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Principal component analysis (PCA) is widely used in dimensionality reduction. A lot of variants of PCA
have been proposed to improve the robustness of the algorithm. However, the existing methods either
cannot select the useful features consistently or is still sensitive to outliers, which will depress their
performance of classification accuracy. In this paper, a novel approach called joint sparse principal
component analysis (JSPCA) is proposed to jointly select useful features and enhance robustness to
outliers. In detail, JSPCA relaxes the orthogonal constraint of transformation matrix to make it have more
freedom to jointly select useful features for low-dimensional representation. JSPCA imposes joint sparse
constraints on its objective function, i.e., ℓ2,1-norm is imposed on both the loss term and the regular-
ization term, to improve the algorithmic robustness. A simple yet effective optimization solution is
presented and the theoretical analyses of JSPCA are provided. The experimental results on eight data sets
demonstrate that the proposed approach is feasible and effective.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dimensionality reduction is an important issue in data classi-
fication. It aims to learn a transformation matrix to project the
high-dimensional data into a low-dimensional subspace so that
the data can be effectively classified in the low-dimensional sub-
space. There are many methods for dimensionality reduction [1–5]
and the classical methods are principal component analysis (PCA)
[6–9] and linear discriminant analysis (LDA) [10–12]. PCA is an
unsupervised method, which projects data information into an
orthogonal linear space. LDA is a supervised method, which ex-
tracts discriminative data information by maximizing the inter-
class scatter matrix and at the same time minimizing the intra-
class scatter matrix [13,14].

It is well known that PCA is an unsupervised method and the
unsupervised methods are important in the practical applications
[15] since labeled data are expensive to obtain [16]. However, the
original PCA is sensitive to outliers since its covariance matrix is
derived from ℓ2-norm and ℓ2-norm is sensitive to outliers
[7,17,18]. Thus, PCA fails to deal with the outliers that often appear
in data sets in real-world applications. In terms of this problem,
many variants of PCA [18,19,16] have been proposed to reduce the
he@hitsz.edu.cn (Z. He),
p.hkbu.edu.hk (Y. Liu).
effect of outliers. One of the main strategies is to impose ℓ1-norm
on loss term [20,18,21,22,19]. In detail, PCA based on ℓ1-norm
maximization [18] uses a greedy strategy to solve the optimization
problem and easy to get stuck in a local solution. Robust principal
component analysis with non-greedy ℓ1-norm maximization
(RPCA) [19] is proposed to obtain a much better solution than that
in [18]. Recently, ℓ2,1-norm has caused wide research interests
[16,23,24]. Rotational invariant ℓ1-norm PCA [23] imposes
ℓ2,1-norm on loss term [16]. Optimal mean robust principal com-
ponent analysis (OMRPCA) [16] based ℓ2,1-norm is proposed to
learn the optimal transformation matrix and optimal mean si-
multaneously, which imposes ℓ2,1-norm on loss term.

Although the variants of PCA method mentioned above are able
to reduce the effect of outliers to some extent, one major dis-
advantage of them is that each new feature in low-dimensional
subspace is the linear combination of all the original features in
high-dimensional space. Therefore, it is usually not good for
classification due to the redundant features. Besides, it is often
difficult to interpret the new features. Actually, the interpretation
of the new features is very important especially when they have
physical meanings in many applications such as gene representa-
tion and face recognition. To facilitate interpretation, sparse
principal component analysis (SPCA) [25] is proposed. However,
SPCA has no ability to jointly select the useful features because the
ℓ1-norm is imposed on each transformation vector and ℓ1-norm
cannot select the consistent features. Moreover, SPCA still suffers
from the effect of outliers because the ℓ2-norm is imposed on loss
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term.
In this paper, we propose joint sparse principal component

analysis (JSPCA), which integrates feature selection into subspace
learning to exclude the redundant features. Specifically, JSPCA
imposes joint ℓ2,1-norms on both loss term and regularization
term. In this way, our method can discard the useless features on
one hand and reduce the effect of outliers on the other hand. The
main contributions are described as follows:

(1) JSPCA relaxes the orthogonal constraint of transformation
matrix and introduces another transformation matrix to together
recover the original data from the subspace spanned by the se-
lected features, which makes JSPCA have more freedom to jointly
select useful features for low-dimensional representation.

