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Abstract Composite penalties have been widely used for inducing structured properties in
the empirical risk minimization (ERM) framework in machine learning. Such composite
regularizers, despite their superior performance in grasping structural sparsity properties,
are often nonsmooth and even nonconvex, which makes the problem difficult to optimize.
Proximal average (PA) is a recently proposed approximation technique targeting these regu-
larizers, which features the tractability of implementation and theoretical analysis. However,
current PA-based methods, notwithstanding the promising performance of handling com-
posite penalties against traditional techniques, are either slow in convergence or do not scale
well to large datasets. To make PA an ideal technique for optimizing ERM with composite
penalties, this paper proposes a new PA-based algorithm called IncrePA by incorporating
PA approximation into an incremental gradient framework. The proposed method is a more
optimal PA-based method that features lower per-iteration cost, a faster convergence rate
for convex composite penalties, and guaranteed convergence for even nonconvex composite
penalties. Experiments on both synthetic and real datasets demonstrate the efficacy of the
proposed method in optimizing convex and nonconvex ERM with composite penalties.
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1 Introduction

Empirical risk minimization (ERM) is a fundamental machine learning method that learns a
model byminimizing the average loss taken from the training data. To induce better prediction
performance and introduce prior knowledge about the model, the empirical loss is often
regularized by a penalty function. Based on the specific task, the penalty functions can vary
from smooth functions like squared �2-norm to nonsmooth simple functions like �1-norm.
Composite nonsmooth functions, featuring their capability of inducing a structured sparsity
model, have been intensively utilized in bioinformatics and text mining tasks. However, it is
difficult to efficiently optimize such composite penalty regularizedERMproblems, especially
when confronted with very large datasets.

In general, nonsmooth composite penalties, like overlapping group lasso or graph-guided
lasso, are hard to deal with. One fact is that the proximal gradient method (Beck and Teboulle
2009; Nesterov and Nesterov 2004), which is an effective approach to simple nonsmooth
penalties, is not applied in this case because its crucial proximal mapping step is difficult
to solve. That is, existing simple methods cannot be directly applied when engaging with
these complex structured penalties. A splitting method called alternating direction method
of multipliers (ADMM) (Boyd et al. 2011), with its variants like stochastic ADMM and
incremental ADMMwith better scalability, has been extensively studied. Stochastic ADMM
methods (Ouyang et al. 2013) utilize stochastic gradient updating strategies to reduce per-
iteration computational cost. For example, RDA-ADMM (Suzuki 2013) incorporates the
RDA method with ADMM; SADMM and optimal-SADMM in Azadi and Sra (2014) uti-
lize nonuniform averaging of the iterative variable (Lacoste-Julien et al. 2012; Shamir and
Zhang 2013) and accelerated stochastic gradient method (Ghadimi and Lan 2012) to fur-
ther accelerate the stochastic ADMM method. Incremental ADMM methods (Zhong and
Kwok 2014a; Suzuki 2014) can achieve a faster convergence rate than stochastic ADMM
by utilizing the incremental gradient updating strategy. In particular, SA-ADMM (Zhong
and Kwok 2014a) and SDCA-ADMM (Suzuki 2014) are two recently proposed ADMM
methods incorporating two different incremental gradient methods: SAG (Roux et al. 2012)
and SDCA (Shalev-Shwartz and Zhang 2013) respectively. However, despite the above effort
for better efficiency and scalability, a remaining major drawback of ADMM-based methods
is the complex implementation and convergence analysis, which are brought about by the
additional variables introduced and the alternating updating scheme.

Recently, an alternative to ADMM called proximal average (PA) (Yu 2013) has been
introduced to efficiently handle composite penalties. It approximates the original composite
penalty when each constituent regularizer admits a simple proximal map. The resulting prox-
imal average approximation then enjoys a simple proximal map by averaging the proximal
map of its components. What makes the PA technique interesting is that the approximation
can be controlled arbitrarily close to the original composite regularizer and be strictly better
than the smoothing technique. Compared with ADMM, Zhong and Kwok (2014c) points out
that ADMM is also a proximal method by duplicating variables. As will be seen later, proxi-
mal average is not only simple for implementation, but is also easier for theoretical analysis.
Along this line, pioneering work includes the one in Yu (2013), which introduces proximal
average with the accelerated full gradient method FISTA (Beck and Teboulle 2009). Zhong
and Kwok (2014c) incorporates the proximal average technique with the stochastic variant
of the optimal gradient method. It has provable superiority over the smoothing technique
which is also shared by Yu (2013). Despite the simplicity advantage in terms of implemen-
tation and analysis, when compared to incremental ADMM methods (e.g. SA-ADMM and
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SDCA-ADMM), existing PA-based approaches either converge slowly (e.g. PA-ASGD) or
suffer from high per-iteration cost (e.g. PA-APG).

Incremental gradient methods featuring both scalability and the fast convergence prop-
erty have been receiving considerable attention as an efficient approach to mitigating the
ever growing dataset problem. As these methods only calculate gradients associated with a
randomly picked data sample in each iteration as stochastic gradient methods (Bottou 2010;
Xiao 2010; Ghadimi and Lan 2012), they have comparable low per-iteration computation
cost. More importantly, by exploiting the finite sum structure of the loss function which
stochastic methods do not have, these incremental methods are able to achieve a linear con-
vergence rate as per full gradient methods (Nesterov and Nesterov 2004). For example, SAG
(Roux et al. 2012) utilizes the average of the stored past gradients, one for each data sam-
ple. SVRG (Johnson and Zhang 2013; Xiao and Zhang 2014) adopts a multi-stage scheme
to progressively control the variance of the stochastic gradient. Both methods have linear
convergence rate for strongly convex problems, but the theoretical convergence result for
general convex loss is still unclear. SAGA (Defazio et al. 2014a) has both a sublinear con-
vergence guarantee for general convex loss and linear convergence for strongly convex loss.
It is a midpoint of SAG and SVRG by taking both update patterns from them in its iteration.
There are also other incremental methods like FINITO (Defazio et al. 2014b) and MISO
(Mairal 2014), which consume more memory because they not only store the gradient, but
also the variable. S2GD (Konečnỳ and Richtárik 2013) is a method very similar to SVRG
with the difference only in stage length. SDCA (Shalev-Shwartz and Zhang 2013) is a dual
incremental method.

The above-mentioned methods mainly focus on convex composite penalties. Nonconvex
composite penalties, although leading to an even more difficult problem, can have better
prediction performance by avoiding the over-penalization problems of their convex coun-
terparts. For structured sparsity inducing tasks, there has been some research incorporating
structured sparsity regularizers with nonconvex penalties and showing improved prediction
performance (Shen and Huang 2010; Xiang et al. 2013). For optimizing such nonconvex
composite penalties, general nonconvex solvers like the concave-convex procedure (CCCP)
(Zhang 2010) and the sequential convex program (SCP) (Lu 2012) proceed in a multi-stage
convexify scheme that solves a convex relaxation in each stage up to a certain approxima-
tion and then constructs a convex surrogate for the next stage. Zhong and Kwok (2014b)
has recently proposed a proximal average based gradient descent method called GD-PAN
for such a penalty. It has been shown that it is still possible to approximate the nonconvex
composite function with proximal average for some common nonconvex penalties. Also, by
solving such a surrogate, it is more efficient than multi-stage methods like CCCP and SCP,
because the proximal map of the proximal gradient descent can be easily computed for the
surrogate. However, GD-PAN that is essentially a batch gradient method suffers from the
scalability problem. In this paper, we also propose an incremental proximal average method
for solving nonconvex composite penalty problems.

Here, we investigate the potential to incorporate incremental gradient methods with the
proximal average technique. For convex composite penalties, we show that, by solving a sur-
rogate problem, the proposed method can achieve linear convergence when the loss function
is strongly convex and sublinear convergence when the loss is general convex. By contrast,
ADMM-based methods cannot provide both. For example, SDCA-ADMM only has con-
vergence results for strongly convex loss, while the convergence analysis of SAG-ADMM
only applies when the loss is general convex. Furthermore, we also extend the incremental
PA technique to solve nonconvex penalty problems, which has better scalability than the
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batch method GD-PAN (Zhong and Kwok 2014b). In this setting, we show that the proposed
method converges to an asymptotic stationary point of the surrogate problem.

The remainder of this paper is organized as follows: Sect. 2 introduces the notation and
assumptions used in this paper. Section 3 conducts an overview of PA and incremental gradi-
ent descent methods. In Sect. 4, we propose our method for convex composite penalties with
strongly convex loss and general convex loss, and establish the corresponding convergence
rate. Section 5 proposes an incremental proximal average algorithm for solving nonconvex
composite penalty problems. Section 6 shows the experimental results for both convex com-
posite penalty problems and nonconvex composite penalty problems on synthetic and real
datasets. Finally, Sect. 7 concludes the paper.

