocked by spam detection systems,
and thus, the features and concepts of Twitter spam frequently
change [3]. It follows that an online algorithm to process
streaming data with concept drift should balance the tradeoff
between learning from previous data and adapting to the
new concept, which is also known as the stability-plasticity
dilemma [4]. Concept drift can occur in the following four
components, according to Bayes’ theorem [5], [6].

1) Data Distribution p(x): A type of virtual drift, where the
distribution of x changes without affecting the decision
hyperplane.

2) Class-Conditional Probability (Likelihood) p(x|y):
A type of virtual drift, usually co-occurred with p(x)
and p(y) drift.

3) Posterior Probability p(y|x): A type of real drift, where
the decision hyperplane is shifted because the condi-
tional probability changes.

4) Class Prior p(y): A type of virtual drift, where the
imbalance ratio changes, such that the role of the minor-
ity class and the majority class may be switched.

As discussed in [6], only posterior probability drift affects the
decision hyperplane. However, it is impossible for only one
of the components of drift to change, while the others remain
fixed. That is, these four types of drifts are correlated and
usually occur simultaneously at any time in the real-world
data stream. We therefore define the concept drift comprising
a mixture of different components of drifts as joint concept
drift. Take fault diagnosis for example, and consider a situation
where the faulty samples are the minority class [7]. If there is
a change in the percentage of different sample types, this cor-
responds to a drift of p(x). If the percentage of a certain type
of faulty samples is increasing, this corresponds to the drift of
p(x|y). If the percentage of a certain type of faulty sample is
increasing, perhaps due to the improvement of a fault-standard
diagnostic, this corresponds to a drift of p(y|x). Furthermore,
if the cause of the fault is not fixed, the number of minority

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3497-9611
https://orcid.org/0000-0001-7629-4648

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2765

faulty samples will increase until they become the majority
class, and this corresponds to a drift of p(y). The challenge of
investigating the concept drifts in nonstationary environments
and developing adaptation algorithms has drawn increasing
attention from researchers [8]–[11].

Another typical data mining problem is class imbalance,
where one class has much more samples than another class
[12], [13]. In this situation, directly applying standard learning
algorithms tends to ignore minority class samples because of
their subtle influence on the overall accuracy. Class imbalance
and concept drift have mutually reinforcing effects, i.e., if
these problems co-occur, they will tend to exacerbate each
other. In other words, if the classes in the data stream are
imbalanced, it will be even more difficult to detect the concept
drifts of the minority class and adapt the online learner to
them. Conversely, concept drift may alter the status of class
imbalance because the class prior is a variable in the concept
drift environment.

Thus far, only a few methods have been proposed for
managing the problem of concept drift with class imbalance.
A comprehensive literature review can be found in [6]. The
existing methods can be divided into online and chunk-based
approaches.1 The online approaches [14]–[17] update the
prediction model for each incoming sample and use a drift
detector to monitor the data stream. Once any concept drift
is detected, the existing prediction model is reset and a new
model is built for the new concept. For example, oversampling-
based online bagging (OOB) and undersampling-based online
bagging (UOB) [15] use a time-decayed scheme to obtain the
recent imbalance ratio of the data stream, which is used to
integrate oversampling and undersampling with online bag-
ging. It can be associated with a drift detector such as Drift
Detection Method for Online Class Imbalance (DDM-OCI)
[14], which gives a warning when necessary by monitoring the
minority class recall and confirms detections using statistical
information. However, a major problem of approaches based
on the detectors is that they suffer from false alarms, delayed
detections, or even missed detections. In contrast, the chunk-
based approaches [4], [18]–[21] buffer the data stream until
a certain number of samples are accumulated, and classifiers
are then built on the data chunk. These approaches usually
assume that the occurrence of concept drift is ubiquitous
in the data stream and thus continuously update the current
model. Usually, the ensemble framework is adopted to create
a single classifier for each incoming data chunk and adjust
the weights of classifiers to adapt to the new concept [22],
[23]. In the meantime, the imbalance issue can be handled by
accumulating the minority class samples in the past chunks.
For example, dynamic feature group weighting (DFGW-IS)
[20] uses importance sampling to draw minority class samples
from the past chunks and bootstraps the majority class sample
to create a bagging-like ensemble. This strategy works when
the minority class is a fixed concept in the data stream.
However, in the complex concept drift environment, the p(y)
drift leads to the change of the imbalance ratio. Therefore,
when the minority class has expanded to become the majority

1Another taxonomy classifies these as active and passive approaches [2].
These two taxonomies are similar because active approaches are almost all
conducted online and passive approaches usually adopt a chunk-based learning
scenario.

class, the stored past minority class samples cannot be used
to refine the current minority class. In addition, it is hard to
properly weight the individual classifiers trained on different
timestamps while maintaining a limited number of classifiers
to prevent the number increasing infinitely.

Another aspect is the size of chunks in the chunk-based
method. The chunk-based ensemble methods are usually
based on the assumption that the imbalance ratio is fixed in
each data chunk. However, the imbalance ratio may also be
altered by concept drift, i.e., the prior drift [24], and when
this prior drift occurs, it is likely that the incoming size-fixed
chunk consists of only the majority class samples. In this case,
most of the chunk-based methods that are designed to process
imbalanced data streams fail because the classifier cannot be
built upon a data set comprising only a single class. Moreover,
even if there are two classes in the chunk, a low number of
minority class samples may inadequately represent their class
distribution; an extreme example of this would be the situation
of there being only one minority class sample in the chunk.
Thus, for the existing ensemble methods with a size-fixed
chunk, using a large chunk size to avoid the imbalance
problem will simply delay the reaction to the concept drift.
Therefore, the selection of chunk size is crucial for handling
imbalanced streaming data with prior drift. However, to the
best of our knowledge, no chunk size selection algorithm
exists in the literature for use in the chunk-based ensemble
methods to process imbalanced data stream.

In this article, we propose an improved chunk-based incre-
mental learning method called adaptive chunk-based dynamic
weighted majority (ACDWM) to deal with binary class
imbalanced data streams with concept drift. The method
utilizes an ensemble framework with dynamic individual
classifier weighting. The classifier weights depend on the
imbalance-aware error of the classifier tested on the current
chunk. A classifier with a smaller error will receive a higher
weight in the ensemble because it may have been trained on
the chunk with a similar concept as the current chunk. The
classifier weights are naturally reduced over time based on the
accumulated testing error. In addition, a proper chunk size is
adaptively determined to train the individual classifiers, which
enables ACDWM to handle the online learning scenarios that
display joint concept drift. ACDWM is initialized with a
small chunk and adaptively increases the chunk size until the
stability of the classifier generated by the enlarged chunk is not
significantly different from the one generated by the previous
chunk. The stability is determined by the prediction variance
of test samples. We propose a classifier called SubUnderSam-
pling that has normally distributed predictions, meaning that
the statistical hypothesis tests can be used to compare the
prediction variance. There are four advantages of ACDWM
as follows.

1) It can remain stable for stationary streams and also
rapidly adapt to the new concept of a nonstationary
environment.

2) It is wholly incremental, meaning that no previous data
need to be stored to assist with prediction, and thus,
the method is unaffected by memory problems.

3) It stores far fewer classifiers than the current timestamp,
meaning that the outdated classifiers will be discarded
so that the ensemble size does not expand infinitely.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2766 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

4) The classifier stability is ensured by training on the
properly selected chunk size.

The main difference of this article compared with our
preliminary work in [21] is that ACDWM can adaptively
select the chunk size to ensure the stability of the individual
classifier in the ensemble, thus enabling the data stream with
a prior class drift to be fitted. In addition, we systematically
compare the chunk-based and online methods in the joint
concept drift environment. Thus, the main contributions of
this article are as follows.

1) It is the first to examine the chunk size problem
of ensemble methods processing imbalanced streaming
data with joint concept drift.

2) We propose an online learning method ACDWM for
processing imbalanced data stream classification with
joint concept drift.

3) We propose a chunk size selection algorithm to obtain
an appropriate chunk size for online ensemble methods.

The rest of this article is organized as follows. Section II is
an overview of related work on processing imbalanced data
streams with concept drift. Section III describes the proposed
ACDWM in detail. Section IV presents the experiments and
discussions. Conclusions are presented in Section V.

