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a b s t r a c t

SKM-SNP, SNP markers detection program, is proposed to identify a set of relevant SNPs for the association
between a disease and multiple marker genotypes. We employ a subspace categorical clustering algorithm
to compute a weight for each SNP in the group of patient samples and the group of normal samples, and use
the weights to identify the subsets of relevant SNPs that categorize these two groups. The experiments on
both Schizophrenia and Parkinson Disease data sets containing genome-wide SNPs are reported to demon-
strate the program. Results indicate that our method can find some relevant SNPs that categorize the disease
samples. The online SKM-SNP program is available at http://www.math.hkbu.edu.hk/~mng/SKM-SNP/
SKM-SNP.html.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Variations (e.g., insertions, deletions, and mutations) in the DNA
sequences of humans have a major impact on genetic diseases and
phenotypic differences. Single nucleotide polymorphism (SNP) is
one of the most common DNA sequence variation occurring when
a single nucleotide—A, T, C, or G—in the genome (or other shared
sequence) differs between members of species (or between paired
chromosomes in an individual). In SNPs data sets, the association
between a disease and a set of relevant SNPs are investigated. Pa-
tients and normals are often categorized in groups according to
their SNPs. Thousands of SNPs in different regions of chromosomes
are used to describe characteristics of patient/normal samples.

High-dimensional data is a phenomenon in the field of bioinfor-
matics. Above SNP data set is a typical example. Clearly, clustering
of high-dimensional categorical data requires special treatment.
There are two key properties of data sets of such data mining tasks:
high-dimensional and categorical.

To tackle high-dimensional data, some subspace clustering
methods are proposed and studied, see [1] for details. The basic
idea of the methods is to find clusters from subspaces of data in-
stead of the entire data space. In subspace data clustering, each
cluster is a set of objects identified by a subset of dimensions
and different clusters are represented in different subsets of
dimensions. The major challenge of subspace clustering, which
makes it distinctive from traditional clustering, is the simultaneous
determination of both cluster memberships of objects and the sub-
space of each cluster.
ll rights reserved.
Cluster memberships are determined by the similarities of ob-
jects measured with respect to subspaces. According to the ways
that the subspaces of clusters are determined, subspace clustering
methods can be divided into two types. The first type is to find out
the exact subspaces of different clusters [2–8]. The second type is
to cluster data objects in the entire data space but assign different
weights to different dimensions of clusters in the clustering pro-
cess, based on the importance of the dimensions in identifying
the corresponding clusters [9–16,?]. However, all these methods
are developed to handle numerical data sets.

One widely used SNP selection approach for candidate gene
studies is based on potential impact on protein functions or gene
regulations [18–21]. A problem with these methods is that such
biological information is rarely available or still unknown to hu-
man beings. In this paper, we develop SKM-SNP, a SNP markers
detection program, which employ a subspace clustering algorithm
to determine a set of relevant SNPs for the association between a
disease and multiple marker genotypes. We consider that different
SNPs to be categorical dimensions and they make different contri-
butions to identification of (patient or normal) samples in clusters.
The difference of contribution of a SNP (categorical dimension) is
represented as a weight that can be treated as the degree of the
dimension in contribution to the cluster. In subspace clustering,
the decrease of the weight entropy in a cluster implies the increase
of certainty of a subset of dimensions with larger weights in deter-
mination of the cluster. Therefore, in the clustering process, we
simultaneously minimize the within cluster dispersion and the
weight entropy to stimulate more dimensions to contribute to
the identification of a cluster. A formula for computing a dimension
weight is implemented to the clustering process as an additional
step in each iteration, so the cluster memberships of samples and
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the weights of SNPs in each cluster can be obtained
simultaneously.