2 Preliminaries

In this section, we firstly introduce the notation used in this paper. Then, we formally define
the problem to be optimized. Also, we will describe the assumptions for these problems.

Notation In the following, we denote the gradients of the differentiable function li and l at
x as ∇li (x) and ∇l(x), respectively. ||x ||2 and ||x ||1 denote the l2 and l1 norm of vector x
correspondingly. 〈∇li (x), y〉 is the inner product of∇li (x) and y. The superscript (·)T stands
for the transpose of (·). We denote the t-th iteration of x by xt . We assume the dataset is
indexed as 1, 2, . . . , n, and the subscript i like xi is related to the i-th data sample. We denote
the k-th component of the composite penalty function by the subscript k in rk .

We consider the following ERM with composite penalty problem:

min
x∈Rd

F(x) = l(x) + r(x) = 1

n

n∑

i=1

li (x) +
K∑

k=1

αkrk(x), (1)

K∑

k=1

αk = 1, αk ≥ 0, (2)

which is commonly applied to learn the model defined by variable x from training data set
{ξi , yi } i = 1, . . . , n. ξi is the data vector, and yi is its label. In (1), li (x) is the loss taken at
data sample (ξi , yi )with index i . The function r(x) is the composite penalty for regularization
purpose, which is composed by K constituent regularizers. We hide the constant balancing
the loss and the regularizer in the loss as Yu (2013) and Zhong and Kwok (2014c), so that
r(x) is a convex combination of the K components rk(x). In this paper, we allow both l(x)
and r(x) to be either convex or nonconvex.

Smooth loss function We assume li (x) to be smooth with L Lipschitz continuous gradient,
so that we can take the gradient for gradient descent and also we are able to construct a
local majorization surrogate. Formally, an L-smooth loss function li satisfies the following
inequality,

Assumption 1 The loss function is L-smooth, ∀x, y,

li (y) − li (x) − 〈∇li (x), y − x〉 ≤ L

2
||y − x ||22. (3)

If we further assume li (x) is general convex, li also satisfies the following inequality:
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Assumption 2 li (x) is convex if ∀x, y,
li (y) − li (x) − 〈∇li (x), y − x〉 ≥ 0. (4)

Examples of the general convex smooth loss functions include least square loss, logistic loss,
and smooth hinge loss, all of which will be used in Sect. 6. In addition, li (x) can be strongly
convex provided that the following assumption holds:

Assumption 3 li (x) is strongly convex if there is a μ > 0 such that ∀x, y,
li (y) − li (x) − 〈∇li (x), y − x〉 ≥ μ

2
||y − x ||22. (5)

For example, when combining the above general convex loss with a large margin inducing
penalty λ

2 ||x ||2, it becomes a λ-strongly convex loss.

Composite penalty We focus on composite penalty in this paper, i.e. r(x) is an average of
K simple non-smooth penalties rk(x). We assume that rk is Lipschitz continuous with the
constant Mk , i.e.

Assumption 4 rk is Mk Lipschitz continuous, ∀x, y,
|rk(x) − rk(y)| ≤ Mrk ||x − y||2. (6)

Also, the proximal update step of each rk should be simple. Please note that the proximal map
of r(x) itself can be very complex and computationally expensive. In addition, we introduce
the notation related to proximal step:

Mη
rk (x) = min

y

1

2η
||x − y||22 + rk(y), (7)

and

Pη
rk (x) = argmin

y

1

2η
||x − y||22 + rk(y). (8)

3 Overview of PA and incremental gradient descent methods

This section gives an overview of the PA technique and the incremental gradient framework.

3.1 Proximal average

Proximal average (Bauschke et al. 2008; Yu 2013) has been recently introduced to deal with
composite regularizers. It admits a compact calculation when each single component satisfies
Assumption 4. PAonly requires each component of r(x) has simple proximalmap, evenwhen
it is computationally expensive for r(x) itself. The following definition describes the PA r̂(x)
of r(x).

Definition 1 [PA (Bauschke et al. 2008; Yu 2013)] The PA of r is the unique semicontinuous
convex function r̂(x) such that Mη

r̂(x) = ∑K
k=1 αkM

η
rk . The corresponding proximal map of

the PA r̂(x) is

Pη

r̂ (x) =
K∑

k=1

αk P
η
rk (x). (9)
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Therefore, once approximating r(x) by r̂(x), we can obtain the proximal map of r̂(x) by
simply averaging the proximal map of each constituent regularizer rk(x). The next lemma
shows that the approximation of r̂(x) can be controlled arbitrarily close to r(x) by the step
size η.

Lemma 1 (Yu 2013) Under Assumption 4, we have 0 ≤ r(x) − r̂(x) ≤ ηM̄2

2 , where M̄2 =∑K
k=1 αkM2

k .

In fact, although Yu (2013) verifies the above lemma provided that rk(x) is convex, GD-PAN
shows that it actually applies to nonconvex cases as long as Assumption 2 holds.

3.2 Incremental gradient descent methods

The incremental gradient methods proposed recently make an improvement on stochastic
gradient methods provided that the training data is finite. Generally, at each iteration, these
methods approximate the full gradient by a combination of a random gradient evaluated
at the latest variable with past gradients. There are several types of incremental gradient
method. For example, SAG utilizes a gradient table to record past gradients for each data
sample index. SVRG uses a single full gradient evaluated periodically. Both of the methods
have linear convergence for strongly convex and smooth problems. SAGA shares part of the
update pattern from both SAG and SVRG, and has theoretical guarantees for both general
convex and strongly convex problems.

Denote the variable table at iteration t by φt , which contains n vectors recording the iterate
xt in a randomly-select-and-replace strategy. That is, the algorithm randomly selects an index
i t from 1 to N and then replaces the i t+1-th column of φt by the latest iterate xt , i.e.

φt+1
i =

{
∇xt , i = i t (Replace)

∇φt
i , i 	= i t (Unchanged).

(10)

Let ∇li (φt
i ) (i = 1, 2, . . . , n) be the gradient table. SAGA, like SAG, updates the random

i t -th gradient with ∇li t (xt ) while keeping other terms unchanged:

∇li (φ
t+1
i ) =

{
∇li (xt ), i = i t (Replace)

∇li (φt
i ), i 	= i (Unchanged).

(11)

Hence, we only need to evaluate the gradient related to the i t data sample by computing
∇li t (xt ). Also, the variable table φt is introduced for notational convenience and thus need
not be explicitly stored.

Based on the stored gradient table, SAG proposes to construct a variance reduced gradient
estimation by averaging the gradient table, i.e.Gt = 1

n

∑n
i=i ∇li (φt

i ). On the contrary, SVRG
proposes to use the unbiased estimation Gt = ∇li t (xt )−∇li t (x̃ s)+ 1

n

∑n
i=1 ∇li (x̃ s), where

1
n

∑n
i=1 ∇li (x̃ s) is the batch gradient evaluated periodically on x̃ s (e.g. every 2N iterations).

SAGA propose to approximate the gradient for iteration t :

Gt = ∇li t (φ
t+1
i ) − ∇li t (φ

t
i ) + 1

n

n∑

i=1

∇li (φ
t
i ). (12)

SAGA shows that this gradient estimation strategy actually stands in middle of that used by
SAG and SVRG. Also, conditioned on information up to the t-th iteration, Gt is an unbiased
estimation of the full gradient in expectation. According to Johnson and Zhang (2013), Xiao
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and Zhang (2014), such approximate gradients have the reduced variance, which would lead
to speed up over stochastic methods. SAGA admits iteration schemes involving proximal
mapping, but only for simple penalty functions equipping closed-formupdate and is incapable
to handle the more complex composite penalties.

4 Accelerated proximal average approximated incremental gradient for
ERM with convex composite penalty

In this section, we present the proposed incremental gradient descent proximal average
method for convex composite penalty regularized ERM problems, which is termed as
IncrePA-cvx. We first illustrate the convex composite penalty functions with two types of
structured sparsity inducing penalties as examples, i.e. overlap group lasso and graph-guided
lasso. We then describe the proposed method provided with the convergence rate for convex
composite penalties with general convex and strongly convex loss.

4.1 Overlapping group lasso and graph-guided fused lasso

In the following, we describe two convex composite regularizers for inducing structured
sparsity among features in sparsity estimation tasks.