II. RELATED WORK

In this section, we briefly review the known online and
chunk-based methods for processing imbalanced data streams
with concept drift. Online approaches update the model for
each incoming sample. recursive least square adaptive cost per-
ceptron (RLSACP) [25] uses perceptron-based classifiers and
handles the concept drift using a forgetting factor of the error
model, with the imbalance ratio proposed to adapt the error
weight. OOB and UOB [14], [15], [26] combine traditional
random oversampling and undersampling with online bagging
[27], where each individual classifier in bagging is updated K
times on the incoming new sample. In OOB and UOB, K is a
Poisson random number, which is updated by a decayed factor
according to the recent imbalance ratio. There are also some
approaches based on change detection [1]. DDM-OCI [14]
improves DDM [28] by monitoring the minority class recall
instead of the accuracy used in DDM for the class imbalance
issue. Linear Four Rates (FLR) [29] traces four rates, i.e., TPR,
TNR, positive predicted value (PPV), and negative predicted
value (NPV), with statistical tests to detect the drift on
both positive and negative classes. Hierarchical FLR (HFLR)
[16] further improves FLR by adopting permutation based
concept drift detection scheme (PERM) [30] as the upper
layer to verify the detection result from FLR. Prequential
area under the ROC curve Page–Hinkley (PAUC-PH) [17]
extends the traditional metric area under the ROC curve (AUC)
to the online calculable version and uses the PH-test [31]
to detect drift. Class-Based ensemble for Class Evolution
(CBCE) [32] focuses the class evolution problem for multi-
class classification, using a one-versus-rest strategy to create
one classifier for each class and conduct undersampling for the
majority class.

The chunk-based method for an imbalanced data stream
was first proposed in [18]. The proposed method accumulates

the minority class samples in the current chunk with those
in all past chunks while conducting undersampling on the
majority class samples to balance the classes. A bagging-like
ensemble framework is then used for classification. However,
it suffers from limitations in memory for storing the past data
and lacks the ability to rapidly adapt to the new concept. selec-
tively recursive approach (SERA) [33] and recursive ensemble
approach (REA) [19] are improvements, as they select only
parts of the minority class samples from the past chunks based
on the similarity to the minority class samples in the current
chunk. heuristic updatable weighted random subspaces with
instance propagation (HUWRS.IP) [5] calculates the Hellinger
distance between the samples in the current and past chunks to
detect the concept drift. The distance is used as the weight of
the individual classifier built on different feature subspaces in
the ensemble. To handle the imbalance problem, HUWRS.IP
creates a Naïve Bayes classifier on the current chunk to select
the similar minority class samples from the past chunks.
DFGW-IS [20] further improves HUWRS.IP by incorporating
the importance sampling technique to collect similar positive
class samples from the past chunks. Gradual Resampling
Ensemble (GRE) [34] selects the minority class samples from
the past chunks by utilizing a clustering technique. Thus,
only the minority samples that have minimal overlap with the
majority samples in the current chunk are selected to construct
the current minority training set. In summary, these methods
are based on the assumption that the minority class does not
change and the past information can therefore be utilized.
However, from a practical viewpoint, if p(y) changes over
time, the past minority class may not be the same class as
the current minority class. In light of this, some methods do
not use historical data. Learn++.CDS and Learn++.NIE [4]
create one individual classifier for each chunk and use the
ensemble to predict the incoming data. The individual classi-
fiers are weighted according to a time-decay function and their
performance on the current chunk. ensemble of subset online
sequential extreme learning machine (ESOS-ELM) [35] uses
an ensemble of extreme learning machine, where the weight
matrices trained on each chunk are stored for the ensemble.
When the concept drift is detected by a change detector,
the ensemble model will be reinitialized. Our previously
developed method Dynamic Weighted Majority for Imbalance
Learning (DWMIL) [21] keeps a limited number of classifiers
in the ensemble, and the classifier weights are then decayed
based on their discriminative ability on the current chunk and
the timestamp of their creation.

All the above-listed chunk-based methods use size-fixed
chunks in the data stream and are based on the assumption
that the samples of both classes exist in each chunk. However,
if prior drift occurs, a very high imbalance ratio may result,
which can develop into a situation where the chunk consists
of only one class. As far as we know, a chunk size selection
algorithm has yet to be developed for online ensemble methods
with such an imbalanced data stream. In the literature, a related
topic is adaptive window for drift detection. DDM [28] moni-
tors the error rate and sets two levels for drift detection; when
the warning level is triggered, all subsequent incoming data are
stored. When the drift level is triggered, the stored samples are
used to train a new model, where the window size depends

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2767

on the steps between two levels. ADWIN [36] is based on
the theoretical analysis of Hoeffding bound to determine if
two parts of a data sequence are from the same distribution.
PERM [30] compares the testing error of the data in the latest
window with the validation error by random permutation, and
the window size is increased if there is no significant difference
between the two errors. These methods are designed for drift
detection, and the criterion that determines the window size
depends on the point when the concept drift happens. However,
when the data stream is imbalanced, these methods cannot be
used to determine whether there is sufficient data (especially
the minority class data) in the current chunk to build a stable
classifier.

III. PROPOSED METHOD

A. General Framework
An online algorithm that can address concept drift should

rapidly adapt to the new concept if the changes in the data
stream occur, and yet remain stable in a stationary envi-
ronment. DWM [37] uses a weighted ensemble to predict
streaming data with concept drift. Each classifier is associated
with a weight when it is created. This weight is periodically
updated based on the performance of the classifier on the
data stream. For every p timestamps, the weight is decreased
by a factor β if the individual classifier in the ensemble
misclassifies the incoming sample in the data stream. DWM
also periodically removes and creates classifiers to deal with
the concept drift. If the weight is lower than a threshold,
the corresponding classifier will be removed, and if the
ensemble classifier misclassifies an incoming sample, a new
classifier will be created. Therefore, as an ensemble method,
the effectiveness of DWM is due to the dynamic control of the
classifier weights. Specifically, the weight adjustment scheme
considers two aspects. One is the time factor: The outdated
classifiers have lower weights when they are farther from the
current timestamp. The other one is the concept drift factor:
if the concept drift occurs, the speed of weight reduction
will increase, such that the classifier built on the old concept
will receive a lower weighting. The Learn++ framework [38]
incorporates a similar consideration, in which the time factor
is integrated with the error to calculate the weight of each
individual classifier. The pseudocode of DWM is shown in
Algorithm 1.2

Although DWM is effective on data streams with concept
drift, it tends to adjust the classifier weights improperly if
the data stream is imbalanced. The reasons for this are as
follows. First, DWM processes one data at a time and updates
the classifiers on every p timestamps. If the data stream is
imbalanced, the occurrence frequency of the minority class
samples will be very low. Thus, updating a long sequence of
majority class samples will likely bias the model toward the
majority class. Second, the weight update depends on the clas-
sification results of each individual classifier in the ensemble
for every p timestamps. A classifier built on an imbalanced
data stream usually has high accuracy on the majority class and
low accuracy on the minority class. Thus, the weight update
frequency will be low because the individual classifier makes

2The DWM in this article is for binary classification to match the task in this
article. The DWM in the original article is for multiclass classification [37].

Algorithm 1 DWM
Input: Data stream t : D = {xi ∈ X , yi ∈ Y}, i = 1, . . . , N ,

number of classes c, threshold for deleting individual clas-
sifiers θ , factor for decreasing weights β, period between
classifier removal, creation, and weight update p.

1: m ← 1;
2: wm ← 1;
3: Hm ← CreateClassi f ier ;
4: H← {Hm};
5: for i ← 1 to N do
6: for j ← 1 to m do
7: if H j (xi) �= yi and i mod p = 0 then
8: w j ← βw j ;
9: end if

10: end for
11: Predict xi by the ensemble classifier:

ȳi ← sign(
∑m

j=1 w j H j (xi));
12: if i mod p = 0 then
13: Normalize classifier weights:

w← w/
∑

j w j ;
14: Remove classifiers with weights less than θ :

H← H\{H j |w j < θ};
15: if ȳi �= yi then
16: m ← m + 1;
17: Hm ← CreateClassi f ier ;
18: H← H ∪ Hm;
19: wm ← 1;
20: end if
21: end if
22: for j ← 1 to m do
23: H j ← U pdateClassi f ier(H j, xi , yi);
24: end for
25: end for
Output: Ensemble classifier set H, weight of individual clas-

sifiers w.

correct predictions on the majority class samples in most of the
cases, as these samples appear more frequently. Consequently,
the weight update is barely influenced by the classification
result for the minority class. Finally, a new classifier is created
by the DWM according to the prediction performance of a
single sample. If the data stream is imbalanced, it is highly
probable that the sample belongs to the majority class rather
than the minority class, and there is a low probability that
a majority class sample will be misclassified. Thus, there is
a low probability that new classifiers will be created on an
imbalanced data stream, meaning that it cannot efficiently
adapt to a concept drift, especially when the drift occurs in
the minority class data.