(2) Unlike PCA and its existing extensions, JSPCA uses joint
sparse constraints on the objective function, i.e., ℓ2,1-norm is im-
posed on the loss term and the transformation matrix, to do fea-
ture selection and learn the optimal transformation matrix
simultaneously.

(3) A simple yet effective optimal solution of JSPCA is provided.
Furthermore, a series of theoretical analyses including con-
vergence analysis, essence of JSPCA, and computational complex-
ity are provided to validate the feasibility and effectiveness of
JSPCA.

The remainder of this paper is organized as follows. In Section
2, we review some existing dimensionality reduction methods. In
Section 3, we present the JSPCA model with an effective solution.
In Section 4, we give the analyses of JSPCA in theory. In Section 5,
we perform experiments and provide the observations. Finally,
conclusion is drawn in Section 6.
2. Related work

In this section, we first give the basic notations and then review
several variants of PCA. Suppose the given data matrix is

= [ … ] ∈ ×X x x R, , n
m n

1 , where m denotes the original image space
dimensionality and n denotes the number of training samples.
Without loss of generality, { } =xj j

n
1 is assumed to have zero mean.

The problem of linear dimensionality reduction is to project the
data from the high-dimensional original space into a low-dimen-
sional subspace. That is, we need to find a transformation matrix

= [ … ] ∈ ×A a a a R, , , d
m d

1 2 with ⪡d m, where each transformation
vector ak is with m loadings ( = … )k d1, 2, , . Then, the transformed
data denoted by Y can be shown as follows:
Fig. 1. Motivations of JSPCA. (a) Illustration of two transformation matrices got by JSPC
means the non-zero loading. JSPCA can tell us that the third and the seventh features are
shows more robustness to outliers than PCA.
= ∈ ( )×Y A X R . 1T d n

Notations: For the matrix A, we denote the (i,j)-th element by aij,
the i-th row by Ai. In this paper, we denote = ∑ =A Ai

m i
2,1 1 2

,

where Ai
2
means the ℓ2-norm of vector Ai and =A A Ai i T i

2
.

The traditional PCA [6] based on ℓ2-norm aims to project the
high-dimensional data onto the low-dimensional linear subspace
spanned by the leading eigenvectors of the data covariance matrix.
RPCA [19] based on ℓ1-norm aims to be robust to outliers by im-
posing ℓ1-norm on the projected data. OMRPCA [16] based on
ℓ2,1-norm aims to remove optimal mean automatically and en-
hance the robustness to outliers by imposing ℓ2,1-norm on the loss
term.

All of the above methods focus on operating different norms
such as ℓ2-norm, ℓ1-norm, and ℓ2,1-norm on the loss term. Al-
though the above methods can get a prominent performance in
many cases, one common disadvantage of the above methods is
that each new feature is the linear combination of all the original
features. To this end, the regularization term imposed by different
norms is proposed to solve this problem. For example, based on
PCA, SPCA [25] is proposed to learn a sparse projection matrix,
where each new feature is the linear combination of some original
features. Based on spectral regression [26], sparse subspace
learning (SSL) [27] is proposed for learning a sparse projection
matrix, which first regress the low-dimensional projection data
and then solve the projection matrix. However, both SPCA and SSL
still cannot exclude the redundant features. Furthermore, based on
graph embedding [28], joint feature selection and subspace
learning (JFSSL) [2] is proposed to integrate the ability of feature
selection into subspace learning. Although JFSSL has the ability of
feature selection, it is sensitive to outliers.
3. Joint sparse principal component analysis

In this section, we first present the motivation of this work.
Then, we give the objective function of the proposed method. Fi-
nally, an iterative optimal solution is given for the proposed ob-
jective function.