Overlapping group lasso Jacob et al. (2009) introduces overlapping group lasso

r(x) =
K∑

k=1

ωkrk(x) =
K∑

k=1

1

K
||xgk ||2, (13)

where gk indicates the index group of features, and xgk is a copy of x with the values of
those that are not in the index subset gk being set at 0. Apparently, the proximal map of each
individual ||xgk || is simple to compute, while the proximal map of r(x) is difficult due to the
coupled nature of overlapping groups of indices.

Graph-guided fused lasso Kim and Xing (2009) induces structured sparsity according to the
graph E ,

r(x) =
K∑

k=1

ωkrk(x) =
K∑

k=1

ωk |xk1 − xk2 |, (14)

where {k1, k2} ∈ E . Again, the proximal map of r(x) is not easy to compute even though
rk(x) is.

4.2 Incremental gradient proximal average for convex composite penalty
regularized ERM

The proposed method proceeds with a proximal gradient style iterative scheme. With the
estimated gradient utilized in iteration t denoted by Gt and step size by η, the algorithm
updates:

xt+1 = argmin
x

1

2η
||x − (xt − ηGt )||22 + r(x), (15)

which can be denoted by xt+1 = Pη
r (xt − ηGt ) [recall that the proximal map corresponding

to penalty function r(x) is denoted by Pη
r (·), as shown in (8)]. The gradient Gt is estimated
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by incremental gradient strategy, in particular SAGA (Defazio et al. 2014a), which consumes
low per-iteration cost and fast convergence by reducing the variance of the estimated gradient.

In general, the proximal map corresponding to composite penalties r(x) is not easy to
compute. Popular approaches propose to deal with composite penalty functions based on
the splitting method ADMM.When coupled with incremental gradient estimation strategies,
ADMM-basedmethods are difficult to analyze. For example, SA-ADMM(based on SAG and
linearized ADMM) only has convergence results when the loss function is general convex,
while SDCA-ADMM only has convergence results when the loss function is locally strongly
convex.Most recently, SVRG-ADMM (Zheng andKwok 2016) is able to provide the conver-
gence analysis for both general and strongly convex losses, but they require different iteration
design under the different convexity assumptions. Hence, to develop a general algorithm that
is capable to cover both general and strongly loss function cases with a unified iteration
design scheme, we propose to approximate r(x) with proximal average approximation r̂(x).
The iteration becomes

xt+1 = Pη

r̂ (xt − ηGt ), (16)

which can be simply computed according to the proximal average property as shown in (9)
by

xt+1 =
K∑

k=1

αk P
η
rk (x

t − ηGt ), (17)

where Pη
rk (·) is the proximal mapping with respect to simple constituent function rk . By

utilizing the proximal average update technique,we are actually solving the surrogate problem
f̂ (x) = l(x) + r̂(x), which can be controlled arbitrarily close to the original problem F(x)
according to Lemma 1. We summarize the closeness property by the following lemma.

Lemma 2 For r(x) with Mk-Lipschitz continuous rk(x)(k = 1, . . . , K ) and denote M̄2 =∑K
k=1 αkM2

k as in Lemma 1, we have F(x) − f̂ (x) ≤ ε for any x, when we set η ≤ 2ε
M̄2 .

The proposed incremental gradient PA for ERM with convex composite penalty is sum-
marized in Algorithm 1.

Algorithm 1 IncrePA-cvx

Input: η (step size); x0 (initial value); ∇li (φ
0
i ), φ0

i = x0, i = 1, . . . , n (initial table of gradients).
1: for t = 0, 1, 2, . . . do
2: Randomly pick i t ∈ {1, 2, . . . , n};
3: Update the derivative table as in (11);
4: Calculate Gt by (12);
5: wt+1 = xt − ηGt ;
6: xt+1 = ∑K

k=1 αk P
η
rk (w

t+1);
7: end for

4.3 Analysis of IncrePA-cvx

The proposed method is general in the sense that it is provided with convergence analysis
covering both general convex loss and strongly convex loss functions cases with a unified
iteration design. We describe them as follows.
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A. Convergence analysis for general convex objectives In this paragraph, we establish the
convergence rate of IncrePA when applied to general convex objectives. Recall the notation
of the surrogate function f̂ (x) = l(x) + r̂(x) implicitly solved by IncrePA. The following
theorem summarizes the sublinear convergence rate:

Theorem 1 Under Assumption 1 (i.e. li is smooth) with li (x) general convex and Assumption
4 (i.e. rk is simple and Lipschitz continuous), let x̂∗ be the optimal point of the surrogate
problem. Denote Qt as

Qt = 1

n

n∑

i=1

li (φ
t
i ) − l(x̂∗) − 1

n

n∑

i=1

〈∇li (x̂
∗), φt

i − x̂∗〉. (18)

Then, after t ≥ 1
c2ε

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

)
iterations, we have

E
[
F(x̄ t ) − F(x̂∗)

] ≤ 2ε, (19)

where x̄ t = 1
t

∑t
i=1 x

i . In addition, possible choices of the parameters c1, c2, η appearing

in the proof are as follows: η < min
(

1
2L , 2ε

M̄2

)
, c1 = 1

2ηn , c2 = 1
2n

(
1

2ηLβ
− 1

)
.

B.Convergenceanalysis for strongly convexobjectives Ifwe further have the strong convexity
of the loss function, the proposedmethod can achieve linear convergence as shown inTheorem
2.

Theorem 2 Under Assumption 1 (i.e. li is smooth) with li (x) μ-strongly convex and Assump-
tion 4 (i.e. rk is simple and Lipschitz continuous), let x̂∗ be the optimal point of the surrogate
problem. Denote a Lyapunov function T t as:

T t = Qt +
(
c1 + c2

η

)
||xt − x̂∗||22 + c2

(
f̂ (xt ) − f̂ (x̂∗)

)
, (20)

Qt = 1

n

n∑

i=1

li (φ
t
i ) − l(x̂∗) − 1

n

n∑

i=1

〈∇li (x̂
∗), φt

i − x̂∗〉, (21)

where t is the iteration number. After (1 − 1
κ
)(log T 0

ε
) iterations, we then have

E
[
F(xt ) − F(x̂∗)

] ≤ 2ε. (22)

In addition, there exists some β ≥ 1 and possible choices of the parameters c1, c2, κ, η

appearing in the proof are as follows: η < min
(

1
2L , 2ε

M̄2 ,
1

2nμ

)
, c1 = 1

2ηn
L

L−μ
, c2 =

c1η
(

1
2ηLβ

− 1
)
, 1
κ

= 2ημ

1+ 1
2ηL

.

The detailed mathematical proofs of Theorems 1 and 2 are given in “Appendix”.

4.4 Discussion

We have the following three remarks to make about the above two convergence guarantees.

Remark 1 First we point out the specialties of the step size parameter η. One can find that
we represent all parameters by the step size η in the above convergence analysis because it
controls the approximation by Lemma 1. The convergence rate of the strongly convex case
is related to 1

κ
, i.e. it converges faster when 1

κ
is larger, which depends on L , μ and ε given
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the data size n. Please note that, for an ill-conditioned problem where L
u = n, 1

2nμ
can be

converted to 1
2L . Thus, the convergence speed is related to L and ε. The convergence speed

for the general convex case depends on c2, i.e. the larger c2, the faster it converges. Given
the dataset size, the convergence speed is again related to L and ε.

Remark 2 Like the other incremental methods, the above convergence only reflects training
loss (Suzuki 2014; Zhong and Kwok 2014a; Roux et al. 2012). The generalization per-
formance is unknown partly because of the assumption of the finite training set size. Our
experiments on testing loss show empirical results of the generalization performance.

Remark 3 Furthermore, our algorithm will converge to the optimal point of the surrogate
function. We show the convergence rate by measuring the loss with respect to the objective
function value at x̂∗ (F(x̂∗)), which is different from the usual convention that measures
F(x∗). Nevertheless, the surrogate problem will be close to the original problem given
a sufficiently small step size, which is therefore able to provide satisfactory generaliza-
tion performance. Indeed, the experimental results in Sect. 6 have verified that, as a good
approximation to the original problem, the proposed method has satisfactory generalization
performance in terms of classification error and test loss on the test sets of two real datasets.

5 Incremental proximal average for nonconvex composite penalty
regularized ERM

In this section, we extend the incremental gradient with proximal average algorithm to non-
convex composite penalty regularized ERM problems. We first describe example nonconvex
composite penalties utilized in structured sparsity estimation tasks, which replace the convex
�1 norm with tighter nonconvex surrogate functions of the �0 norm. After recalling existing
approaches for this type of problem, we present a more scalable method by extending the
IncrePA-cvx in the previous section to nonconvex composite penalty case, termed IncrePA-
ncvx.