The proposed ACDWM incorporates the advantages of
DWM in that the individual classifiers are dynamically
adjusted to address concept drift with class imbalance. The
outdated classifiers are gradually allocated lower weights
and are removed when these weights are beneath a certain
threshold. The weight is reduced according to the performance
of the classifiers on the current concept, with the difference
being that ACDWM adopts a chunk-by-chunk online learning
fashion such that a classifier is created for each data chunk.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2768 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

The class imbalance problem is then solved within the chunk
by sampling techniques, and imbalance-aware metrics are used
to adjust the classifier weights. In addition, ACDWM can
adaptively select a proper chunk size to create a new classifier,
thereby preventing the data in the size-fixed chunk comprising
only one class. This adaptive chunk size selection can also
ensure that the classifier built on the chunk is stable enough
to assist with ensemble prediction. The details of ACDWM
are described in Sections III-B and III-C.

B. Chunk Training

At timestamp t − 1, ACDWM maintains m classifiers in
the set H(t−1) = {H (t−1)

1 , . . . , H (t−1)
m } trained on the data

chunks from timestamp 1 to t − 1. When ACDWM receives a
new data chunk D(t) at timestamp t , it learns a new classifier
H on the current data chunk and merges H with H(t−1) to
form H(t). The classifiers trained at each chunk are associated
with weights w(t) = [w(t)

1 , . . . , w
(t)
m]T , which represent the

importance of the classifier in the ensemble. When the new
classifier H is created, its initial weight is set at 1 and m
is increased by 1. In order to adapt to a new concept and
make the previously learned classifiers less influential in the
ensemble, the weight w

(t)
j for classifier H (t)

j is reduced on
each timestamp after it is created

w
(t)
j = (1− �

(t)
j)w

(t−1)
j (1)

where j = 1, . . . , m−1 and �
(t)
j is the testing error of H (t)

j on

the current data chunk D(t). The error �
(t)
j can be calculated

by any error function, such as the F1 score or geometric mean
(G-mean). Thus, the weights of the classifiers trained on the
past chunks are reduced based on their performance on the
current data chunk. As this weight reduction is accumulated
over time, the weight w

(t)
j is actually equal to

w
(t)
j =

t∏
τ=l+1

(
1− �

(τ)
j

)
(2)

where l is the timestamp when H (t)
j is created. As 1−�

(τ)
j ≤ 1,

the classifier weight decreases over time according to the error
on each chunk after it is created. Then, the classifiers with a
weight less than the threshold θ are removed and the counter
m is also reduced according to the number of classifiers left.
Thus, ACDWM only retains a limited number of classifiers in
the ensemble and does not suffer from memory problems if
the data stream is extremely long.

There are two factors that make the weight of a classifier
lower than θ , thus flagging it for removal. One is that the
classifier is trained on a very early timestamp that makes the
production in (2) small. The other is that the concept has
changed in recent chunks and the testing error of the classifier
on those chunks is large. Thus, this kind of classifier is less
likely to provide positive effects for the prediction on the
current and following chunks. Finally, the model predicts the
incoming data x in D(t+1) by the ensemble of H(t) associated

Algorithm 2 ACDWM_Train

Input: Data chunk at timestamp t : D(t) = {xi ∈ X , yi ∈ Y},
i = 1, . . . , N , threshold for deleting individual classifiers
θ , individual classifier set H(t−1) = {H (t−1)

1 , . . . , H (t−1)
m },

weight of individual classifiers w(t−1), minimal ensemble
size T0.

1: m ← |H(t−1)|;
2: for i ← 1 to N do
3: Predict xi by the ensemble classifier:

ȳi ← sign(
∑m

j=1 w
(t−1)
j H (t−1)

j (xi));
4: end for
5: for j ← 1 to m do
6: Calculate the error �

(t)
j for classifier H (t−1)

j on D(t);
7: Update weight of individual classifiers:

w
(t)
j ← (1− �

(t)
j)w

(t−1)
j ;

8: end for
9: Remove classifiers with weights less than θ :

H(t)← H(t−1)\{H (t−1)
j |w(t)

j < θ};
10: m ← |H(t)|;
11: Create new individual classifier:

H ← Under Bagging(D(t), T0);
12: m ← m + 1;
13: H(t)← H(t) ∪ H ;
14: w

(t)
m ← 1;

Output: Ensemble classifier set H(t), weight of individual
classifiers w(t), number of individual classifiers m, predic-
tion ȳ.

Algorithm 3 UnderBagging
Input: Data D = {xi ∈ X , yi ∈ Y}, i = 1, . . . , N , the number

of positive samples Np , the number of negative samples
Nn , minimal ensemble size T0.

1: Ns ← min(Nn , Np);
2: T = max(T0, �max(Nn, Np)/Ns�);
3: for t ← 1 to T do
4: Dp ← Bootstrap Ns positive samples;
5: Dn ← Bootstrap Ns negative samples;
6: ht ← BaseLearner({Dp,Dn});
7: end for

Output: Classifier H (x) = sign(
∑T

t=1 ht (x));

with the classifier weights w(t)

sign

⎛
⎝

m∑
j=1

w
(t)
j H (t)

j (x)

⎞
⎠ . (3)

The chunk training process of ACDWM is shown in
Algorithm 2. The prediction of the data in the current chunk by
the ensemble classifier is shown in lines 2–4. Then, the error
of each individual classifier in the ensemble is calculated and
used to update its weight in lines 5–8. After the weight update,
the classifiers with a weight lower than θ are removed in
lines 9–10. Finally, a new classifier is created in the ensemble
and its weight is initialized in lines 10–14. In ACDWM,
we use UnderBagging as the learner to train imbalanced
data, as shown in Algorithm 3. In each bagging iteration,

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2769

Algorithm 4 SUB_Train
Input: Training set D, pool size Q, subsampling size k.
1: Dp ← Positive samples in D;
2: Dn ← Negative samples in D;
3: for q ← 1 to Q do
4: if |Dp| < |Dn| then
5: D	p ← Take all samples from Dp;
6: D	n ← Take k samples from Dn ;
7: else
8: D	p ← Take k samples from Dp;
9: D	n ← Take all samples from Dn ;

10: end if
11: hq ← BaseLearner({D	p,D	n});
12: end for
Output: Classifier pool H = {h1, . . . , hQ }.

we conduct undersampling on the majority class to make the
training data balanced. The ensemble size T of UnderBagging
is set by �max(Nn , Np)/Ns�, which means that T increases
as does the extent of imbalance. If the imbalance ratio is
higher, the ensemble size of UnderBagging is larger, to ensure
that each majority class sample has a certain probability of
being involved in the training process. We also set a minimal
ensemble size T0 to ensure that the ensemble size has a
minimal value if the training data are relatively balanced.

Compared with DWM, the ACDWM technique of process-
ing the imbalanced data stream chunk-by-chunk is more stable,
as the problem of class imbalance can be solved within the
chunk. That is, instead of creating a new classifier based on the
classification result on a single classifier, ACDWM creates a
new classifier for each chunk to learn the new concept in time.
Besides, in DWM, the weights are reduced by a fixed parame-
ter β and reduced again after normalization. Instead, ACDWM
reduces the weight based on the performance without any
normalization. Thus, a classifier in ACDWM can last longer,
and thus contribute to the prediction for longer, if the current
concept is like that when the classifier is created. Both the
Learn++ framework [4], [38] and ACDWM create classifiers
for each chunk and use the testing error on the current chunk
to adjust the weights. However, the Learn++ framework uses
a time-decay function σ to reduce the weights of the classifiers
trained on the past chunks. This σ depends on two free
hyperparameters a and b, where different values of these will
produce diverse results. In ACDWM, the weight reduction
depends only on the performance of the classifiers without
free parameters. Furthermore, in the Learn++ framework,
the weights depend not only on the current chunk but also
depend on all the chunks from when the classifier was created
up until the current chunk. Under these circumstances, bias
may be produced. Specifically, if one classifier shows good
prediction ability on its created chunk, it will continuously
receive higher weights in the following several chunks. If the
concept changes, the classifier with high weight but trained
on the old concept will hinder the prediction on the new
concept. In addition, the Learn++ framework keeps all the
classifiers in the ensemble over time. This increasing number
of classifiers will aggravate the computational burden if the
algorithm runs on an extremely long or lifelong data stream

Algorithm 5 SUB_Variance
Input: Classifier pool H = {h1, . . . , hQ }, testing set St =
{x1, . . . , xnt }, ensemble size T , pool size Q, number of
simulations P .

1: for q ← 1 to Q do
2: for i ← 1 to |St | do
3: oqi ← sign(hq(xi));
4: end for
5: end for
6: for i ← 1 to |St | do
7: for p← 1 to P do
8: I ← Randomly select T classifiers;
9: rp ← sign(

∑
t∈I ot i);

10: end for
11: vi = V ar(r);
12: end for
Output: The prediction variance vector v.

because it needs to evaluate all stored classifiers on the current
chunk to reassign their weights. In contrast, ACDWM removes
the outdated and ineffective classifiers, thus greatly increasing
the computational efficiency.