3.1. Motivation of JSPCA

As the previous statement, SPCA attempts to interpret the se-
lection of features. Intuitively, we use the right subfigure in Fig. 1
A and SPCA, in which the white block means the zero loading and the gray block
the useless features while SPCA cannot. (b) On a data set with some outliers, JSPCA
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(a) to illustrate the learned transformation matrix by SPCA. Note
that each row of the transformation matrix corresponds to an
original feature while each column corresponds to a dimension-
ality of the subspace. For one fixed dimensionality of the subspace,
the feature with zero loading is not selected. For example, the first
four features are not selected on the second dimensionality but
they are selected on the remaining subspace dimensionality. Be-
sides, the eighth feature is not selected on the third dimensionality
but it is selected on the remaining subspace dimensionality; the
sixth feature is not selected on the sixth dimensionality but it is
selected on the remaining subspace dimensionality. Since the
feature loadings across all the subspace dimensionality cannot be
ignorable, it still cannot tell us that which features are really
useless as a whole. That is, the useless feature cannot be jointly
excluded by SPCA. Inspired by SPCA, we aim to learn a transfor-
mation matrix with row-sparsity, which is shown in the left sub-
figure in Fig. 1(a). In this way, the learned transformation matrix
can tell us that the third and seventh features are useless. This is
the reason that why we add ℓ2,1-norm on the transformation
matrix.

On the other hand, considering the largely appearing of outliers
in real-world applications, we utilize ℓ2,1-norm on loss term to
enhance the robustness to outliers. In order to test the robustness
to outliers of JSPCA, 200 points near a straight line are generated
with 20 outliers. Then, we apply PCA and JSPCA to this data set,
respectively. From Fig. 1(b), we can see that PCA is significantly
affected while JSPCA is affected much less. This is the reason that
why we add ℓ2,1-norm on loss term.

3.2. Objective function of JSPCA

Considering the outliers appearing in data sets and the con-
sistent selection of features, we propose the following optimiza-
tion formulation:

λ( ) = − +
( )

J Q P X PQ X Qarg min , arg min ,
2Q P Q P

T

, ,
2,1 2,1

where transformation matrix ∈ ×Q Rm d is first used to project the
data matrix X onto a low-dimensional subspace and another
transformation matrix ∈ ×P Rm d is then used to recover the data
matrix X. Here, we relax the orthogonal constraint of transfor-
mation matrix Q, introduce another transformation matrix P and
add joint ℓ2,1-norms on both loss term and regularization term. In
this way, JSPCA can have more freedom to learn a low-dimensional
subspace that approximates to high-dimensional data in a flexible
way. The loss term −X PQ XT

2,1
is not squared and hence it en-

hances the robustness to outliers. The penalty term Q 2,1 pena-
lizes all m regression coefficients corresponding to a single feature
as a whole and hence our method is able to jointly select features.
On the other hand, the regularization term Q 2,1 is convex and can
be easily optimized. λ ≥ 0, as a regularization parameter, is used to
balance the loss term and regularization term.

Directly solving Eq. (2) is difficult as both loss term and reg-
ularization term are non-smooth [1]. Using some mathematical
techniques for Eq. (2), we have,

( )

λ

λ

λ

λ

λ

− +

= (( − ) ( − )) + ( )

= (( − ) ( − )) + ( )

= (( ( − )) ( − )) + (( ) )

= ( − ) +
3

X PQ X Q

X PQ X D X PQ X Q D Q

X PQ X D D X PQ X Q D D Q

D X PQ X D X PQ X D Q D Q

D X PQ X D Q

arg min

arg min 2tr 2 tr

arg min tr tr

arg min tr tr

arg min .