5.1 Two examples of nonconvex composite penalties in structured sparse
estimation

Nonconvex composite penalties appear in nonconvex structured sparsity estimation appli-
cations. The nonconvex surrogate penalties like capped �1 norm, smoothly clipped absolute
deviation (SCAD) and minimax concave penalty (MCP), are able to address the bias of the
convex �1 norm, thus are considered better relaxations of the �0 norm for promoting sparsity.
Inspired by this, Shen and Huang (2010), Xiang et al. (2013), Zhong and Kwok (2014b)
have proposed nonconvex structured sparsity inducing counterparts by wrapping the convex
composite functions with nonconvex functions. That is, the penalty function r(x) takes the
composite form as an average of K nonconvex composite penalties as

r(x) =
K∑

k=1

ωkrk(x). (23)

In this nonconvex composite penalty case, each rk takes the following form:

rk(x) = ρ(hk(x)), (24)

where ρ(·) is the nonconvex sparsity-inducing function.
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In this structured case, compared with traditional non-structured nonconvex relaxations
of lasso, it is wrapped outside each constituent convex regularizer rather than each of the
indices of x . We elaborate (23) with Capped-�1 overlapping group-lasso and MCP graph-
guided fused Lasso as two concrete examples.

Capped-�1 overlappinggroup-lassoThis is a hybrid nonconvex composite penalty ofCapped-
�1 norm and overlapped group-lasso, which wraps each of the group indices hk(x) = ||xgk ||2
with Capped-�1 norm (Zhang 2010):

r(x) =
K∑

k=1

ωkrk(x) =
K∑

k=1

ωkρ(||xgk ||2) =
K∑

k=1

ωk min{||xgk ||2, θ}, (25)

where θ is a constant defining the �1 norm.

MCP graph-guided fused lasso This nonconvex composite penalty combines MCP (Zhang
2010) with graph-guided fused lasso.

r(x) =
K∑

k=1

ωkrk(x) =
K∑

k=1

ωkρ(|xk1 − xk2 |), (26)

where {k1, k2} ∈ E , |E | = K and ρ(·) takes the following form based on MCP norm:

ρ(u) =
{

λ|u| − u2
2a , |u| ≤ aλ,

aλ2

2 , |u| > aλ,
(27)

where λ and a are constants.

5.2 Related work

Such composite form and nonconvexity make the problem even more difficult to solve. Some
existing approaches are proposed with inefficiency or scalability issues. DC programming-
based methods like the concave-convex procedure (CCCP) (Zhang 2010) progress by stages
that solve a convex surrogate in each stage by approximating nonconvex r(x) with a convex
function. Thismultistage style can be inefficient. General iterative shrinkage and thresholding
(GIST) (Gong et al. 2013) and sequential convex program (SCP) (Lu 2012) can be efficient for
regularizers with simple proximal update. However, since the proximal step is very difficult
for (23), these methods are also not efficient enough. Recently, GD-PAN (Zhong and Kwok
2014b) has extended proximal average for nonconvex (23) and approximates r with proximal
average in the GIST algorithm to obtain a proximal update efficient algorithm. However,
GD-PAN is intrinsically a batch gradient algorithm with poor scalability towards large-scale
problems. Apparently, a PA-basedmethod with better scalability is more attractive and useful
from a practical perspective.

5.3 Nonconvex extension of incremental gradient with PA

We aim to extend the incremental gradient PA method to solve these nonconvex structured
problems, termed IncrePA-ncvx. Zhong and Kwok (2014b) also approximates the nonconvex
composite regularizer with PA, and then solves the approximate problem based onGong et al.
(2013) iteration scheme, which is a batch gradient method. Our method improves upon Gong
et al. (2013) with an incremental gradient strategy that results in better scalability.
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In this nonconvex case, we also approximate r(x) with its PA approximation r̂(x), which
is similar to convex case. For convenience, we denote the PA approximated objective as

argmin
x

f̂ (x) = argmin
x

1

n

n∑

i=1

f̂i (x) = argmin
x

1

n

n∑

i=1

[li (x) + r̂(x)], (28)

where each component function f̂i (x) = li (x) + r̂(x) corresponds to the i-th data sample.
The PA approximated function f̂ (x) is not guaranteed to be convex. Hence, directly applying
incremental proximal gradient decent method to f̂i (x) can hardly ensure convergence. In
this regard, we further approximate f̂ (x) iteratively with the first-order surrogate of f̂ (x)
by following Mairal (2014), which is a particular majorization by taking the smoothness of
li (x) into consideration. Again, as an incremental method, we keep a variable table and a
gradient table, in which we denote them again by φt

i and∇li (φt
i ) correspondingly for the i-th

sample at iteration t , by the random choose-and-replace strategy as in the previous section.
At iteration t , with the latest variable table and gradient table, a majorization approximation
gti (x) of f̂ ti (x) is constructed as

gti (x) = li (φ
t
i ) + 〈∇li (φ

t
i ), x − φt

i 〉 + 1

2η
||x − φt

i ||22 + r̂(x), (29)

where η is the step size and satisfies 1
η

≥ L . By the smoothness assumption of the loss

function li (x) [assumption (3)], function gti (x) upper bounds f̂i (x) [i.e. gti (x) ≥ f̂i (x)].
Then, in each iteration, the majorization function is minimized with

xt+1 = argmin
x

ḡt (x) = argmin
x

1

n

n∑

i=1

gti (x)

= argmin
x

1

n

n∑

i=1

[
li (φ

t
i ) + 〈∇li (φ

t
i ), x − φt

i 〉 + 1

2η
||x − φt

i ||22 + r̂(x)

]
,

(30)

which is an incremental majorization-minimization iteration by choosing the majorization
function as the so-called first-order surrogate (Mairal 2014). With such surrogates during
iteration, we need extramemory to explicitly store the variable table as comparedwith convex
incremental gradient PA method, where the variable table is introduced only for notational
convenience and need not be kept. However, this overhead in memory seems indispensable,
because the per-iteration problem evaluated in the previous section cannot be guaranteed to
be a majorization of f̂ (x), which is obvious when we rewrite the iterate scheme of Algorithm
1 in the same style as (30),

xt+1 = argmin
x

1

n

n∑

i=1

[
li (xt ) + 〈∇li (φ

t
i ), x − xt 〉 + 1

2η
||x − xt ||22 + r̂(x)

]
. (31)

Then, (30) can be further simplified to xt+1 = argminx 1
2η ||x − ( 1

n

∑n
i=1 φt

i − ηGt
) ||22+

r̂(x), where Gt = 1
n

∑∇li (φt
i ). By the property of the PA approximation function r̂(x) and

the proximal mapping notation as in (9), we then have

xt+1 =
K∑

k=1

αk P
η
rk

(
1

n

n∑

i=1

φt
i − ηGt

)
. (32)

We summarize the above iteration scheme IncrePA-ncvx as shown in Algorithm 2.
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Algorithm 2 IncrePA-ncvx

Input: η (step size); x0 (initial variable); ∇li (φ
0
i ), i = 1, . . . , n (initial table of gradients); φ0

i , i = 1, . . . , n
(initial table of iterate x).

1: for t = 0, 1, 2, . . . do
2: Randomly pick i t ∈ {1, 2, . . . , n};
3: Update the derivative table as in (11);
4: Update the variable table as in (10);
5: Calculate Gt by averaging the gradient table;
6: wt+1 = 1

N
∑N

i=1 φt
i − ηGt ;

7: xt+1 = ∑K
k=1 αk P

η
rk (w

t+1);
8: end for

5.4 Analysis of IncrePA-ncvx

The main per-iteration computational cost comes from: (i) step 5 evaluates a stochastic
gradient and (ii) step 7 computes the proximal mapping with respect to K simple regularizers
and takes the average. Hence, compared to the PA-based method GD-PAN, the proposed
method provides better scalability when the dataset size grows because the per-iteration
computational cost does not depend on the number of data points.

For nonconvex problems, it is generally impossible to guarantee a global optimum or
derive a convergence rate like those for convex and strongly convex problems. Following
Mairal (2014), we only provide the convergence of IncrePA-ncvx in the sense that the PA
approximation [ f̂ (xt )] is almost sure convergence and the sequence [xt ] satisfies the so-
called asymptotic stationary point condition (for more details, see Borwein and Lewis 2010).