C. Adaptive Chunk Size Selection

When the data stream is imbalanced, the classifier trained
from the imbalanced data chunk may be unstable because the
limited minority class data do not represent the true distri-
bution. If an unstable classifier is adopted in the ensemble,
the overall performance of the ensemble classifier cannot be
guaranteed even if weight adjustment techniques are utilized.
Under these circumstances, a straightforward solution is to
increase the chunk size until the number of samples in the
chunk is enough to produce a classifier that affords stable
predictions. Thus, one can incrementally create new classifiers
and compare their validation error to determine a proper chunk
size. However, as the chunk size increases, the validation error
may continuously decrease simply because the training set
becomes larger. Therefore, instead of measuring a validation
error, we measure the stability by the variance of predictions
of the chunks of different sizes and then select the appropriate
chunk size for training. To this end, the proposed adaptive
chunk size selection module in ACDWM adaptively compares
the stability of the classifier trained on the current chunk
and that trained on the enlarged chunk that includes a few
more samples from the data stream. If the classifier obtained
from the latter enlarged chunk is much more stable, ACDWM
replaces the current chunk with the enlarged chunk and con-
tinues the comparison. When there is no significant stability
increase, ACDWM terminates and the current chunk is used
for training individual classifiers in the ensemble.

The stability of a classifier is measured by prediction
variance. We propose a special algorithm call subunderbag-
ging (SUB) to calculate the prediction variance on some
testing data, as shown in Algorithms 4 and 5. This algorithm
conducts undersampling on the majority class and obtains a
relatively balanced training set to build classifiers. This process
repeats Q times to create a classifier pool. For each testing
sample x, T classifiers randomly selected from the pool are

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2770 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

combined to obtain the ensemble prediction. We get P pre-
dictions for each test sample x, and the different combination
of the T classifiers and the variance of P predictions can be
calculated. It can be shown by Theorem 1 that the predictions
generated by SUB are normally distributed [39].

Theorem 1 [39]: Let Zi be the iid sample drawn from dis-
tribution FZ and let UN,kN ,T be an incomplete, infinite-order
U-statistic with kernel hkN . Let θkN = EhkN (Z1, . . . , ZkN),
such that Eh2

kN
(Z1, . . . , ZkN) ≤ C < ∞ for all n and some

constant C , and let lim N
T = α. Then, as long as lim kN

N = 0
and lim cov(hkN (Z1, . . . , ZkN), hkN (Z1, Z 	2, . . . , Z 	kN

)) �= 0,
UN,kN ,T is asymptotic normal.

As in [39], when a modified bagging algorithm takes kN

samples in each round with the ensemble size T instead of
bootstrapping all samples, the ensemble prediction

p(x) = 1

T

T∑
i=1

Lx,kN

(
(Xi1 , yi1), . . . , (XikN

, yikN
)
)

(4)

is incomplete and infinite-order U-statistic [40].
Lx,kN ((Xi1 , yi1), . . . , (XikN

, yikN
)) be the prediction of x

by the tree-based classifier trained on kN randomly selected
samples. According to Theorem 1, the prediction p(x) is
asymptotic normal if the conditions are satisfied. For SUB,
the classifiers are generated by taking kN samples from the
majority class with the size N and all minority class samples
are engaged in training. Thus, the prediction of SUB can be
written as

p	(x) = 1

T

T∑
i=1

Lx,kN

((
X−i1 , y−i1

)
, . . . ,

(
X−ikN

, y−ikN

)
,

(
X+1 , y+1

)
, . . . ,

(
X+M , y+M

))
(5)

where (X−, y−) is the majority class sample and (X+, y+) is
the minority class sample, and M is the size of the minority
class. It is also an incomplete and infinite-order U-statistic
because the minority class samples are fixed and the average
of the function Lx,kN by selecting kN from N in the majority
class satisfies the definition of incomplete and infinite-order
U-statistic [39]. Therefore, p	(x) is also a normal distribution
random variable and its variance of P i.i.d. samples can be
investigated with statistical tools.

ACDWM calculates the prediction variances of x on both
the current chunk and the enlarged chunk, denoted as v and v 	,
respectively. As the prediction of SUB is normally distributed,
we can adopt a one-tailed F-test of equality of variances to
determine if v is significantly larger than v 	 [41]. The test
statistic of the F-test is calculated by F = σ 2

A/σ 2
B , where

A = (A1, . . . , Aa) and B = (B1, . . . , Bb) are drawn i.i.d. from
two normal distributions, and σ 2

A and σ 2
B are their variances,

respectively. The test statistic F has an F-distribution with
a − 1 and b − 1 degrees of freedom if the null hypothesis
of equality of variances is accepted. Then, the p-value of F
can be calculated and used to judge whether σ 2

A is obviously
larger than σ 2

B . In our case, σ 2
A = v, σ 2

B = v 	, and a = b = P .
To avoid the prediction variance of a single test sample x
leading to biased results, a set of nt test samples is used
to verify the classifier stability. As the stability is used to
confirm whether there are enough minority class samples, all

Algorithm 6 ACDWM
Input: Number of simulations P , significance level �, win-

dow size d , ensemble size T , forest pool size Q, subsam-
pling size k, testing size nt , minimal ensemble size T0.

1: t ← 1, l ← t ;
2: St ← Randomly select nt minority class samples from

previous stream;
3: H← ∅, w = ∅;
4: while not end of stream do
5: enough← 0;
6: S ← {xt , . . . , xl+d };
7: Hp ← SUB_train(S, Q, k);
8: v← SUB_variance(H,St , T, Q, P);
9: while enough = 0 do

10: l ← l + d;
11: S 	 ← {xt , . . . , xl+d };
12: Hp ← SUB_train(S 	, Q, k);
13: v	 ← SUB_variance(Hp,St , T, Q, P);
14: for i ← 1 to nt do
15: F ← vi/v

	
i ;

16: pi ← The p-value of F by F-test;
17: end for
18: K ←−2

∑
i log(pi);

19: pK ← The p-value of K by Fisher test;
20: if pK < � then
21: v← v	;
22: S = S 	;
23: else
24: H, w ←ACDWM_train(S, H, w);
25: St ← Randomly select nt minority class samples

from S	;
26: enough← 1;
27: t ← l;
28: end if
29: end while
30: end while
Output: Ensemble classifier H (x) = sign(

∑|H|
t=1 wtHt (x));

test samples are taken from the minority class. Thus, a set
of p-values can be obtained by conducting an F-test. As each
p-value is independent of another, we use Fisher’s method
[42] to combine multiple p-values, and the final test statistic
χ2

2nt
= −2

∑nt
i=1 ln(pi) can be obtained, where pi is the

p-value of the F-test on the test sample xi and χ2
2nt

is a
chi-squared distribution with nt degrees of freedom. Therefore,
we can obtain the final p-value from χ2

2nt
. If the p-value is

smaller than a given confidence level �, this means that the
enlarged chunk can produce a more stable classifier.

ACDWM is summarized in Algorithm 6. When d samples
arrive from the data stream to form a data chunk, they are
collected in S as shown in line 6. S is used to obtain the trained
classifier pool Hp by SUB_train, and then, the prediction
variance v can be calculated to represent the stability of
classifier built on S. After that, we continuously increase the
chunk size in the loop in lines 9–29. S 	 is the chunk enlarged
by d samples, and v	 is the corresponding prediction variance.
The statistical test is conducted in lines 14–19. If the statistic
pK is smaller than the significance level � in line 20, it means

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2771

that the prediction variance of the classifiers trained on the
enlarged chunk is much smaller, and thus, the loop continues.
Otherwise, we use the chunk S to train a new classifier by
ACDWM_train in line 24. Finally, the output of Algorithm 6
is the weighted ensemble classifier constructed by H and w.

The computational cost of the chunk size selection part in
ACDWM has two main parts: SUB_train and SUB_variance.
SUB_train trains Q classifiers by BaseLearner on train-
ing set D. Its computational cost is O(QLtr (|D|)), where
Ltr (|D|) is the cost of training |D| samples by BaseLearner .
SUB_variance randomly selects T classifiers from Q repeated
by P times with different permutations for each testing sample.
It can be performed by first predicting each testing sample
with all Q classifiers in lines 1–5 of Algorithm 5 and then
randomly selecting T from Q classifiers by P times in lines
6–10 of Algorithm 5. The computational cost is O(QLte(nt)+
P QT nt), where Lte(nt) refers to the testing cost for nt testing
samples by a trained classifier. The second term is the addi-
tion operation performed P QT nt times. Therefore, the total
computational complexity for one iteration of checking is
O(QLtr (|D|)+ QLte(nt)+ P QT nt). Most of computational
cost is therefore associated with the first two terms, i.e., the
training and testing of BaseLearner .