2. Methods

2.1. The algorithm

SKM-SNP is a new K-mode-type algorithm for soft subspace clus-
tering of high-dimensional categorical data. In this algorithm, we
consider that the weight of a dimension in a cluster represents the
probability of contribution of that dimension in forming the cluster.
The entropy of the dimension weights represents the certainty of
dimensions in identification of a cluster. Therefore, we consider
the K-mode objective function by adding the weight entropy term
to it so that we can simultaneously minimize the within cluster dis-
persion and the weight entropy to stimulate more dimensions to
contribute to the identification of clusters. The SKM-SNP program
is based on the minimization of an objective function (1):
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Here n is the number of samples, k is the number of clusters, m is
the number of SNPs, xj;i is the ith SNP of the jth sample, zl;i is the
ith SNP of the lth center mode, dðzl;i; xj;iÞ is a distance function which
is equal to one if both genotypes zl;i and xj;i are the same, or equal to
zero if they are different, kl;i is the weight of the ith SNP of the lth
center mode, wl;j is the degree of membership of the jth sample to
the lth cluster.

The idea of the minimization of (1) is to partition the samples to
the correct group (to determine wl;j); to find the representatives of
normal and disease groups (to determine zl;i); and to find the rele-
vance of SNPs in each group (to determine kl;i). We note that the
first term in (1) is the sum of the within cluster dispersions and
the second term the weight entropy. The positive parameter c con-
trols the strength of the incentive for clustering on more SNPs. For
detail about subspace clustering for numerical data only, we refer
to the paper [22].

To minimize the objective function in (1), we first initialize the
center modes of genotypes of SNPs randomly and all the weights of
SNPs to 1=m. Afterward we can start an iterative process of parti-
tioning the samples, updating cluster centers modes of genotypes,
and calculating the weights of the SNPs. The iterative loop is re-
peated until the objective function value does not improve. In each
step, we have explicit formulae to handle the computation.

� The partitioning of the sample is given as follows:

wlj ¼
1; if

Pm
i¼1

kli/ðzl;i; xj;iÞ 6
Pm
i¼1

kri/ðzr;i; xj;iÞ 8r;

0; otherwise;
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i.e., when there are more genotypes of a sample consistent with
the representative of a normal/disease group, the sample is as-
signed to that group.

� The center modes zl;i is set to be the genotype aðrÞi if

jfwl;jjxj;i ¼ aðrÞi ;wl;j ¼ 1gjP jfwl;jjxj;i ¼ aðtÞi ;wl;j ¼ 1gj 8t; ð3Þ

where t is an index for the number of possible combination of
genotypes of the ith SNP. Here the SNP genotype of the represen-
tative in the normal/disease group is the most frequent SNP
genotype of the samples in that group.

� The dimension weights can be calculated as follows:

kl;i ¼
exp �Dl;i

c

� �

Pm
t¼1

exp �Dl;t
c

� � where Dl;t ¼
Xn

j¼1

wl;jdðzl;t ; xj;tÞ: ð4Þ

Here the ith SNP weight calculation is based on its relevance with
respect to other SNPs, where the relevance is measured by the
aggregated difference between the SNP genotype of the samples
in the group and that of the corresponding center mode. The input
parameter c is used to control the size of the weights as follows:

(i) c > 0: In this case, according to (4), kli is inversely propor-
tional to Dli. The smaller Dli, the larger kli, the more impor-
tant the corresponding SNP.

(ii) c ¼ 0: kli0 is equal to one, indicating that the index i0 has the
smallest value of Dli0 . The other weights kli for i – i0 are equal
to zero. Each cluster contains only one important dimension.
It may not be desirable for high-dimensional data sets.

(iii) c < 0: In this case, according to (4), kli is proportional to Dli.
The larger Dli, the larger kli. This is contradictory to the origi-
nal idea of dimension weighting. Therefore, c cannot be
smaller than zero.
2.2. Convergency and complexity analysis

The proposed algorithm converges in a finite number of itera-
tions. To divide a data set into k clusters, the number of possible
partitions is finite. We can show that each possible partition W
only occurs once in the clustering process. Assume that
Wh1 ¼Wh2 , where h is the iteration index and h1 – h2. We note
that given Wh, we can compute the minimizer Zh which is indepen-
dent of Kh according to (3). For Wh1 and Wh2 , we have the minimiz-
ers Zh1 and Zh2 , respectively. It is clear that Zh1 ¼ Zh2 since
Wh1 ¼Wh2 . Using Wh1 and Zh1 , and Wh2 and Zh2 , we can compute
the minimizers Kh1 and Kh2 respectively according to (4). It is clear
that Kh1 ¼ Kh2 . Therefore, we obtain

FðWh1 ; Zh1 ;Kh1 Þ ¼ FðWh2 ; Zh2 ;Kh2 Þ:

However, the sequence Fð�; �; �Þ generated by the algorithm is strictly
decreasing. Therefore, the proposed algorithm converges in a finite
number of iterations.