Definition 2 Asymptotic stationary point: Denote the directional derivative of function f
at xt as ∇ f (xt , x − xt ) (see Subsection 2.1 in Borwein and Lewis 2010 for the detailed
definition), under the assumption that f is bounded below and for all x, xt , the directional
derivative ∇ f (x, x − xt ) of f at xt in the direction x − xt exists, the sequence [xt ]t=1,2,...

satisfies the asymptotic stationary point condition if

lim
k→ inf+∞ inf

x∈X
∇ f (xt , x − xt )

||x − xt ||2 ≥ 0. (33)

We rely on the convergence result fromMairal (2014), through which we have the following
lemma:

Lemma 3 Suppose f (x) = ∑n
i=1 fi (x) is bounded below and the directional derivative

exists. With gti t (x) being first-order surrogates and incremental majorization-minimization
scheme, f (xt ) is almost sure convergence and xt satisfies the asymptotic stationary point
condition with probability one.

Based on Lemma 3, we have the convergence result for our IncrePA-ncvx as summarized
in the following Theorem 3.

Theorem 3 Algorithm IncrePA-ncvx is almost sure convergenceand the iterates xt converges
to the asymptotic stationary point of the surrogate problem f̂ (x) with probability one.

Proof To utilize Lemma 3, we first observe that our surrogate function gti (x) in (29) is the

so-called first-order surrogate of the PA approximation function f̂ ti (x) in (28). Namely, (i)

gti (x) majorizes f̂ ti (x), i.e. g
t
i (x) ≥ f̂ ti (x); (ii) Denote the approximation error by hti (x) =
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Table 1 Summary of four real
datasets

Data set Data points Dimensionality

20 newsgroup 12, 995 100

a9a 32, 561 123

Covtype 581, 012 54

Protein 145, 751 74

gti (x)− f̂ ti (x) = lti (φ
t
i )− l(x)+〈∇lti (φ

t
i ), x −φt

i 〉+ 1
2η ||x −φt

i ||22, then hti (x) is smooth and

hti (φ
t
i ) = 0,∇hti (φ

t
i ) = 0. Hence, with the first-order surrogate adopted in IncrePA-ncvx and

the incremental majorization-minimization scheme, we can apply Lemma 3 for the sequence
f̂ (xt ) and xt to conclude that IncrePA-ncvx is almost sure convergent to the asymptotic
stationary point of proximal approximation function f̂ (x) with probability one. �

6 Experiments

In this section, we evaluate the empirical performance of IncrePA for both convex composite
penalty and nonconvex composite penalty. We implemented the proposed method and all
other methods for comparison in MATLAB. All experiments were conducted on a single
core of a laptop and 2.6-GHz Intel CPU with 16 GB of RAM. We used both synthetic
datasets and four real datasets1 in the experiment. The real datasets are summarized in Table
1. We randomly sampled 80% of the data as training set and the rest as testing set. We used
four different tasks to demonstrate the performance of the proposed method according to the
convexity or nonconvexity of the composite penalty and general or strong convexity of the
loss function.As a result, we provided empirical evidence for all kinds of combinations of loss
functions and penalties, to which the proposed IncrePA has provided theoretical convergence
results in the previous sections. In the following, we have:

– Section 6.1 considers a general convex loss with convex composite penalty by solving
smooth hinge loss with the graph-guided lasso task on four real datasets;

– Section 6.2 considers a strongly convex loss with convex composite penalty by solving
logistic loss with the large margin graph-guided lasso on four real datasets;

– Section 6.3 considers a nonconvex composite penalty of capped �1 norm overlapping
group lasso on synthetic datasets with different numbers of groups and data points.

– Section 6.4 considers a nonconvex composite penalty of capped �1 norm graph-guided
lasso on four real datasets.

6.1 Experiment 1: Solving general convex loss function with convex composite
penalty

In this and the next subsections, we evaluate the performance of IncrePA on convex compos-
ite penalties in comparison with two incremental gradients ADMM: SA-ADMM (Zhong and
Kwok 2014a) and SDCA-ADMM (Suzuki 2014) along with a PA-based stochastic gradient
PA-ASGD (Zhong and Kwok 2014c). We do not consider the batch gradient PA method for

1 ‘a9a’ and ‘covtype’ are from LIBSVM archive; ‘protein’ is from KDD CUP 2004; ‘20 newsgroup’ is from
http://www.cs.nyu.edu/~roweis/data.html.
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Fig. 1 General convex loss with convex composite penalty: empirical risk on training data versus effective
passes of smooth hinge loss with graph-guided lasso on four real datasets, i.e. upper left 20 newsgroup, upper
right a9a, bottom left covtype, and bottom right protein

comparison because Zhong and Kwok (2014c) has already shown that it is less efficient than
PA-ASGD. Also, we do not explicitly compare the proposed algorithm with the stochas-
tic ADMM methods because the latter is slower than the incremental ADMM methods as
demonstrated in Zhong and Kwok (2014a) and Suzuki (2014).

In this subsection, we consider the general convex loss problem by using the smoothed
hinge loss:

li (u) =
⎧
⎨

⎩

0, yi u ≥ 1
1
2 − yi u, yi u ≤ 0
1
2 (1 − yi u)2, otherwise,

(34)

where u = ξ Ti x, (ξi , yi ) is the i-th data sample. We utilize the graph-guided fused lasso

λ

⎛

⎝||x ||1 +
∑

{i, j}∈E
|xi − x j |

⎞

⎠ (35)

as the convex composite regularizer. We construct the graph by sparse inverse covariance
matrix as used in Suzuki (2014) and set λ at 0.001. The proximal map for ||x ||1 is simply
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Fig. 2 General convex loss with convex composite penalty: classification error on testing data versus effective
passes and CPU time of smooth hinge loss with graph-guided lasso on two real datasets, i.e. upper left 20
newsgroup (vs. effective passes), upper right a9a (vs. effective passes), bottom left 20 newsgroup (vs. CPU
time), and bottom right a9a (vs. CPU time)

soft thresholding. The proximal map for |xi − x j | is

[Pη
rk ]s =

{
xs − sign(xi − x j )min

{
η,

|xi−x j |
2

}
, s ∈ {i, j}

xs, otherwise
(36)

as given in Yu (2013), Zhong and Kwok (2014c). For training performance, we report the
empirical risk, which is the training loss, against the number of iterations for all datasets. As
for the generalization performance, we report the classification error measured on testing set
against the number of iterations and CPU time for the ‘20 newsgroup’ and ‘a9a’, depicted in
Fig. 2.

As shown inFig. 1, in terms of reducing the empirical loss, the performance of the proposed
method is the best on ‘20 newsgroup’ and ‘protein’, and only inferior to SDCA-ADMM
on ‘covtype’ and is only inferior to SA-ADMM on ‘a9a’. On all datasets, IncrePA is more
efficient than another PA-basedmethod: PA-ASGD. Therefore, in this task, IncrePA performs
almost the same as the other two ADMM-based incremental gradient methods and is a much
faster PA-based method compared with PA-ASGD. Figure 2 demonstrates the generalization
performance. When compared against the iteration numbers, IncrePA performs similar to
SA-ADMM, which is better than PA-ASGD, although both are somewhat inferior to SDCA-
ADMM.When compared against CPU time, the proposed method performs relatively better
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Fig. 3 Strongly convex loss with convex composite penalty: empirical risk on training data versus effective
passes of logistic loss with large margin graph-guided lasso on four real datasets, i.e. upper left 20 newsgroup,
upper right a9a, bottom left covtype, and bottom right protein

than the other methods on both datasets. As a conclusion, IncrePA has similar generalization
performance in terms of classification error on both datasets with SA-ADMM and SDCA-
ADMMand ismore efficient than PA-ASGD.Also, the classification error on both testing sets
indicate that our solution obtained by the surrogate regularizer is able to achieve satisfactory
generalization performance.

6.2 Experiment 2: Solving strongly convex loss function with convex composite
penalty

For the strongly convex case, we utilize logistic loss with the large margin graph-guided lasso
regularizer as in Zhong and Kwok (2014c), i.e.

λ

⎛

⎝||x ||22 +
∑

{i, j}∈E
|xi − x j |

⎞

⎠ . (37)

We combine the logistic loss and the l2 norm together to ensure the strong convexity of the
loss part. Note that, in this case, the l2 norm term can neither be incorporated into li (ξ Ti x),
nor into ||Ax ||1 form in the dual form, thus SDCA-ADMM is unable to handle this case
because the dual problem does not fit ADMM structure. We only compare with the other two
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Fig. 4 General convex loss with convex composite penalty: test loss on testing data versus effective passes
and CPU time of logistic loss with large margin graph-guided lasso on two real datasets, i.e. upper left 20
newsgroup (vs. effective passes), upper right a9a (vs. effective passes), bottom left 20 newsgroup (vs. CPU
time), and bottom right a9a (vs. CPU time)

methods. We report the training loss on four real datasets, and testing loss versus iteration
number and CPU time, respectively, for this case on ‘20 newsgroup’ and ‘a9a’ datasets.