Remarks: The remarks are stated as follows.
1) The subsampling size kN is set slightly larger than N

as suggested in [39]. Therefore, we set the subsampling
size k = √|D| in SUB. As the training data D are
supposed to be imbalanced, k will be slightly larger
than the square root of the majority class size. As k is
small compared with |D|, the computational burden for
SUB to generate Q classifiers is not great. In addition,
the training process of SUB can be easily parallelized.

2) ACDWM is not specifically designed for drift detection
because the chunk-based ensemble methods per se are
able to manage concept drift by adjusting the classi-
fier weights. However, when the concept drift occurs,
ACDWM can also stop increasing the size of the current
chunk because the enlarged chunk contains the samples
from different concepts that will probably increase the
prediction variance of the generated classifier. To explain
further, as the one-tailed F-test of equality between v and
v 	 is only rejected when v > v 	 with confidence level
�, it is not rejected if v 	 is larger. Therefore, when v 	 is
larger, the classifier created by the current chunk will be
regarded as stable, and thus, ACDWM stops increasing
the size of the current chunk.

3) ACDWM can produce a high-quality data chunk for
training stable classifiers on imbalanced data streams
with concept drifts, but this comes at the cost of an
increased computational burden. Therefore, a tradeoff
should be considered when handling high-speed data
stream processing.

IV. EXPERIMENTS

In this section, we empirically compare the proposed
method ACDWM with other state-of-the-art methods for
imbalanced streaming data with concept drift. We also show
the effectiveness of the adaptive chunk selection module in
ACDWM and how it manages concept drifts.

A. Experiment Settings
We select five chunk-based and four online methods to

compare with ACDWM. The compared chunk-based methods
are as follows.

1) Uncorrelated Bagging (UB) [18]: All the positive sam-
ples in previous chunks are stored and combined with
the positive samples in the current chunk. The negative
samples are drawn based on the sampling ratio r , which
is set at 0.5.

2) REA [19]: The minority class samples are stored but
only those that are in the k-nearest neighbors of the
minority class samples in the current chunk that are used.

3) Learn++.NIE [4]: Each chunk is built with a classifier
and these are weighted according to their performance
and a time-decay function.

4) DFGW-IS [20]: The ensemble is composed of classifiers
built on data with feature subspace. The classifiers are
created by importance sampling and weighted according
to the validation error and the distribution distance.

5) DWMIL [21]: The fixed-size-chunk version of
ACDWM.

The chunk size of all chunk-based methods is fixed at 1000.
The compared online methods are as follows.

1) OOB [15]: Oversampling ratio is used as λ in the
Poisson distribution of online bagging.

2) DDM-OCI [14]: The minority class recall is monitored
to detect concept drift.

3) HLFR [16]: Four rates are monitored for drift detection,
and the permutation test is used to confirm the detection.

4) PAUC-PH [17]: Prequential AUC is calculated with the
data stream, and a PH test on PAUC is used to detect
concept drift.

Aside from OOB, these online methods monitor the data
stream with a drift detector, for which OOB is used as the base
online learner. All the parameters of the compared methods are
set at the values suggested in the original literature.

For the parameters of ACDWM, the threshold to remove
the outdated classifier θ is set at 0.001. As discussed in [37],
the value of θ has a negligible influence on the accuracy and
affects only the number of stored classifiers. G-mean error
�gm = 1 − (TPR · TNR)1/2 is chosen as the error function
used in Learn++.NIE and ACDWM, where TPR is the true
positive rate and TNR is the true negative rate. Any other
error functions, such as the F1-score, can also be used as
the error function. For the chunk size selection module in
ACDWM, we set the ensemble size T = 100, the forest
pool size Q = 1000, the number of simulations P = 250,
the significance level � = 0.05, the testing size nt = 10,
and the window size d = 100. Aside from the window
size d , the parameters are better if larger, as this generates
meaningful variance for statistical testing. For each enlarged
chunk, we produce Q trees and select T from them P times
for calculating the variance, where T is the ensemble size and
is arbitrarily set as a large number. Q should be set as several
times of T to ensure that each repeated ensemble has different
combinations. The value of P determines the quality of the
estimated variance and P = 250 is the value adopted in [39]
to show the histogram. The window size d is set at 100, which
is regarded as a small chunk size. The testing size nt is also

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2772 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

used to ensure the reliability of the statistical test of variance.
A small number is enough for Fisher’s method to use for a
combination of the p-values for each testing sample.

Python 3.6 is used as the tool to implement all methods
on all experiments.3 classification and regression tree (CART)
[43] is used as BaseLearner of the individual classifier
for all methods, where the default parameters provided by
sciki t-learn learning library in Python are used [44]. All
experimental results are the averages of ten runs. The test-then-
train strategy is adopted to evaluate the performance of the
methods on each chunk. As the chunk size of ACDWM is not
fixed and online methods are also compared, it is not straight-
forward to compare the accuracy per chunk as shown in [4].
Therefore, we calculate the prequential minority class recall
Reci = T Pi/Pi if Pi < Ni , Reci = T Ni /Ni if Pi > Ni and
the prequential G-mean G-meani = (T Pi/Pi · T Ni/Ni)

1/2,
where T Pi and T Ni are the true positives and true negatives
from the beginning to the i th time step, and Pi and Ni

are the accumulated numbers of positive and negative class
samples [15].

B. Data Sets

In the experiments, six synthetic and two real streaming
data sets are used to evaluate the performance of the proposed
method and other methods as follows.

1) Moving Gaussian [21]: This data set consists of two
Gaussian distributed classes with identity covariance and
two dimensions. The initial coordinates of the mean of
the two classes are [5,0] and [7,0]. They gradually move
to [−5,0] and [−3,0] between the beginning and halfway
through the stream and then move back to the initial
coordinates.

2) Drifting Gaussian [4]: This data set is a linear com-
bination of three Gaussian components where one is
the minority class. The mean and the variance of the
Gaussian components are varying throughout time.

3) SEA [45]: This data set contains three attributes ranging
from 0 to 10. Only the first two attributes are related to
the class that is determined by attr1 + attr2 ≤ α. The
third attribute is treated as noise. The control parameter
α is set at 15 for the first and the last third of the chunks
and 5 for the second third of the chunks.

4) Hyper Plane [46]: In this data set, the gradually
changed concepts are calculated by f (x) = ∑d−1

i=1 ai ·
((xi + xi+1)/xi), where the dimension d = 10 and ai is
used to control the decision hyperplane.

5) Spiral [4]: This data set comprises four spirals rotating
with a size-fixed 2-D window. The position of the spirals
is used to predict the class.

6) Checkerboard [4]: This is a nonlinear XOR classification
problem. The data set is produced by selecting from a
size-fixed window in the rotating checkerboard.

7) Electricity [37]: This data set contains the changes in
electricity price according to the time and demand in
New South Wales, Australia. The class label is deter-
mined by the change of price over the last 24 h.

3The code is available at https://github.com/jasonyanglu/ACDWM

Fig. 1. Two prior drift modes used in the experiments.

TABLE I

INFORMATION OF SIX STREAMING DATA SETS

8) Weather [4]: This data set contains the weather infor-
mation over 50 years in Bellevue and Nebraska, USA.
The task is to predict whether a day is rainy or not.

The synthetic data sets are generated by the concept drift
data generator.4 These data sets contain the different kinds of
real drift and virtual drift, but their prior distribution does
not change a large amount across the stream. To increase
their complexity to be close to the definition of joint concept
drift, we incorporate the prior drift into the data stream by
manually adjusting the imbalance ratio on all data sets with
undersampling. In the experiments, the imbalance ratio is
changed by two prior drift modes [15] as follows.

1) Abrupt Drift: The imbalance ratio is initially set at 0.01.
After half of the data stream, the imbalance ratio sud-
denly changes to 0.99, i.e., the majority class becomes
the minority class with an imbalance ratio of 0.01. The
prequential measures are reset at the position of the
abrupt drift.

2) Gradual Drift: The imbalance ratio is initially set at
0.01. After one-third of the data stream, the imbalance
ratio starts to gradually increase until it reaches 0.99 at
the two-thirds of the data stream. The prequential mea-
sures are reset at the starting and ending positions of the
gradual drift.

The imbalance ratio here refers to the percentage of positive
class samples. To control the imbalance ratio, undersampling is
performed on every 1000 samples in the original data stream.
The majority class is undersampled if the original imbalance
ratio on this chunk is smaller than the assigned imbalance
ratio, and the minority class is undersampled if the assigned
imbalance ratio is smaller than the original imbalance ratio
on this chunk. As the original imbalance ratio of each data
set is different, the drift position after undersampling is also
different. The drift modes are shown in Fig. 1. The information
of the six data sets is summarized in Table I.