Q P

T

Q P

T T T T

Q P

T T T T T T

Q P

T T T T

Q P

T
F F

,
2,1 2,1

,
1 2

,
1 1 2 2

,
1 1 2 2

,
1

2

2
2

Hence, Eq. (2) becomes,

λ( ) = ( − ) +
( )

J Q P D X PQ X D Qarg min , arg min ,
4Q P Q P

T
F F, ,

1
2

2
2

where

=
( − )

( − )
⋱ ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

D

X PQ X

X PQ X

1

2

1

2

,

5

T

T

1

1
2

2
2

and

=

⋱ ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

D

Q

Q

1

2

1

2

,

6

2

1
2

2
2

are two ×m m diagonal matrices. Note that ( − )X PQ XT i

( = … )i m1, 2, , means the i-th row of matrix −X PQ XT , and Qi

( = … )i m1, 2, , means the i-th row of matrix Q. When

( − ) =X PQ X 0T i
2

, we let =
ζ( − ) +

D ii

X PQ X
1

1

2 T i
2

(ζ is a very small

constant). Similarly, when =Q 0i
2

, we let =
ζ+

D ii

Q
2

1

2 i
2

. In this

way, the smaller the D ii
2 is, the more important the i-th feature is.

Moreover, we can see that if ( − )X PQ XT i
2
and Qi

2
are small, D1

and D2 are large and thus the minimization of
λ(( − ) ( − )) + ( )X PQ X D X PQ X Q D Q2tr 2 trT T T T

1 2 in Eq. (3) tends to force

( − )X PQ XT i
2
and Qi

2
to be a very small value. After several

iterations, some ( − )X PQ XT i
2
and ( = … )Q i m1, 2, ,i

2
may be

close to zero and thus we obtain a joint sparse Q and a small re-
construction loss.

Next, let = ¯D P P1 , and = ¯−
D Q Q1

1
. Then, the formulation in

Eq. (4) can be rewritten as,

λ− ¯ ¯ + ¯
( )¯ ¯

D X PQ D X D D Qarg min .
7Q P

T

F F,
1 1

2

2 1
2

In order to reduce the feature redundancy, we impose the ortho-

gonal constraint ¯ ¯ = ×P P I
T d d for Eq. (7). Then, we have,

( )

λ( ¯ ¯) = − ¯ ¯ + ¯

¯ ¯ =

¯ ¯ ¯ ¯

× 8

J Q P D X PQ D X D D Q

P P I

arg min , arg min ,

s.t. ,

Q P Q P

T

F F

T d d

, ,
1 1

2

2 1
2

where ¯ ∈ ×Q Rm d is first used to project the weighted data matrix

D X1 and ¯ ∈ ×P Rm d is then used to recover it.
3.3. The optimal solution

The solution of Eq. (8) is divided into the below two steps:
Step 1: Given P̄ , there exists an optimal matrix ⊥̄P such that

[ ¯ ¯ ]⊥P P, is ×m m column orthogonal matrix. Then, optimization
problem in Eq. (8) becomes,

λ− ¯ ¯ + ¯
( )¯

D X PQ D X D D Qarg min .
9Q

T

F F1 1

2

2 1
2

The first part of Eq. (9) can be rewritten as,
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− ¯ ¯ = − ¯ ¯

= [ ¯ ¯ ] − ¯ ¯ [ ¯ ¯ ]

= ¯ − ¯ ¯ ¯

+ ¯ − ¯ ¯ ¯

= ¯ − ¯ + ¯
( )

⊥ ⊥

⊥ ⊥

⊥

D X PQ D X X D X D QP

X D P P X D QP P P

X D P X D QP P

X D P X D QP P

X D P X D Q X D P

, ,

. 10

T

F
T T T

F

T T T

F

T T T

F

T T T

F

T T
F

T
F

1 1

2

1 1

2

1 1

2

1 1

2

1 1

2

1 1
2

1
2

Since P̄ is fixed, and ⊥̄X D PT

F1
2
is a constant, optimization pro-

blem in Eq. (8) becomes the following optimization problem:

λ¯ − ¯ + ¯
( )¯

X D P X D Q D D Qarg min .
11Q

T T
F F1 1
2

2 1
2

By the derivative of Eq. (11) with respect to Q̄ to be 0, we get,

λ¯ = ( + ) ¯ ( )−Q D D D D XX D D XX D P. 12T T
1 2 1 1 1

1
1 1

Hence,

λ= ( + ) ¯ ( )−Q D XX XX D P. 13T T
2

1
1

Step 2: Given Q̄ to compute P̄ , optimization problem in Eq. (8)
becomes,

− ¯ ¯ ¯ ¯ =
( )¯

×
D X PQ D X P P Iarg min , s.t. .

14P

T

F

T I
1 1

2 d d

The first part of Eq. (14) can be rewritten as,

− ¯ ¯

= (( − ¯ ¯ ) ( − ¯ ¯ ))

= (( − ¯ ¯ )( − ¯ ¯ ))

= ( − ¯ ¯ − ¯ ¯

+ ¯ ¯ ¯ ¯ )

= ( + ¯ ¯ ) − ( ¯ ¯) ( )

D X PQ D X

D X PQ D X D X PQ D X

X D X D QP D X PQ D X

X D X X D PQ D X X D QP D X

X D QP PQ D X

X D X X D QQ D X Q D XX D P

tr

tr

tr

tr 2tr . 15

T

F
T T T

T T T T

T T T T T

T T T

T T T T T

1 1

2

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1

Since Q̄ is given, Eq. (14) becomes,

( ¯ ¯) ¯ ¯ =
( )¯

×Q D XX D P P P Iarg min tr , s.t. .
16P

T T T d d
1 1

On the other hand, optimization problem in Eq. (14) is equal to,

− ¯ ¯ ¯ ¯ =
( )¯

×X D X D QP P P Iarg min , s.t. .
17P

T T T

F

T d d
1 1

2

The update of P̄ of minimizing Eq. (17) with the constraint of
¯ ¯ = ×P P I

T d d means that P̄ is orthogonal in the columns. In order to
compute P̄ , we introduce the following lemma [25].

Lemma 1. Let ×Zn m and ×Vn d be two matrices. Consider the con-
strained minimization problem,

− =
( )

×Z VP s t P P Iarg min , . . .
18P

T T d d2

Suppose the SVD of Z VT is EDUT , then the optimal solution is =P EUT .

According to Lemma 1, we have =Z V DT
1

¯XX D QT
1 . Let the

SVD of ¯ =D XX D Q EDUT T
1 1 , we have,

¯ = ( )P EU . 19T

Thus,

= ( )
−

P D EU . 20T
1

1

In fact, before we compute Q̄ in Eq. (12), we need to compute the
input of matrix P̄ , D1 and D2, which cannot be obtained directly.
Therefore, we need to compute them in the designed iterative
algorithm. Once P̄ , Q̄ , D1 and D2 are obtained, we can obtain P and
Q according to Eqs. (20) and (13). According to the obtained P and
Q, we get the new D1 and D2. Iterating the above procedures will
give the local optimal solutions of the algorithm. Algorithm 1 gives
the details.
4. Discussion and analysis

In this section, we will further give the theoretical analysis of
the proposed method, which includes convergence analysis, es-
sence of the optimization algorithm, connection to weighted PCA
and computational complexity analysis.
4.1. Convergence analysis

Before giving the proof of convergence of the proposed optimal
algorithm, we need to give the following lemma [29].

Lemma 2. For any nonzero vectors ∈p q R, c , the following result
holds:

− ≤ −
( )

p
p

q
q

q

q2 2
.

212
2
2

2
2

2
2

2

Based on Lemma 2, we give the following proposed theorem.