According to Fig. 3, our method performs relatively better on ‘20 newsgroup’ and ‘a9a’,
and is similar to SA-ADMM on ‘covtype’ and ‘protein’ in training. As for generalization
performance, Fig. 4 shows the decrease of test loss over iteration number and CPU time.
IncrePA performs better than the other two methods on ‘20 newsgroup’ in terms of both
number of iterations and CPU time. IncrePA is the best on ‘a9a’ in terms of CPU time, but
falls behind SA-ADMM in terms of the number of iterations. Therefore, we conclude that
IncrePA works comparably to ADMM-based incremental methods and is much better than
the PA-based PA-ASGD method.

Before proceeding to the nonconvex composite penalty experiments, we would like to
point out that, for the convex composite penalty, as a PA method, the proposed method has
generally better performance than the stochastic gradient-based method: PA-ASGD, in terms
of all performance metrics we have tried so far. As an incremental gradient-based method,
the proposedmethod has comparable performance with SDCA-ADMMand SA-ADMM, but
the merit of the proposed method is twofold: (1) The convergence analysis of SDCA-ADMM
relies on the local strong convexity of the loss function. In addition, SDCA-ADMM requires
that the dual problem should be in the structure for ADMM to be applied, which causes a
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Fig. 5 Nonconvex composite penalty: empirical risk on training data versus CPU time of least square loss
with capped �1 norm overlapping group lasso on synthetic datasets, i.e. upper left [K,n]=[5, 500], upper
middle [K,n]=[10, 1000], upper right [K,n]=[20, 2000], bottom left [K,n]=[30, 3000], bottom middle
[K,n]=[30, 5000], and bottom right [K,n]=[30, 6000]

stricter problem format and therefore limits its application domain. For example, in the above
case, SDCA-ADMM cannot work at all because the dual parts do not fit into the structure
for ADMMwhen being put together, despite each dual of their primal correspondence being
easy to take. By contrast, the proposed method has given the convergence analysis for both
general convex loss and strongly convex loss problems. Further, the format of the objective
function in the proposed method is more general than SDCA-ADMM; (2) SA-ADMM lacks
convergence analysis for the strongly convex loss problem, but the proposed one does.

6.3 Experiment 3: Solving nonconvex composite penalty of capped �1 overlapping
croup lasso

This subsection studies the efficiency of IncrePA by comparing it with the other two algo-
rithms, i.e. GD-PAN and CCCP, for such nonconvex composite penalty.

In this experiment, we consider capped-�1 norm coupled nonconvex overlapping group
lasso:

min
x∈Rd

1

2n
||y − Sx ||22 + λ

K∑

k=1

min{||xgk ||, θ}. (38)

We use a synthetic data generated in the same style as Yu (2013). Specifically, the data si is
generated independently and identically distributed from the normal distribution N (0, 1).
The ground truth parameter x∗ is generated as x∗

j = (−1) j exp(− j−1
100 ). Therefore the dimen-

sion is d = 90K + 10 features. We set yi = (x∗)T si + ϑi , where ϑi = 10N (0, 1).
We use the following pairs of (K , n) with both growing dimension and data number:
(5, 500), (10, 1000), (20, 2000), (30, 3000), (30, 5000), (30, 6000). We also fix the dimen-
sion to K = 30 and increase the data number with n = 4000, 5000, 6000, 8000.We compare
the proposed algorithm with GD_PAN and CCCP. For the GD_PAN method, we use the
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Fig. 6 Empirical risk on training data versus effective passes with nonconvex graph-guided lasso on four real
datasets, i.e. upper left 20 newsgroup, upper right a9a, bottom left covtype, and bottom right protein

step size as suggested in Zhong and Kwok (2014b). We fix the parameters for all differ-
ent methods to be (λ, θ) = (K/10, 0.1). For the proposed method, we choose the step
size to obtain the largest descent in one pass over 5% of the data as suggested in Mairal
(2014). We run each algorithm 10 times. The performance of the three algorithms is shown
in Fig. 5 by plotting the objective value over CPU time. When the dataset is small, e.g.
(K , n) = (5, 500), (10, 1000), GD_PAN actually works better than the proposed method.
However, when the dataset becomes large, the proposed method is much better, which indi-
cates that the proposed method has better scalability.

6.4 Experiment 4: Solving nonconvex composite penalty of capped �1
graph-guided lasso

In this subsection, we considered nonconvex composite penalty by implementing the capped
�1-norm with graph-guided lasso penalty on four real datasets (see Table 1). The graph is
again constructed by sparse inverse covariance matrix. Again, we compared the proposed
algorithm with GD-PAN and CCCP. We report the training efficiency in terms of training
loss (objective value) over the effective pass of data in Fig. 6. It can be seen that the proposed
method is consistently better than GD-PAN and CCCP in terms of training. For the ‘20
Newsgroup’, ‘a9a’ and ‘protein’ datasets, the proposed method is much faster than the other
two methods, while these three methods perform closely on the ‘covtype’. We also reported
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Fig. 7 Test loss on testing data versus effective passeswith nonconvex graph-guided lasso on four real datasets,
i.e. upper left 20 newsgroup, upper right a9a, bottom left covtype, and bottom right protein

test loss over the effective passes to show the generalization performance of the learned
variable in Fig. 7. It can be seen that the proposed algorithm is more advantageous compared
with both GD-PAN and CCCP on ‘20 newsgroup’, ‘a9a’ and ‘protein’ datasets, while all of
them perform similar on ‘covtype’ dataset. To sum up, the proposed method is more efficient
than GD-PAN and CCCP in both training and testing.

7 Conclusion

In this paper, we have proposed a new incremental gradient method for empirical risk mini-
mization regularized by composite regularizer. As a PA technique-based method, it is more
efficient and faster than its existing batch and stochastic counterparts. When applied to con-
vex composite penalties, compared with the popular ADMM-based incremental gradient, it
has comparable performance, yet enjoys more compact update form and simpler theoretical
analysis by virtue of the PA technique. Also, we have proposed a variant for nonconvex
composite penalties, which has better scalability than the existing PA-based methods. Exper-
imental results on four real datasets have shown its efficiency and satisfactory generalization
performance for convex composite penalties. Further, experiments on both synthetic and real
datasets has demonstrated its superior scalability and improved efficiency for nonconvex
composite penalties.
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Appendix: Proof of Theorems 1 and 2

The proof of Theorems 1 and 2 is a combination of the proof in Defazio et al. (2014a) and
Yu (2013). We proceed the proof by two steps. First we prove that for the PA approximation
f̂ (x) = l(x) + r̂(x) and its global optimal value f̂ (x̂∗), f̂ (xt ) − f̂ (x̂∗) converges linearly
in expectation. Then we conclude the proof using Lemma 1 which states that the surrogate
f̂ (x) and the original F(x) can be arbitrarily close.
For the first step, we use the following Lyapunov function,

T t = Qt +
(
c1 + c2

η

)
||xt − x̂∗||22 + c2

(
f̂ (xt ) − f̂ (x̂∗)

)
, (39)

Qt = 1

n

n∑

i=1

li (φ
t
i ) − l(x̂∗) − 1

n

n∑

i=1

〈∇li (x̂
∗), φt

i − x̂∗〉 , (40)

where η is the step size and c1, c2 are constants to be specified in the following proof. Since
the step size η is related to ε, our choice of parameters should be different from Defazio
et al. (2014a), otherwise, the difference between f̂ (x) and F(x) cannot be small enough.
We borrow techniques and intermediate results from Defazio et al. (2014a), which could
be summarized into the following three lemmas. We omit the proof of these lemmas as
they paraphrase those found in Defazio et al. (2014a). In the following, the expectation is
conditioned on information up to iteration t , where i t is the randomly picked index, thus is
a random variable.

Lemma 4 (Defazio et al. 2014a, Theorem1)E[Qt+1] has the following iterative relationship
with Qt ,

E[Qt+1] =
(
1 − 1

n

)
Qt + 1

n

[
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉

]
. (41)

The next lemma bounds Ec1||xt+1 − x̂∗||22. Recall that x̂∗ is the optimal point of the approx-
imate function f̂ (x), we have:

Lemma 5 (Defazio et al. 2014a, Theorem 1)

c1E||xt+1 − x̂∗||22 ≤ (1 − ημ)c1||xt − x̂∗||22 + 2(1 + β−1)c1η
2LQt

+ (
(1 + β)c1η

2 − c1η

L

)
E
[||∇li t (x

t ) − ∇li t (x̂
∗)||22

]

−
(
2c1η

2βμ + 2c1η
(
1 − μ

L

) ) [
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉] . (42)

Finally we prepare ourselves with the lemma bounding E
[
c2

(
f̂ (xt+1) − f̂ (x̂∗)

) + c2
η

||xt+1

−x̂∗||22
]
.