C. Experimental Results

1) General Comparison: The prequential G-mean at each
time step in abrupt drift mode is shown in Fig. 2. The reset

4http://users.rowan.edu/ polikar/research/NIE_data/

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2773

Fig. 2. Prequential G-mean performance of each time step in abrupt drift
mode.

of the prequential measure after the abrupt drift is shown
as vertical lines in Figs. 2–5. Generally, ACDWM produces
stable G-mean results for most of the data sets before and
after the abrupt drift. In most of these cases, ACDWM has
better or comparable G-mean performance with DWMIL.
However, it can be observed on the data set Hyper Plane
that DWMIL performs better than ACDWM before the abrupt
drift, while after the drift, ACDWM has more stable and
better G-mean performance than DWMIL. This indicates the
ability of ACDWM to manage prior concept drift. A similar
phenomenon can be observed when compared with DFGW-IS.
In the data sets Drifting Gaussian, Spiral, Checkerboard, and
WeatherDFGW-IS performs better than ADCWM before the
drift but worse after the drift. This indicates that the methods
such as DFGW-IS that save the past minority class samples
suffer from prior drift because the concepts of the minority
and majority classes are switched.

Compared with the performance of DWMIL on the data set
Electricity, ACDWM demonstrates high performance from the
beginning and is superior to DWMIL to the end of the data
stream. ACDWM rapidly determines the proper chunk size
using its adaptive chunk size selection module, while DWMIL
has to buffer the data until reaching the preset chunk size,
which results in that ACDWM learns better than DWMIL. The
results of Learn++.NIE, UB, and REA for these data sets are
not stable. In addition, the online methods rarely produce good
results from highly imbalanced data streams with concept drift.
OOB tends to outperform other drift detection-based online
methods because false detection may lead to frequent model
resetting, which worsens the performance of these methods.

The prequential G-mean on each time step in gradual drift
mode is shown in Fig. 3. In most of the data sets, ACDWM and
DWMIL produce the best results. However, compared with the
experiments in abrupt drift mode, ACDWM does not perform
significantly differently to DWMIL in gradual drift mode. The

Fig. 3. Prequential G-mean performance of each time step in gradual drift
mode.

possible reason for this is that when the class prior is gradually
changed, the adaptive chunk size selection module in ACDWM
is of limited use for classification, as during the gradual drift,
the classes become relatively balanced, and thus, the selection
of the optimal chunk size to collect sufficient minority class
samples is of little utility. Moreover, the adaptive chunk size
selection module tends to select small chunks in this situation,
which performs less well than large chunks when the data in
the chunk are balanced. In summary, ACDWM outperforms
its competitors in most of the cases, and it performs better in
abrupt drift mode than in gradual drift mode.

The prequential minority class recall at each time step in
abrupt drift mode is shown in Fig. 4. Overall, ACDWM and
DWMIL perform well both before and after the abrupt drift.
ACDWM shows more stable minority class recall than does
DWMIL with the data sets Moving Gaussian, Hyper Plane,
and Electricity after the abrupt drift. ACDWM outperforms
DWMIL for the data sets Spiral and Checkerboard before
the abrupt drift and has comparable performance after the
abrupt drift. REA, OOB, and DDM-OCI show high minority
class recall after the abrupt drift with most of the data sets.
This is because they have low minority class recall before the
abrupt drift, which is caused by predicting most of the majority
class samples to the minority class samples. Therefore, they
obtain high minority class recall after the abrupt drift when the
majority class becomes the minority class. However, several
time steps after the abrupt drift, their minority class recall
performances drop greatly because they do not learn the
minority class well.

The prequential minority class recall at each time step in
abrupt drift mode is shown in Fig. 5. ACDWM and DWMIL
show stable performance in all the three stages of the gradual
drift, indicating that these two methods learn well when the
class prior is gradually changing. REA and DFGW-IS are two
typical examples of poor adaption to data sets with gradual

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2774 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Fig. 4. Prequential minority class recall performance of each time step in
abrupt drift mode.

drift. Thus, REA shows high minority class recall on the data
sets SEA, Hyper Plane, and Weather after the ending position
of the gradual drift, but low performance before it, for the same
reason as the abrupt drift case. DFGW-IS performs well before
the ending position of the gradual drift on most of the data
sets but drops significantly after the reset. This is because it is
generally biased toward the minority class. Thus, it struggles
to predict the minority class after the ending position of the
gradual drift. In summary, it can be observed from Figs. 2–5
that ACDWM and DWMIL generate more stable G-mean and
minority class recall than other methods in both prior drift
modes. ACDWM shows better performance than DWMIL in
abrupt drift mode and has comparable performance in gradual
drift mode on both G-mean and minority class recall.

The numerical results are shown in Tables II–V. The results
are obtained by the final-step prequential performance. The
average rank is calculated and shown at the bottom of each
table. The one-tailed Nemenyi test [47] is used to determine
if the ranks of two methods are significantly different, with
the boldface indicating the best result. The bracket in the last
row shows the p-value of the Nemenyi test between its rank
and the first rank, and the underline indicates the statistical
significance at a confidence level of 0.05.

The results of prequential G-mean are shown in
Tables II and III. For the data sets in abrupt drift mode,
ACDWM performs best on all data sets, with DWMIL ranking
second. According to the average rank, ACDWM significantly
outperforms all the other methods except DWMIL. For the
results in gradual drift mode shown in Table III, DWMIL
achieves the best results in four examples, while ACDWM
does so in three examples and REA in one example. However,
the average rank shows that DWMIL and ACDWM have the
same rank. In contrast to the results for abrupt drift mode,
the performance of ACDWM is comparable with that of
DWMIL in gradual drift mode, which means that the adaptive
chunk size selection module is more effective in abrupt drift

Fig. 5. Prequential minority class recall performance of each time step in
gradual drift mode.

mode than that in gradual drift mode; in the latter, ACDWM
seems to degenerate back to DWMIL.

We also show the prequential minority class recall
in Tables IV and V. For the data sets in abrupt drift mode,
ACDWM and REA are both ranked the first in three examples.
The good minority class recall of REA is due to its accumula-
tion of minority class samples and the use of nearest neighbors
to select from the stored set. Although REA and ACDWM
both win three times, ACDWM gets higher average rank. For
the results in gradual drift mode shown in Table V, ACDWM
achieves the best results in three examples and also has the
best average rank. To sum up, ACDWM performs better in
G-mean than in minority class recall. One possible reason for
this is that the error function used in ACDWM is G-mean
instead of minority class recall. However, ACDWM still ranks
well in minority class recall.

2) Effectiveness of Adaptive Chunk Size Selection: In this
section, we demonstrate the effectiveness of our adaptive
chunk size selection module in ACDWM. Thus far, ACDWM
is the first chunk size selection method for ensemble methods
processing imbalanced streaming data. There is no simi-
lar method with the same purpose that is comparable to
ACDWM. We therefore compare ACDWM with the fixed-
size-chunk methods and several adaptive window methods.
After the chunk size is determined, the samples in the
chunk will be trained and predicted by DWMIL, which is
the fixed-size-chunk version of ACDWM. Fixed Chunk 100
(FC100) and Fixed Chunk 1000 (FC1000) adopt the strategy
by fixing the chunk size at 100 and 1000. When the chunk
only consists of one class, the current chunk is merged with
the next chunk until there are two classes present in the merged
chunk. Fixed minority (FM) buffers the incoming data until
a fixed number of minority class samples, which is set at 20,
is achieved. ADWIN [36] and PERM [30] are the concept
drift detection methods. All the parameters are used with the
suggested values in the literature. A maximum chunk size is

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2775

TABLE II

PERFORMANCE OF FINAL STEP G-MEAN OF DATA SETS IN ABRUPT DRIFT MODE

TABLE III

PERFORMANCE OF THE FINAL STEP G-MEAN OF DATA SETS IN GRADUAL DRIFT MODE

TABLE IV

PERFORMANCE OF THE FINAL-STEP MINORITY CLASS RECALL OF DATA SETS IN ABRUPT DRIFT MODE

TABLE V

PERFORMANCE OF THE FINAL-STEP MINORITY CLASS RECALL OF DATA SETS IN GRADUAL DRIFT MODE

set at 1000 to avoid the chunk continuously growing if no drift
is detected.

Tables VI and VII show the result of a Wilcoxon
signed-rank test [48] between ACDWM and DWMIL with
different chunk size selection methods on the eight data sets,
in abrupt and gradual drift modes. The test measures the differ-
ence between the performances of two methods in processing
multiple data sets. The sum of ranks of each method is
calculated by R+ =∑

di>0 rank(|di |)+(1/2)
∑

di=0 rank(|di |)
and R− = ∑

di<0 rank(|di |) + (1/2)
∑

di=0 rank(|di |), where
R+ is the rank sum of ACDWM and R− is the rank sum of the
compared method. By investigating the smaller value between
R+ and R−, we can obtain the p-value that indicates the

significance level of the superiority, namely the extent to which
the adaptive chunk size selection improves the performance
of the size-fixed methods and other sliding window methods
on the imbalanced data stream with concept drift.