The complexity of the algorithm in each step depends on the
number of SNPs, the number of possible combination of genotypes,
the number of samples and the number of clusters. This is because
it only adds a new step to the K-mode clustering process to calcu-
late the dimension weights of each cluster. The run-time complex-
ity can be analyzed as follows. We only consider the three major
computational steps:

� Partitioning the objects: After initialization of the dimension
weights of each cluster and the cluster centers, a cluster mem-
bership is assigned to each object. This process simply compares
the summation of

Xm

i¼1

kli/ðzl;i; xj;iÞ

in (2) for each object in all k clusters. Thus, the complexity for
this step is OðmnkÞ operations.

� Updating cluster centers: Given the partition matrix W , updat-
ing cluster centers is to find the means of the objects in the same
cluster. Thus, for k clusters, the computational complexity for
this step is OðmnkÞ.
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� Calculating dimensions weights: The last phase of this algo-
rithm is to calculate the dimensions weights for all clusters based
on the partition matrix W and Z. In this step, we only go through
the whole data set once to update the dimensions weights. The
computational complexity of this step is also OðmnkÞ.

If the clustering process needs h iterations to converge, the total
computational complexity of this algorithm is OðhmnkÞ. This shows
that the computational complexity increases linearly as the num-
ber of dimensions, or objects or clusters increases.

2.3. An example

In this subsection, we make use of the following example to
demonstrate the proposed algorithm. In this example, there are
six samples and four SNPs. Below symbols ‘‘A” and ‘‘a” represent
the two alleles. The symbol ‘‘M” refers to the missing percentages
of genotypes.
Sample
 SNP
1
 2
 3
 4
I
 AA
 AA
 M
 Aa

II
 AA
 AA
 Aa
 AA

III
 AA
 AA
 aa
 M

IV
 Aa
 aa
 aa
 aa

V
 aa
 AA
 aa
 aa

VI
 M
 Aa
 aa
 aa
We first initialize the two center modes of genotypes of SNPs,
for example,

z11; z12; z13; z14½ � ¼ ½AA;AA;AA;AA� and z21; z22; z23; z24½ �
¼ ½aa; aa; aa; aa�

We also set the c to be 1 and all the initial weights of SNPs to 1/4.
Next we partition the samples by computing the distance between
the sample and the center modes as in (2):
Sample
 The distance
Center mode 1
 Center mode 2
I
 1/2 (�)
 1

II
 1/4 (�)
 1

III
 1/4 (�)
 3/4

IV
 1
 1/4 (�)

V
 3/4
 1/4 (�)

VI
 1
 1/2 (�)
Here � in the bracket refers to the sample belonging the particular
center mode. Now we can use the partitioning of the samples to cal-
culate Dl;t and then the weights of SNPs as in (4):
SNP
 Dl;i
 kl;i
Center mode
1

Center mode
2

Center mode
1

Center mode
2

1
 0
 2
 0.88
 0.12

2
 0
 2
 0.88
 0.12

3
 3
 0
 0.95
 0.05
Table 1
Clustering accuracy results for different algorithms for Schizophrenia dataset.
4
 2
 0
 0.95
 0.05
Algorithm Clustering accuracy

SKM-SNP 0.6824
K-mode 0.5203
COSA 0.5000
PROCLUS 0.5100
The above results tell us that SNP 1 and SNP 2 are relevant to
the first cluster, while SNP 3 and SNP 4 are relevant to the second
cluster. In the next step, we need to update center mode 1 and cen-
ter mode 2 by using (3):
z11; z12; z13; z14½ � ¼ ½AA;AA;H;H� and z21; z22; z23; z24½ �
¼ ½H;H; aa; aa�

Since there is no dominant category in SNP 3 and SNP 4 for the first
cluster and no dominant category in SNP 1 and SNP 2 for the second
cluster, the category can be assigned arbitrary. Indeed, they are not
relevant SNPs in the clusters. As the partitioning of samples is the
same as before, the algorithm can be stopped and the clustering re-
sults are obtained.
3. Experimental results