Lemma 6 (Defazio et al. 2014a, Theorem 2) For some β > 0,

c2E
[
f̂ (xt+1) − f̂ (x̂∗)

] + c2
2η

E||xt+1 − x̂∗||22 ≤ c2
2η

||xt − x̂∗||22
+ 2(1 + β−1)c2ηLQ

t + (1 + β)c2ηE||∇li t (x
t ) − ∇li t (x̂

∗)||22.
(43)
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Proof of Theorem 1: General convex loss function case

With Lemmas 1–3, we have:

E[T t+1] = E

[
Qt+1 +

(
c1 + c2

2η

)
||xt+1 − x̂∗||22 + c2[ f̂ (xt+1) − f̂ (x̂∗)]

]

≤
[
Qt +

(
c1 + c2

2η

)
||xt − x̂∗||22

]

+
(
2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n

)
Qt

+
(

(1 + β)

(
c1 + c2

η

)
η2 − c1η

L

)
E
[||∇li t (x

t ) − ∇li t (x̂
∗)||22

]

+
(
1

n
− 2c1η

) [
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉] .

(44)

With the choice of parameters c1, c2, 1
κ
, β and η, the terms in big round brackets are non-

positive (we defer this discussion to the end of the proof). We leave out these non-positive
terms,

E

[
Qt+1+

(
c1+ c2

2η

)
||xt+1−x̂∗||22+c2[ f̂ (xt+1)− f̂ (x̂∗)]

]
≤

[
Qt +

(
c1 + c2

2η

)
||xt − x̂∗||22

]
.

(45)
By this iteration relationship and considering from step 0 to t , we have

Ec2

[
f̂ (x̄ t ) − f̂ (x̂∗)

]
≤ 1

t
E

[
c2

t∑

i=0

[ f̂ (xi ) − f̂ (x̂∗)]
]

≤ 1

t

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

−E

[
Qt +

(
c1 + c2

2η

)
||xt − x̂∗||22

])

≤ 1

t

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

)
,

(46)

where

Q0 = 1

n

n∑

i=1

li (φ
0
i ) − l(x̂∗) − 1

n

n∑

i=1

〈∇li (x̂
∗), φ0

i − x̂∗〉

x̄ t = 1

t

t∑

i=1

xi .

(47)

Hence as long as t ≥ 1
c2ε

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

)
, we get:

E
[
f̂ (x̄ t ) − f̂ (x̂∗)

] ≤ ε. (48)

We have (i) E[F(x̄ t ) − f̂ (x̄ t )] ≤ ε by Lemma 1 (i.e. r(x) − r̂(x) ≤ ε, ∀x); (ii) E[ f̂ (x̄ t ) −
f̂ (x̂∗)] ≤ ε by inequality (48); (iii) E[ f̂ (x̂∗) − F(x̂∗)] ≤ 0 by Lemma 1 (i.e. 0 ≤ r(x) −
r̂(x), ∀x). By (i)–(iii), we have
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E
[
F(x̄ t ) − F(x̂∗)

] = E
[(
F(x̄ t ) − f̂ (x̄ t )

) + (
f̂ (x̄ t ) − f̂ (x̂∗)

) + (
f̂ (x̂∗) − F(x̂∗)

)]

≤ ε + ε + 0.
(49)

Thus, as long as t ≥ 1
c2ε

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

)
, E

[
F(x̄ t ) − F(x̂∗)

] ≤ 2ε.

Verification of non-positiveness for general convex case in (44)

In the following, we show the non-positiveness of the terms in the round bracket in (44). For

the four inequalities, when η < min( 1
2L , 2ε

M̄2 ), c1 = 1
2ηn , c2 = 1

2n

(
1

2ηLβ
− 1

)
, β = 1, we

need to ensure,

I1: 2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n
≤ 0, (50)

I2: (1 + β)

(
c1 + c2

η

)
η2 − c1η

L
≤ 0, (51)

I3: 1
n

− 2c1η ≤ 0. (52)

I3 is 0 when c1 = 1
2ηn ; c2 = 1

2n

( 1
2ηLβ

− 1
) = c1η

( 1
2ηLβ

− 1
) ≤ c1η

( 1
ηL(1+β)

− 1
)
, thus I2

is satisfied. Substituting c1 and c2 into I1, gives (1+ 1
β
) 1
β

≤ 1, meanwhile, 2ηL 1
β

≤ 1, both

of which are satisfied when β = 1 under η < 1
2L .

Proof of Theorem 2: Strongly convex loss function case

Combining Lemmas 1–3 and rearranging the term, we can get:

E[T t+1] = E

[
Qt+1 +

(
c1 + c2

2η

)
||xt+1 − x̂∗||22 + c2[ f̂ (xt+1) − f̂ (x̂∗)]

]

≤
[
Qt +

(
c1 + c2

2η

)
||xt − x̂∗||22

]

+
(
2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n

)
Qt − ημc1||xt − x̂∗||22

+
(

(1 + β)

(
c1 + c2

η

)
η2 − c1η

L

)
E
[||∇li t (x

t ) − ∇li t (x̂
∗)||22

]

+
(
1

n
− 2c1η

2βμ − 2c1η
(
1 − μ

L

)) [
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉] .

(53)
Adding a nonnegative term c2

(
1− 1

κ

)[ f̂ (xt ) − f̂ (x̂∗)] to the RHS with 1
κ

∈ (0, 1), we have:

E[T t+1] ≤ T t − c2
κ

[ f̂ (xt ) − f̂ (x̂∗)]

+
(
2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n

)
Qt − ημc1||xt − x̂∗||22

+
(

(1 + β)

(
c1 + c2

η

)
η2 − c1η

L

)
E
[||∇li t (x

t ) − ∇li t (x̂
∗)||22

]

+
(
1

n
− 2c1η

2βμ − 2c1η
(
1 − μ

L

)) [
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉] .

(54)
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After further extracting a − 1
κ
T t term from the RHS, we have

E
[
T t+1] − T t ≤ − 1

κ
T t +

(
1

κ
+ 2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n

)
Qt

+
(
1

κ

(
c1 + c2

2η

)
− ημc1

)
||xt − x̂∗||22

+
(

(1 + β)

(
c1 + c2

η

)
η2 − c1η

L

)
E
[||∇li t (x

t ) − ∇li t (x̂
∗)||22

]

+
(
1

n
−2c1η

2βμ−2c1η
(
1− μ

L

) ) [
l(xt ) − l(x̂∗) − 〈∇l(x̂∗), xt − x̂∗〉] .

(55)
With the choice of parameters c1, c2, 1

κ
, β and η, the terms in big round brackets are non-

positive (we defer this discussion to the end of the proof). We leave out these non-positive
terms and by the iteration relation,

E
[
f̂ (xt ) − f̂ (x̂∗)

] ≤ E
[
T t ] ≤

(
1 − 1

κ

)t

T 0

=
(
1 − 1

κ

)t [
Q0 +

(
c1 + c2

η

)
||x0 − x̂∗||22 + c2

(
f̂ (x0) − f̂ (x̂∗)

)]
,

(56)

where

Q0 = 1

n

n∑

i=1

li (φ
0
i ) − l(x̂∗) − 1

n

n∑

i=1

〈∇li (x̂
∗), φ0

i − x̂∗〉 . (57)

Hence, as long as t ≥ log T 0

ε

/
log(1 − 1

κ
), we have:

E
[
f̂ (xt ) − f̂ (x̂∗)

] ≤ ε. (58)

Similar to the reasoning in the proof of Theorem 1 and by Lemma 1,

E
[
F(xt ) − F(x̂∗)

] = E
[(
F(xt ) − f̂ (xt )

) + (
f̂ (xt ) − f̂ (x̂∗)

) + (
f̂ (x̂∗) − F(x̂∗)

)]

≤ ε + ε + 0.
(59)

Finally, we conclude that, as long as t ≥ log T 0

ε

/
log(1 − 1

κ
), we have

E
[
F(xt ) − F(x̂∗)

] ≤ 2ε.