Theorem 1. Given all the variables in Eq. (2) except for P, Q, the
optimal problem in Eq. (2) will monotonically decrease the objective
function value in each iteration and converge to the local optimum
solution.

Proof. For simplicity, we denote the objective function in Eq. (2)
as ( ) = ( )J Q P J Q P D D, , , ,1 2 , suppose for the −t 1-th iteration, we
obtain ( − )P t 1 , ( − )Q t 1 , ( − )D t

1
1 and ( − )D t

2
1 . From Eq. (13), we can find that,

( ) ≤ ( ) ( )( ) ( − ) ( − ) ( − ) ( − ) ( − ) ( − ) ( − )J Q P D D J Q P D D, , , , , , . 22t t t t t t t t1
1

1
2

1 1 1
1

1
2

1

Since the SVD gives the optimal ( )P t that further decreases the
objective value, we have,

( ) ≤ ( ) ( )( ) ( ) ( − ) ( − ) ( − ) ( − ) ( − ) ( − )J Q P D D J Q P D D, , , , , , . 23t t t t t t t t
1

1
2

1 1 1
1

1
2

1

Once the optimal ( )P t and ( )Q t are obtained, we have,

λ

λ

(( − ) ( − )) + ( )

≤ (( − ) ( − ))

+ ( ) ( )

( ) ( ) ( − ) ( ) ( ) ( ) ( − ) ( )
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On one hand, according to Lemma 2, we have,
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Fig. 2. Visualization of some original data sets and their corresponding corruptions, where the original images from four data sets are shown in the first row and the
corresponding corrupted images are shown in the second row. Specifically, each image of AR and Yale data sets is corrupted by 10�10 block occlusions while ORL and
COIL20 data sets are corrupted by 10% salt & pepper noises.
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Using the matrix calculus for Eq. (26), we have the formulation as
follows:
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On the other hand, according to Lemma 2, we have,
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Similarly, using the matrix calculus for Eq. (28), we have the for-
mulation as follows:
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By combining Eqs. (25) and (27) with Eq. (29), we have,
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Table 1
Classification performance (average classification accuracy with standard deviation) on

Data sets Baseline PCA RPCA OM

ORL/3 0.745070.0314 0.743270.0288 0.801670.0201 0.8
ORL/5 0.850070.0281 0.863070.0265 0.863570.0321 0.8
ORL/7 0.923370.0292 0.904270.0297 0.935670.0245 0.9

AR/8 0.721870.0105 0.701770.0101 0.726270.0135 0.7
AR/13 0.733370.0088 0.742370.0197 0.739670.0153 0.7
AR/18 0.873370.0112 0.850770.0117 0.850870.0091 0.8

Yale/22 0.698470.0118 0.718870.0026 0.687370.0050 0.7
Yale/27 0.745770.0048 0.761570.0102 0.734270.0086 0.7
Yale/32 0.783170.0149 0.826670.1068 0.752070.0164 0.7
Therefore, the optimization problem in Eq. (2) can converge to the
local optimum solution. □

Algorithm 1. JSPCA algorithm
the fa

RPCA

0707
7107
3507

3087
4237
6127

1727
6527
7807
ut: Training sample set X, parameter λ, and dimensionality
d.

: Initialize = ×D Im m
1 , = ×D Im m

2 and random ¯ ×
P

m d.
: while not converge do
2.1: Compute Q̄ according to Eq. (12)
2.2: Compute Q according to Eq. (13)
2.3: Compute P̄ according to Eq. (19)
2.4: Compute P according to Eq. (20)
2.5: Compute D1 according to Eq. (5)
2.6: Compute D2 according to Eq. (6)
nd while
: Normalize each column vectors of Q to be identity vectors.
tput: Transformation matrix Q.
Ou

4.2. Essence of JSPCA

4.2.1. The intrinsic relationship between P and Q
In order to explore the essence of P and Q in Eq. (2), we need to

explore the essence of P̄ and Q̄ in Eq. (8).
Substituting Eq. (12) into Eq. (16), we get the following opti-

mization problem:

λ( ¯ ( + )

¯) ¯ ¯ = ( )

¯

−

×

P D XX D D D D D XX D D

XX D P P P I

arg min tr

, s.t. . 32

P

T T T

T T d d

1 1 1 2 1 1 1
1

1

1

It is clear that the optimal solution P̄ is the standard eigende-
composition of the following eigen equation:

λ Σ( + ) ¯ = ¯ ( )−D XX D D D D D XX D D XX D P P , 33T T T
1 1 1 2 1 1 1

1
1 1

where Σ is the eigenvalue matrix. Therefore, P̄ contains the ei-
genvectors corresponding to the larger eigenvalues of Eq. (33).
If P̄ contains all the eigenvectors of Eq. (33), since Eqs. (12)
and (33) can be rewritten as Σ¯ = ¯D XX D Q PT

1 1 . Furthermore,
cial data sets with different training samples.

SPCA SSL JSPCA

0.0148 0.764170.0289 0.730070.0268 0.809570.0176
0.0224 0.864070.0227 0.869070.0201 0.905070.0236
0.0257 0.919870.0211 0.921770.0173 0.939270.0241

0.0063 0.760870.0152 0.763670.0215 0.770070.0122
0.0138 0.809070.0267 0.816970.0075 0.820670.0152
0.0056 0.868270.0200 0.874570.0089 0.878070.0172

0.0078 0.656070.0313 0.751870.0187 0.770070.0086
0.0114 0.708170.0222 0.773670.0103 0.813570.0085
0.0130 0.736070.0702 0.795870.0130 0.8455 70.1085



Fig. 3. Classification accuracies of some subspace learning methods versus the dimensions on six data sets.
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Σ¯ ¯ =P D XX D Q
T T

1 1 .
From the above analysis, we can obtain the following interesting

conclusions: If λ > 0, Q̄ is sparse in row, Eq. (12) indicates that the
optimization solution for the objective function in Eq. (2) is to find a
row-sparse matrix Q̄ ( = ¯Q D Q1 ) and an orthogonal matrix P̄

( )= ¯−
P D P1

1
to diagonalize λ( + )−D XX D D D D D XX DT T

1 1 1 2 1 1 1
1

D XX DT
1 1 . When D XX DT

1 1 is full rank, if λ = 0 or λ → 0, Q̄ is not

sparse and ¯ = ¯Q P( =Q D P1 ) or ¯ → ¯Q P ( →Q D P1 ). At this moment, the
optimal solution in Eq. (2) aims to find the optimal non-sparse col-
umn orthogonal matrix Q̄ ( = ¯Q D Q1 ) to diagonalize scatter matrix

D XX DT T
1 1 , i.e., Σ¯ ¯ =Q D XX D Q

T T
1 1 or Σ¯ ¯ →Q D XX D Q

T T
1 1 .

This is the degenerated weighted PCA, which is similar to the tradi-
tional PCA but differ from it.
4.2.2. Connection to weighted PCA
When λ = 0, Eq. (8) becomes,



Fig. 4. Projection matrix got by JSPCA on six data sets.
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( ¯ ¯) = − ¯ ¯

¯ ¯ = ( )

¯ ¯ ¯ ¯

×

J Q P D X PQ D X

P P I

arg min , arg min ,

s.t. . 34

Q P Q P

T

F

T d d

, ,
1 1

2

In fact, when λ = 0, we get ¯ = ¯P Q which have been discussed in
Section 4.2.1. At this moment, we have,

− ¯ ¯ = − ¯ ¯
( )D X PQ D X D X QQ D X . 35

T

F

T

F1 1

2

1 1

2

Obviously, the optimal Q̄ under this case is exactly the first d
transformation vectors of weighted scatter matrix ( )( )D X D X T