3.1. Schizophrenia SNPs data set

In this subsection, we analyze the case/control populations of pa-
tients served in a data set from Genome Research Center, The Univer-
sity of Hong Kong. The data is related to Schizophrenia and is
consisted of 488 cases (patients) recruited from hospitals in Hong
Kong and 520 controls (normal) recruited from the community.
There are 144 SNPs in the data set. Schizophrenia is a serious mental
disorder affecting close to 1% of the population world-wide. Such
disease incurs huge economic burden and human suffering. A large
genetic component has been demonstrated by family, twin and
adoption studies. The mode of inheritance is complex with multiple
genes all contributing to the overall liability of developing the disor-
der. Recent molecular genetic studies have revealed a number of
possible susceptibility loci. By using the genotype data already gen-
erated for the HapMap project [23] based on Asian samples. There
are 144 SNPs on chromosome 3p that are picked by CLUSTAG devel-
oped by Ao et al. [24] making an average marker density of 1 tagging
SNP per 25 kb.

The accuracy measure is used to evaluate the performance of
the clustering algorithm. Objects in a lth cluster are assumed to
be classified either correctly or incorrectly with respect to a given
class of objects. Let the number of correctly classified objects be nl,
we can calculate the clustering accuracy as:

r ¼
Pk

l¼1nl

n
ð5Þ

where n is the total number of objects. Table 1 shows the clustering
accuracy results of different algorithms: SKM-SNP, K-mode [25],
COSA [15] and PROCLUS [3] algorithms. We can see from the table
that the SKM-SNP algorithm is better than the other algorithms. The
focus of our study is to determine the relevant SNPs associated to
the case/control populations. In Fig. 1, we show the weights of SNPs
for the case and control groups. It is clear from the figure that there
are some weights of SNPs for the case and control populations that
are about the same, however, there are some SNPs where they have
significant different patterns of weights.

In Table 2, we show the top ten weights of SNPs in the control
group and their corresponding genotypes distributions where A
and a represent the major and minor alleles. The column under
‘‘M” refers to the missing percentages of genotypes in the group.
As a comparison, we also list the genotypes distribution of the se-
lected SNPs of the case group in Table 2. Similarly, in Table 3, we
show the top ten weights of SNPs in the case group and the corre-
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Fig. 1. The weights of SNPs for Schizophrenia dataset: control population (upper) and case population (lower).

Table 2
The top ten weights of SNPs in the control group and their genotypes distributions for
Schizophrenia dataset.

SNPs Control Case

Weight AA Aa aa M Weight AA Aa aa M

60 0.011 100.0 0.0 0.0 0.0 0.011 89.5 3.5 0.0 7.0
92 0.011 96.8 3.2 0.0 0.0 0.008 74.4 24.4 0.0 1.2
119 0.011 100.0 0.0 0.0 0.0 0.011 89.5 2.4 0.0 8.1
121 0.011 98.4 0.0 0.0 1.6 0.011 91.9 3.4 0.0 4.7
122 0.011 100.0 0.0 0.0 0.0 0.012 93.0 1.2 0.0 5.8
123 0.011 100.0 0.0 0.0 0.0 0.012 93.0 2.3 0.0 4.7
19 0.010 100.0 0.0 0.0 0.0 0.007 66.3 19.7 0.0 14.0
40 0.010 95.3 3.1 0.0 1.6 0.011 89.5 5.8 0.0 4.7
46 0.010 91.9 8.1 0.0 0.0 0.012 95.3 0.0 0.0 4.7
47 0.010 91.9 6.5 0.0 1.6 0.013 97.7 0.0 0.0 2.3

Table 3
The top ten weights of SNPs in the case group and their genotypes distributions for
Schizophrenia dataset.