The test results of data sets in abrupt drift mode are shown
in Table VI. The underline indicates the statistical significance
at a confidence level of 0.05. All R+ are larger than R−
in Table VI, which indicates that the adaptive chunk selection
module in ACDWM is better than the other methods for
determining the chunk size for imbalanced streaming data
with concept drift. In particular, ACDWM shows signifi-
cant improvements on FC1000 and PERM in G-mean, and
ADWIN and PERM in positive class recall because it performs

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2776 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Fig. 6. Average number of classifiers kept in the ensemble of ACDWM in abrupt drift mode.

TABLE VI

G-MEAN RESULT OF WILCOXON SIGNED-RANK TEST FOR COMPARING

ACDWM WITH OTHER CHUNK SIZE SELECTION METHODS ON DATA

SETS IN ABRUPT DRIFT MODE

TABLE VII

G-MEAN RESULT OF WILCOXON SIGNED-RANK TEST FOR COMPARING

ACDWM WITH OTHER CHUNK SIZE SELECTION METHODS ON DATA
SETS IN GRADUAL DRIFT MODE

best at processing all data sets in abrupt drift mode. The
test results of data sets in gradual drift mode are shown
in Table VII. ACDWM shows ranks higher than all methods
except FC1000 in G-mean, where it shows a comparable result.
It is worth noting that none of the test results in Table VII are
significant (p-value less than 0.05), and it can be observed
that the p-values in Table VII are generally larger than that
in Table VI. Therefore, it is again seen that ACDWM performs
better in abrupt drift mode than in gradual drift mode. This is
because ACDWM is designed for processing imbalanced data
streams and can thus rapidly adapt to the abrupt drift when
the minority class and the majority class switch roles. For
gradual drift, the data stream tends to be relatively balanced
for some time, and the arbitrary chunk size for balanced data
stream is more likely to produce stable results, meaning that
the advantages of ACDWM are not obvious in this situation.

From this experiment, it can be verified that the methods
with a size-fixed chunk, i.e., FC100 and FC1000, are in
some cases able to produce better results because the best
chunk-size may exist for each data set within some time
interval; some data sets fit small chunk and some other fit
large chunk. However, this is unknown unless repeatedly trying
the chunk size as a tuning parameter. This explanation can
also be applied to the results of the ADWIN and PERM drift
detection methods because they occasionally produce good
results, e.g., if the drifts of a data set are successfully detected
and the chunk is able to produce stable classifiers. However,
in some other cases, it is likely that the classifier created on
the current chunk is not stable when the drift is detected.
Therefore, although ACDWM does not produce the best results

in every case, the results deriving from its chunk size selection
mechanism are promising for most situations.

3) Effectiveness of Drift Reaction: To show how the weight
decay mechanism works in ACDWM, we plotted the average
number of classifiers kept in the ensemble over ten runs
in Fig. 6. The reaction to the prior drift can be observed in the
data sets Drifting Gaussian and SEA. For Drifting Gaussian,
the number of classifiers continuously increases until around
time step 36 000, which is the abrupt drift point as shown
in Fig. 2. After the drift, the number of classifiers decrease
to approximately 6 and then increases again. For the data set
SEA, the decrease begins approximately at time step 18 000,
which is also when the abrupt prior drift occurs. The decrease
is also steep, which means that several classifiers are removed
at the same time; after this, the number of classifiers increases
again. From these observations, it is seen that ACDWM does
not react to every prior drift case. If the prior drift does
not influence the performance of the classifier, ACDWM will
remain unchanged. For the data sets Moving Gaussian, Hyper
Plane, Spiral, and Checkerboard, it can be found that the
number of classifiers is not stable. This is because the posterior
drift occurs continuously in these data sets. Thus, the number
of classifiers kept in the ACDWM is adjusted frequently to
adapt to the changes. This experiment shows that the weight
adjustment mechanism of ACDWM can also cope well with
joint concept drift.

4) Computational Time Analysis: The running times of
ACDWM with various parameters are shown in Fig. 7, com-
pared with the other chunk size selection methods for the data
set Drifting Gaussian in abrupt drift mode. When tuning one
parameter, other parameters are set at the values in Section IV-
A. It can be observed that the running time of FC1000 is the
lowest because it selects the size-fixed chunk for training. The
computational costs of ADWIN and PERM are much higher:
ADWIN needs to check every split on a sequence for every
incoming data, while PERM is like ACDWM in that it needs
to build a set of classifiers on samples with different permuta-
tions. However, each classifier built by PERM is an ensemble
of trees that cannot be reused because the training data change
at each permutation. In contrast, ACDWM only needs to train
a pool of individual trees and randomly combines them for
its prediction variance test. The running time of ACDWM
linearly increases as Q increases and stabilizes when the other
parameters increased. This observation is consistent with the
computational analysis in Section III-C. Training Q classifiers
is most expensive, while inference with random permutation
has a minimal influence on the computational cost.

5) Parameter Sensitivity: The experiments of parameter
sensitivity with the data sets in abrupt drift mode are shown

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ACDWM FOR IMBALANCED DATA STREAMS WITH CONCEPT DRIFT 2777

Fig. 7. Running time of ACDWM with different parameters compared with other chunk size selection methods on the data set Drifting Gaussian in abrupt
drift mode.

Fig. 8. Performance of ACDWM on final-step G-mean with different values of parameters in abrupt drift mode.

in Fig. 8. Each parameter is tuned, while the others are set at
the values in Section IV-A. The results are the average of ten
repeated runs. It can be seen that the forest pool size Q does
not improve the G-mean performance as it increases because
Q only determines how many trees are generated in total.
As the number of simulations P increases from 50 to 100 and
the testing size nt increases from 5 to 20, the G-mean perfor-
mance slightly increases and then stabilizes. This is because
the small P and nt values may lead to unreliable statistical test
results for selecting proper chunk size. For the ensemble size
T , it can be observed that G-mean decreases as T increases
from 500 to 1000. When T is set as 1000, which is equal
to the forest pool size Q, each ensemble takes all individual
classifiers, and thus, P times simulations have identical results.
In this case, the selection of chunk size does not enhance
the creation of stable classifiers. Therefore, it is appropriate
to set T at a small fraction of Q. In summary, ACDWM is
not sensitive to the selection of the parameters, and the sug-
gested parameters in Section IV-A can generally produce good
results.

V. CONCLUSION

Concept drift and class imbalance are two inevitable prob-
lems with learning from data streams, which must be dealt
with for data to be practically useful. In this article, we propose
and develop the use of ACDWM to solve the problem of
learning from imbalanced data streams with concept drift.
ACDWM creates an individual classifier for each chunk and
weights these according to their performance on the current
chunk. Thus, a classifier trained recently or on a similar con-
cept as the current chunk will receive a high weighting in the
ensemble to assist with prediction. In the meantime, ACDWM
is able to select the proper chunk size, which removes the
problems inherent to the use of fixed chunk sizes. ACDWM
adaptively compares the stability of the classifier trained on
the current chunk with that of the enlarged chunk until there
is no significant stability increase. The stability is measured
by the variance of normally distributed predictions produced
by a modified bagging algorithm. Experiments on the data sets
with joint concept drift have shown that ACDWM outperforms
its counterparts and the adaptive chunk size selection module
is effective.

REFERENCES

[1] J. Gama, I. V. Z. E. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM Comput.
Surv., vol. 46, no. 4, p. 44, Apr. 2014.

[2] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” IEEE Comput. Intell. Mag., vol. 10,
no. 4, pp. 12–25, Nov. 2015.

[3] C. Chen, Y. Wang, J. Zhang, Y. Xiang, W. Zhou, and G. Min, “Statistical
features-based real-time detection of drifted twitter spam,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 4, pp. 914–925, Apr. 2017.

[4] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 10, pp. 2283–2301, Oct. 2013.

[5] T. R. Hoens and N. V. Chawla, “Learning in non-stationary environments
with class imbalance,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining. 2012, pp. 168–176.

[6] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 10, pp. 4802–4821, Oct. 2018.

[7] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance learning and
its applications in fault detection,” Int. J. Comput. Intell. Appl., vol. 12,
no. 04, 2013, Art. no. 1340001.

[8] J. L. Lobo, I. Laña, J. Del Ser, M. N. Bilbao, and N. Kasabov, “Evolving
spiking neural networks for online learning over drifting data streams,”
Neural Netw., vol. 108, pp. 1–19, Dec. 2018.

[9] P. R. L. Almeida, L. S. Oliveira, A. S. Britto, and R. Sabourin,
“Adapting dynamic classifier selection for concept drift,” Expert Syst.
Appl., vol. 104, pp. 67–85, Aug. 2018.