Verification of non-positiveness for strongly convex case in (55)

In the following,we show the non-positiveness of the terms in the round bracket in (55). For

the four inequalities, when η < min( 1
2L , 2ε

M̄2 ), c1 = 1
2ηn

L
L−μ

, c2 = c1η
(

1
2ηLβ

− 1
)

, 1
κ

=
2ημ

1+ 1
2ηL

, we shall verify

I1: 1

κ
+ 2(1 + β−1)

(
c1 + c2

η

)
η2L − 1

n
≤ 0, (60)

I2: 1

κ

(
c1 + c2

2η

)
− ημc1 ≤ 0, (61)

I3: (1 + β)

(
c1 + c2

η

)
η2 − c1η

L
≤ 0, (62)
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I4: 1
n

− 2c1η
2βμ − 2c1η

(
1 − μ

L

)
≤ 0. (63)

First consider I4, when c1 = 1
2ηn

L
L−μ

,

c1 = 1

2ηn

L

L − μ
>

1

2ηn

1

1 − μ
L + μηβ

. (64)

Thus, I4 is satisfied:
1

n
− 2c1η

2βμ − 2c1η
(
1 − μ

L

)
≤ 0. (65)

Next for I3, under c2 = 1
2n

L
L−μ

(
1

2ηLβ
− 1

)
and the fact β > 1,

c2 = c1η

(
1

2ηLβ
− 1

)
≤ c1η

(
1

(1 + β)ηL
− 1

)
, (66)

which is equal to I3, thus we have verified I3. In addition, we need 2ηLβ < 1 to guarantee
c2 > 0 which is satisfied when substituting β in.

Now we move to I2, as 1
β

< 1 and 1
κ

= 2ημ

1+ 1
2ηL

,

1

κ
= 2ημ

1 + 1
2ηL · 1 ≤ 2ημ

1 + 1
2ηL · 1

β

, (67)

which is equivalent to I2 after we substitute c1, c2 into I2. Apparently, as 2ηLβ < 1, 2ημ ≤
2ηL ≤ 2ηLβ < 1 and 1 + 1

2ηL ≥ 1 + 1
2ηLβ

> 2, thus 1
κ

< 1 is also satisfied.

Finally, we deal with I1. When η < 1
2L , we have η ≤ 1

2L + 1
4L2

2nμ2(L−μ)
L , given η < 1

2nμ
,

which is equivalent to

4L2η2 +
(
2L + 2nμ2(L − μ)

L

)
η ≤ 0 ≤ 2

(
1 − μ

L

)
. (68)

Rearranging the terms, we get

(1 + 2ηL)2ηL ≤ (1 − 2nημ) 2
(
1 − μ

L

)
. (69)

Note the fact that (1 − 2nημ) 2
(
1 − μ

L

)
<

(
1 − 2nημ2ηL

2ηL+1

)
2

(
1 − μ

L

)
< 2. We have (1 +

2ηL)2ηL is strictly less than
(
1 − 2ημ2ηL

2ηL+1

)
2

(
1 − μ

L

)
under η < 1

2L . After we substituting
1
κ
, c1, c2 into I1, (

1 + 1

β

)
1

β
≤

(
1 − 2ημn2ηL

2ηL + 1

)
2

(
1 − μ

L

)
, (70)

with the additional requirement for β that 2ηL < 1
β

≤ 1, we can guarantee that there exists
some β (e.g. taking the average) to satisfy the relationship,

(1 + 2ηL)2ηL <

(
1 + 1

β

)
1

β
≤

(
1 − 2ημn2ηL

2ηL + 1

)
2

(
1 − μ

L

)
. (71)
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Konečnỳ, J., & Richtárik, P. (2013). Semi-stochastic gradient descent methods. arXiv:1312.1666.
Lacoste-Julien, S., Schmidt, M., & Bach, F. (2012). A simpler approach to obtaining an o (1/t) convergence

rate for the projected stochastic subgradient method. arXiv:1212.2002.
Lu, Z. (2012). Sequential convex programming methods for a class of structured nonlinear programming.

arXiv:1210.3039.
Mairal, J. (2014). Incremental majorization-minimization optimizationwith application to large-scalemachine

learning. arXiv:1402.4419.
Nesterov, Y., & Nesterov, I. U. E. (2004). Introductory lectures on convex optimization: A basic course (Vol.

87). London: Springer.
Ouyang, H., He, N., Tran, L., & Gray, A. (2013). Stochastic alternating direction method of multipliers. In

Proceedings of the 30th international conference on machine learning (pp. 80–88).
Roux, N. L., Schmidt,M., &Bach, F. R. (2012). A stochastic gradient methodwith an exponential convergence

rate for finite training sets. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q.Weinberger (Eds.), Advances
in neural information processing systems (Vol. 25, pp. 2663–2671). Newry: Curran Associates.

Shalev-Shwartz, S., & Zhang, T. (2013). Stochastic dual coordinate ascent methods for regularized loss. The
Journal of Machine Learning Research, 14(1), 567–599.

Shamir, O., & Zhang, T. (2013). Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. InProceedings of the 30th international conference onmachine learning
(pp. 71–79).

Shen, X., & Huang, H.-C. (2010). Grouping pursuit through a regularization solution surface. Journal of the
American Statistical Association, 105(490), 727–739.

Suzuki, T. (2013). Dual averaging and proximal gradient descent for online alternating direction multiplier
method. In Proceedings of the 30th international conference on machine learning (ICML-13) (pp. 392–
400).

Suzuki, T. (2014). Stochastic dual coordinate ascent with alternating direction method of multipliers. In
Proceedings of the 31st international conference on machine learning (pp. 736–744).

Xiang, S., Tong, X., & Ye, J. (2013). Efficient sparse group feature selection via nonconvex optimization. In
Proceedings of the 30th international conference on machine learning (ICML-13) (pp. 284–292).

123

Author's personal copy

http://arxiv.org/abs/1407.0202
http://arxiv.org/abs/1312.1666
http://arxiv.org/abs/1212.2002
http://arxiv.org/abs/1210.3039
http://arxiv.org/abs/1402.4419


622 Mach Learn (2017) 106:595–622

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimization. Journal
of Machine Learning Research, 11, 2543–2596.

Xiao, L., & Zhang, T. (2014). A proximal stochastic gradient method with progressive variance reduction.
arXiv:1403.4699.

Yu, Y.-L. (2013). Better approximation and faster algorithm using the proximal average. In Advances in neural
information processing systems (pp. 458–466).

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38, 894–942.

Zhang, T. (2010). Analysis of multi-stage convex relaxation for sparse regularization. The Journal of Machine
Learning Research, 11, 1081–1107.

Zheng, S., & Kwok J. T. (2016). Fast-and-light stochastic ADMM. arXiv:1604.07070.
Zhong, W., & Kwok, J. (2014a). Fast stochastic alternating direction method of multipliers. In Proceedings of

the 31st international conference on machine learning (pp. 46–54).
Zhong, W., & Kwok, J. (2014b). Gradient descent with proximal average for nonconvex and composite

regularization. In AAAI conference on artificial intelligence.
Zhong, L. W., & Kwok, J. T. (2014c). Accelerated stochastic gradient method for composite regularization.

In Proceedings of the seventeenth international conference on artificial intelligence and statistics (pp.
1086–1094).

123

Author's personal copy

http://arxiv.org/abs/1403.4699
http://arxiv.org/abs/1604.07070

	Proximal average approximated incremental gradient descent for composite penalty regularized empirical risk minimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of PA and incremental gradient descent methods
	3.1 Proximal average
	3.2 Incremental gradient descent methods

	4 Accelerated proximal average approximated incremental gradient for ERM with convex composite penalty
	4.1 Overlapping group lasso and graph-guided fused lasso
	4.2 Incremental gradient proximal average for convex composite penalty regularized ERM
	4.3 Analysis of IncrePA-cvx
	4.4 Discussion

	5 Incremental proximal average for nonconvex composite penalty regularized ERM
	5.1 Two examples of nonconvex composite penalties in structured sparse estimation
	5.2 Related work
	5.3 Nonconvex extension of incremental gradient with PA
	5.4 Analysis of IncrePA-ncvx

	6 Experiments
	6.1 Experiment 1: Solving general convex loss function with convex composite penalty
	6.2 Experiment 2: Solving strongly convex loss function with convex composite penalty
	6.3 Experiment 3: Solving nonconvex composite penalty of capped ell1 overlapping croup lasso
	6.4 Experiment 4: Solving nonconvex composite penalty of capped ell1 graph-guided lasso

	7 Conclusion
	Acknowledgements
	Appendix: Proof of Theorems 1 and 2
	Proof of Theorem 1: General convex loss function case
	Verification of non-positiveness for general convex case in (44)
	Proof of Theorem 2: Strongly convex loss function case

	References