SNPs Case Control

Weight AA Aa aa M Weight AA Aa aa M

47 0.013 97.7 0.0 0.0 2.3 0.010 91.9 6.5 0.0 1.6
20 0.012 93.0 1.2 0.0 5.8 0.009 90.3 9.7 0.0 0.0
42 0.012 95.3 0.0 0.0 4.7 0.009 90.3 8.1 0.0 1.6
44 0.012 93.0 0.0 0.0 7.0 0.009 91.9 8.1 0.0 0.0
45 0.012 95.3 0.0 0.0 4.7 0.009 90.3 8.1 1.6 0.0
46 0.012 95.3 0.0 0.0 4.7 0.010 91.9 8.1 0.0 0.0
61 0.012 93.0 0.0 0.0 7.0 0.009 87.1 4.8 0.0 8.1
63 0.012 95.3 1.2 0.0 3.5 0.009 90.3 4.9 0.0 4.8
122 0.012 93.0 1.2 0.0 5.8 0.011 100 0.0 0.0 0.0
123 0.012 93.0 2.3 0.0 4.7 0.011 100 0.0 0.0 0.0
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sponding SNPs in the control group for a comparison. We find from
the two tables that there are more missing value categories in the
case population than those in the control population. Two popula-
tions have the four same SNPs (46, 47, 122, 123) in their lists. For
these four SNPs, their genotypes distributions are quite different.
Even we remove the missing value category, their genotypes distri-
butions are also quite different. These results demonstrate that
these four SNPs may associate to the case/control populations.
For the other SNPs (19, 60, 92, 119, 121) in the tables, we can find
the genotypes distributions of two populations are quite different.
Among these five SNPs, the most significant one is 19. Further bio-
logical investigations on the above SNPs can determine their genet-
ic functions and study how they are relevant to the disease.
3.2. Parkinson Disease SNPs data set

The other SNPs data set is the Parkinson Disease genome-wide
SNPs data set downloaded from the Coriell Institute for Medical
Research. The genotyping was performed using the Illumina Infini-
um I and Infinium II assays. The Illumina Infinium I assay asseses
109,365 unique gene-centric SNPs while the Infinium II assay as-
sesses 317,511 haplotype taggings SNPs based upon Phase I of the
International HapMap Project. The Illumina Infinium I and II assays
share 18,073 SNPs in common, so in combination the two assays rep-
resent 408,803 unique SNPs. The genotype data posted consists of
these 408,803 SNPs for 270 individuals with idiopathic Parkinson
Disease (case) and 271 neurologically normal control individuals
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(control). The original data set has two parts: cc (Caucasian controls)
and pd (Parkinson Disease), each of them consists of two sub-parts:
map file and pre file. The whole file of cc contains 271 of the actual
genotypes for Caucasian controls, while the pd contains 270 of the
genotypes for Parkinson Disease patients. Each SNP map file contains
the chromosome, NCBI Build 35 position, marker name, major allele,
minor allele, major allele frequency, minor allele frequency and
number of missing genotypes for the marker; where the frequencies
and number of missing genotypes are based upon the 271/270 indi-
viduals in the datasets. All the pre file (or genotypes file) contains the
individual ID (in the format of ND-XXXX), affectation status (1 for
unaffected, 2 for affected, can also be a class label) followed by unen-
coded allele calls (0 is a missing genotypes) for each genotype in the
order specified within the map file. The alleles are called in forward
orientation according to dbSNP.

We do the data reprocessing as follows: each chromosome will
be a separate file, that is to say, we combine each chromosome of
cc � :pre file and pd � :pre file to one file. For Individual Id, we just
ignore it and for class Label, we read them out and consider them
as the final class label in order to have a reference for clustering
accuracy comparisons. All the remaining genotypes, we combine
every two of them together to make up a SNP. For each list of SNPs,
we compute the allele that appear with the most frequency and la-
bel it as the major in this particular list and all the other alleles will
be the minor. For SNPs that appear with major/major, we label it as
0. For SNPs that with major/minor or minor/major, we label it as 1.
For SNPs that with all the combinations of minors, we label it as 2.
Missing values will be represented as 3. Details of data processing
step can be seen in our webpage at http://www.math.hkbu.edu.hk/
~mng/SKM-SNP/SKM-SNP.html.