[10] H. M. Gomes et al., “Adaptive random forests for evolving data stream
classification,” Mach. Learn., vol. 106, nos. 9–10, pp. 1469–1495, 2017.

[11] S. Mohamad, A. Bouchachia, and M. Sayed-Mouchaweh, “A bi-criteria
active learning algorithm for dynamic data streams,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 1, pp. 74–86, Jan. 2018.

[12] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[13] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive modeling
on imbalanced domains,” ACM Comput. Surv., vol. 49, no. 2, p. 31,
Nov. 2016.

[14] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao,
“Concept drift detection for online class imbalance learning,” in Proc.
Int. Joint Conf. Neural Netw., Dallas, TX, USA, Aug. 2013, pp. 1–10.

[15] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 5, pp. 1356–1368, May 2015.

[16] S. Yu and Z. Abraham, “Concept drift detection with hierarchical
hypothesis testing,” in Proc. SIAM Int. Conf. Data Mining, Houston,
TX, USA, 2017, pp. 768–776.

[17] D. Brzezinski and J. Stefanowski, “Prequential AUC for classifier evalu-
ation and drift detection in evolving data streams,” in Proc. 3rd Int. Conf.
New Frontiers Mining Complex Patterns. Nancy, France: Springer, 2014,
pp. 87–101.

[18] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for
mining concept-drifting data streams with skewed distributions,” in
Proc. SIAM Int. Conf. Data Mining, Minneapolis, MN, USA, 2007,
pp. 3–14. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.
9781611972771.1

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

2778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

[19] S. Chen and H. He, “Towards incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolving Syst., vol. 2, no. 1, pp. 35–50, 2011.

[20] K. Wu, A. Edwards, W. Fan, J. Gao, and K. Zhang, “Classifying imbal-
anced data streams via dynamic feature group weighting with importance
sampling,” in Proc. SIAM Int. Conf. Data Mining, Philadelphia, PA,
USA, 2014, pp. 722–730.

[21] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Dynamic weighted majority for
incremental learning of imbalanced data streams with concept drift,”
in Proc. 26th Int. Joint Conf. Artif. Intell. Melbourne, VIC, Australia:
AAAI Press, Aug. 2017, pp. 2393–2399.

[22] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Inf. Fusion,
vol. 37, pp. 132–156, Sep. 2017.

[23] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on
ensemble learning for data stream classification,” ACM Comput. Surv.,
vol. 50, no. 2, p. 23, 2017.

[24] S. Wang, L. L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in Proc. IEEE Symp. Comput. Intell. Ensemble
Learn. (CIEL), Apr. 2013, pp. 36–45.

[25] A. Ghazikhani, R. Monsefi, and H. S. Yazdi, “Recursive least square
perceptron model for non-stationary and imbalanced data stream classi-
fication,” Evolving Syst., vol. 4, no. 2, pp. 119–131, 2013.

[26] S. Wang, L. L. Minku, and X. Yao, “Dealing with multiple classes in
online class imbalance learning,” in Proc. 25th Int. Joint Conf. Artif.
Intell. New York, NY, USA. IJCAI/AAAI Press, 2016, pp. 2118–2124.

[27] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in Proc. 7th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA,
2001, pp. 359–364.

[28] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Proc. InBrazilian Symp. Artif. Intell. São Luís, Brazil:
Springer, 2004, pp. 286–295.

[29] H. Wang and Z. Abraham, “Concept drift detection for streaming data,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Killarney, Ireland,
Jul. 2015, pp. 1–9.

[30] M. Harel, K. Crammer, R. El-Yaniv, and S. Mannor, “Concept drift
detection through resampling,” in Proc. 31st Int. Conf. Mach. Learn.
Beijing, China, 2014, pp. 1009–1017.

[31] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Mach. Learn., vol. 90, no. 3, pp. 317–346, 2013.

[32] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, “Online ensemble
learning of data streams with gradually evolved classes,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 6, pp. 1532–1545, Jun. 2016.

[33] S. Chen and H. He, “SERA: Selectively recursive approach towards
nonstationary imbalanced stream data mining,” in Proc. Int. Joint Conf.
Neural Netw., Atlanta, GA, USA, 2009, pp. 522–529.

[34] S. Ren, B. Liao, W. Zhu, Z. Li, W. Liu, and K. Li, “The gradual
resampling ensemble for mining imbalanced data streams with concept
drift,” Neurocomputing, vol. 286, pp. 150–166, Apr. 2018.

[35] B. Mirza, Z. Lin, and N. Liu, “Ensemble of subset online sequential
extreme learning machine for class imbalance and concept drift,” Neu-
rocomputing, vol. 149, pp. 316–329, Feb. 2015.

[36] A. Bifet and R. Gavaldà, “Learning from time-changing data with adap-
tive windowing,” in Proc. SIAM Int. Conf. Data Mining, Minneapolis,
MN, USA, 2007, pp. 443–448.

[37] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An ensem-
ble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, Dec. 2007.

[38] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[39] L. Mentch and G. Hooker, “Quantifying uncertainty in random forests
via confidence intervals and hypothesis tests,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 841–881, 2016.

[40] E. W. Frees, “Infinite order U-statistics,” Scand. J. Statist., vol. 16, no. 1,
pp. 29–45, 1989.

[41] G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed. Ames,
IA, USA: Iowa State Univ. Press, 1989.

[42] R. A. Fisher, “Statistical methods for research workers,” in Break-
throughs in Statistics. Springer, 1992, pp. 66–70.

[43] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[44] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[45] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, San Francisco, CA, USA, 2001, pp. 377–382.

[46] X. Zhu. (2010). Stream Data Mining Repository. [Online]. Available:
http://www.cse.fau.edu/~xqzhu/stream.html

[47] P. Nemenyi, “Distribution-free multiple comparisons,”
Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, 1963.

[48] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

Yang Lu (S’13–M’19) received the B.Sc. and M.Sc.
degrees in software engineering from the University
of Macau, Macau, China, in 2012 and 2014, respec-
tively, and the Ph.D. degree in computer science
from Hong Kong Baptist University, Hong Kong,
in 2019.

He is currently an Assistant Professor with the
Department of Computer Science, School of Infor-
matics, Xiamen University, Xiamen, China. He is
also a Research Assistant with the Department of
Computer Science, Hong Kong Baptist University.

His current research interests include imbalanced data learning, clustering,
ensemble learning, and online learning.

Yiu-Ming Cheung (SM’06–F’18) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

He is currently a Full Professor with the Depart-
ment of Computer Science, Hong Kong Baptist Uni-
versity, Hong Kong. His current research interests
include machine learning, pattern recognition, visual
computing, and optimization.

Dr. Cheung is a fellow of IET, British Computer
Society (BCS), and Royal Society of Arts (RSA) and

a Distinguished Fellow of International Engineering and Technology Institute
(IETI). He is the Founding Chair of the Computational Intelligence Chapter of
the IEEE Hong Kong Section and the Chair of the Technical Committee
on Intelligent Informatics of the IEEE Computer Society. He serves as an
Associate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS, the IEEE TRANSACTIONS ON CYBERNETICS,
Pattern Recognition, Knowledge and Information Systems, and Neurocomput-
ing, to name a few.

Yuan Yan Tang (S’88–M’88–SM’96–F’04–LF’16)
received the B.Sc. degree in electrical and computer
engineering from Chongqing University, Chongqing,
China, the M.Eng. degree in electrical engineering
from the Beijing Institute of Posts and Telecommu-
nications, Beijing, China, and the Ph.D. degree in
computer science from Concordia University, Mon-
treal, QC, Canada.

He is currently a Chair Professor with the Fac-
ulty of Science and Technology, UOW College
Hong Kong/Community College of City University,

Hong Kong, and also an Emeritus Chair Professor with the Faculty of Science
and Technology, University of Macau, Macau, China. He is also a Professor,
an Adjunct Professor, and an Honorary Professor with Chongqing Univer-
sity, Concordia University, and Hong Kong Baptist University, Hong Kong,
respectively. He has authored or coauthored over 400 academic articles, over
25 monographs, books, and book chapters. His current research interests
include wavelets, pattern recognition, and image processing.

Dr. Tang is an International Association for Pattern Recognition (IAPR)
Fellow. He was the General Chair, the Program Chair, and a committee
member of many international conferences. He is the Founder and the Chair
of the Pattern Recognition Committee of the IEEE TRANSACTIONS ON
SYSTEMS, MAN, AND CYBERNETICS. He is the Founder and the General
Chair of the series International Conferences on Wavelets Analysis and Pattern
Recognition. He is the Founder and the Chair of the Macau Branch of the
IAPR. He is the Founder and the Editor-in-Chief of the International Journal
of Wavelets, Multiresolution, and Information Processing and an Associate
Editor for several international journals.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 06,2020 at 00:37:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