Table 4 shows the clustering accuracy results (correctly classi-
fied samples) for 22 chromosomes by using the SKM-SNP program,
compared with traditional K-mode algorithm. We use the most
frequent genotypes in case and control groups to be the initial
modes for the program. The parameter c is tuned in each chromo-
some to obtain the highest accuracy in the test. We find that the
average clustering accuracy of our proposed algorithm is higher
than that of K-mode algorithm which is non-subspace-type [25]
by 3.0%. In the table, we show the computation time of the pro-
posed algorithm, and find that it only takes about a minute to gen-
erate the weights of the SNPs and the clustering results.
Table 4
Clustering accuracy results. The number in the bracket refers to the number of SNPs in
the chromosome.

Chromosome K-mode SKM-SNP

Accuracy Accuracy c Time

1 (31,532) 0.8614 0.9020 2200 45.7
2 (32,706) 0.9150 0.9298 700 47.8
3 (27,691) 0.8152 0.8281 3000 46.4
4 (24,193) 0.7930 0.8262 5000 65.7
5 (24,570) 0.8207 0.8521 500 30.9
6 (26,372) 0.7079 0.8706 1000 39.1
7 (21,382) 0.7560 0.8115 1400 44.8
8 (22,434) 0.7431 0.7523 2200 63.2
9 (19,542) 0.7800 0.8022 7000 40.8
10 (20,007) 0.7283 0.7449 2300 42.9
11 (19,539) 0.7689 0.7911 3000 41.0
12 (19,572) 0.7616 0.7745 2000 48.8
13 (14,123) 0.7264 0.7726 4000 26.5
14 (12,645) 0.6802 0.7061 3400 23.7
15 (11,618) 0.6433 0.6525 2500 31.6
16 (11,767) 0.7006 0.7523 2800 24.7
17 (11,619) 0.6266 0.6266 2000 22.9
18 (12,613) 0.7375 0.7505 2000 26.6
19 (8608) 0.6451 0.6710 2300 23.5
20 (10,375) 0.6451 0.6617 1500 30.2
21 (6612) 0.5749 0.6081 1900 14.2
22 (7071) 0.6118 0.6266 3000 14.9
Because of the curse of dimensionality, we must select impor-
tant and relevant dimensions for clustering and classification in
high-dimensional data sets. Experimental results in [2–
4,14,15,17] have shown that the selection of dimensions is very
important for obtaining good results for high-dimensional numer-
ical data sets in clustering and classification. For categorical data
clustering, the existing k-mode algorithm is not capable in selec-
tion of dimensions. Therefore we expect k-mode algorithm may
not work very well for high-dimensional data sets. However, the
dimensions weighting procedure is incorporated in the proposed
algorithm, we expect that the SKM-SNP method would be a useful
tool for SNP marker selection in the data sets discussed.

In addition, we choose chromosome 2, which has the highest
accuracy as an example to demonstrate the weights of SNPs for
SNP markers detection. Fig. 2 shows the accuracies obtained when
we increase c value from zero. We can see from this figure that
SKM-SNP can get a reasonably good accuracy of 92.98% when c
is between 700 and 1000, 1.5% higher than the traditional K-mode
algorithm (c ¼ 0).

As there are thirty thousands of SNPs, we further filter out a
portion of them to do a detailed analysis. We first filter out those
SNPs whose initial modes or final modes are the same after we
run the SKM-SNP program once. The remaining number of SNPs
is 1887, 5.8% of the original chromosome 2 data set. With this
much smaller data set, we can still obtain a satisfactory accuracy
0 500 1000 1500 2000 2500 3000
0.5

Gamma Value

Fig. 2. Relationship between c and accuracy of all SNPs in chromosome 2 using
SKM-SNP.
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Fig. 3. Relationship between c and accuracy of selected 1887 SNPs in chromosome
2 using SKM-SNP.
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Table 5
The top ten weights of SNPs in the case group and their genotypes distributions for Parkinson dataset.

SNPs Case Control

Weight AA Aa aa M Weight AA Aa aa M

rs7565244 15.55 59.3 35.2 5.5 0.0 4.70 45.8 46.9 7.3 0.0
rs2017444 12.74 56.4 33.3 9.6 0.7 4.40 43.6 43.9 12.5 0.0
rs6736992 12.32 56.3 34.1 9.6 0.0 4.25 43.2 43.9 12.9 0.0
rs353111 11.91 55.6 33.0 8.1 3.3 7.01 44.3 49.1 5.9 0.7
rs6547378 11.15 53.3 37.1 9.6 0.0 5.37 43.9 46.1 10.0 0.0
rs7605630 10.78 54.4 37.8 7.8 0.0 4.86 44.7 46.1 9.2 0.0
rs3731714 10.78 55.9 34.8 9.3 0.0 5.19 42.8 47.2 10.0 0.0
rs935415 10.78 54.4 39.3 6.3 0.0 6.56 41.7 49.1 9.2 0.0
rs1427682 10.43 56.3 37.4 6.3 0.0 4.40 43.9 46.1 10.0 0.0
rs9653591 10.43 54.1 38.5 7.4 0.0 7.50 42.8 50.2 7.0 0.0

Table 6
The top ten weights of SNPs in the control group and their genotypes distributions for Parkinson dataset.

SNPs Control Case

Weight AA Aa aa M Weight AA Aa aa M

rs2306676 14.12 57.2 33.6 9.2 0.0 6.12 45.6 48.5 5.9 0.0
rs10497018 13.21 56.1 34.3 8.5 1.1 5.92 41.9 47.8 9.2 1.1
rs1113958 12.78 55.7 35.8 8.5 0.0 6.76 41.9 48.4 9.3 0.4
rs1364658 12.78 55.7 35.4 8.9 0.0 7.23 39.6 49.6 10.4 0.4
rs6761958 12.36 55.4 37.6 7.0 0.0 5.53 45.9 47.0 6.7 0.4
rs4849987 12.36 55.4 38.0 6.6 0.0 6.12 45.9 47.8 6.3 0.0
rs12987286 12.36 55.4 35.8 8.8 0.0 7.23 39.6 49.6 10.8 0.0
rs2580823 11.95 54.6 38.0 7.4 0.0 6.32 45.9 47.8 6.3 0.0
rs6708081 11.56 55.7 38.7 5.6 0.0 5.92 46.7 48.1 5.2 0.0
rs867014 11.56 56.5 36.5 7.0 0.0 6.12 50.0 44.1 5.9 0.0
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of 91.68% when c is between 25 and 35, 1.3% higher compared with
K-mode of 90.39%, see Fig. 3. Then we apply SKM-SNP program
again for this data set. In Table 5 and Table 6, we show the SNPs
whose weights (the magnitude 10�4) ranking the top ten in the
case and control groups. Their corresponding percentages of geno-
type distributions are also shown in the table where ‘‘A” and ‘‘a”
represent the major and minor alleles. The column under ‘‘M” re-
fers to the missing percentages of genotypes in the groups. We
see from the two tables that the SNPs of the top ten weights are
different in the two groups. These results indicate their subspace
structure of two clusters are different. Based on the weights, we
can identify some relevant SNPs associated with case and control
groups in a data set. Therefore we can further study these SNPs
for disease-related genetic analysis.

Although the cause of Parkinson Disease is still unknown to us,
some of the genetic factors have been discovered. We know that
there are many monogenes cloned or mapped on different chromo-
somes. The first gene to be isolated was PARK1 located in chromo-
some 4, two additional loci PARK3 and PARK4, on chromosome 2
and chromosome 4 respectively have been discovered in 1998
and 1999. Furthermore, four loci on chromosome 1, PARK6,
PARK7, PARK9 and PARK10 have been reported to contain suscep-
tibility genes, see [26] for details. We also find that the above chro-
mosomes which have been reported to be associated with
Parkinson Disease also have relatively high accuracy in SKM-SNP.
These results not only validate the efficiency of our program, but
also demonstrate that SNPs selected by our program associate to
control/case populations. Biologists can further investigate on the
above important SNPs to determine their genetic functions and
study how they are relevant to the Parkinson Disease.
4. Conclusions

In this paper, we have developed SKM-SNP, a new SNP markers
detection method to identify the subset of SNPs. SKM-SNP utilizes
subspace categorical clustering techniques by adding a weight va-
lue to each SNP and includes weight entropy in the objective func-
tion so that each subspace cluster can be formed by several
relevant SNPs that are similar within a cluster and dissimilar
among clusters. This program has been efficiently and successfully
used in real Schizophrenia and Parkinson Disease SNP data sets.
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