1 1 .
Therefore, the proposed method can degenerate into weighted
PCA whose weight matrix D1 is adaptive and can be induced by
Table 2
Classification performance (average classification accuracy with standard deviation) on

Data sets Baseline PCA RPCA OM

COIL20/4 0.797270.0274 0.8132 70.0187 0.776970.0275 0.7
COIL20/5 0.818270.0238 0.827970.0230 0.810170.0204 0.8
COIL20/6 0.844270.0149 0.852770.0225 0.844170.0156 0.8

USPS/10 0.814970.0114 0.819170.0140 0.777470.0208 0.8
USPS/15 0.842070.0112 0.8460 70.0102 0.812670.0105 0.8
USPS/20 0.874370.0086 0.8767 70.0097 0.848570.0090 0.8

Isolate/4 0.682070.0162 0.702170.0159 0.644870.0216 0.6
Isolate/5 0.711970.0110 0.718770.0198 0.667770.0261 0.7
Isolate/6 0.723470.0222 0.722170.0128 0.671470.0172 0.7

MNIST/20 0.782270.0134 0.793270.0059 0.765370.0145 0.7
MNIST/30 0.814070.0055 0.829770.0097 0.799270.0143 0.8
MNIST/40 0.838970.0074 0.8547 70.0050 0.830770.0065 0.8

COIL100/10 0.789970.0055 0.816570.0054 0.811770.0075 0.8
COIL100/20 0.877370.0051 0.902270.0059 0.895870.0096 0.9
COIL100/30 0.920370.0034 0.940170.0036 0.931070.0091 0.9
the penalty term Q 2,1 itself. It is just the weight matrix D1 that
makes our method robust to outliers. In other words, the essence
of JSPCA is to add the sparsity to weighted PCA.

4.2.3. The learned subspace by JSPCA
According to the statement in Section 4.2.1, when λ = 0, the

proposed JSPCA can degenerate into weighted PCA whose gen-
eralized eigen equation is shown as follows:

ξ αξ( )( ) = ( )D X D X . 36T
1 1

Obviously, ( )( )D X D X T
1 1 is a symmetric matrix. Then, we have

Λ(( )( ) ) =SVD D X D X E ET T
1 1 . Equivalently, we have ( )D X1

Λ( ) =D X E ET
1 . Therefore, the first d eigenvectors corresponding to
the non-facial data sets with different training samples.

RPCA SPCA SSL JSPCA

84170.0293 0.805670.0233 0.766570.0216 0.801370.0234
10370.0287 0.8349 70.0172 0.779970.0145 0.811770.0231
38370.0147 0.8679 70.0122 0.811470.0156 0.815370.0090

19570.0142 0.815470.0137 0.815870.0131 0.8199 70.0131
44970.0112 0.843570.0114 0.833770.0088 0.844670.0120
76170.0082 0.874870.0085 0.869070.0071 0.875670.0083

97570.0203 0.693770.0161 0.7231 70.0212 0.690570.0052
04970.0229 0.717570.0069 0.7411 70.0071 0.696570.0248
18170.0142 0.725270.0142 0.7507 70.0140 0.707770.0188

96970.0062 0.7990 70.0102 0.736870.0154 0.794470.0041
312 70.0080 0.826470.0072 0.766570.0042 0.819070.0075
54270.0050 0.852570.0075 0.784970.0091 0.837470.0103

19270.0058 0.805170.0041 0.779970.0081 0.8201 70.0031
113 70.0066 0.896770.0080 0.866970.0065 0.901870.0045
453 70.0044 0.939570.0047 0.914870.0020 0.939470.0067



Table 3
Classification performance (average classification accuracy with standard deviation) on eight corrupted data sets with different training samples.

Data sets PCA RPCA OMRPCA SPCA SSL JSPCA

ORL/5 0.840070.0200 0.820070.0199 0.845070.0128 0.840070.0209 0.688070.0261 0.8600 70.0145
AR/13 0.614770.0063 0.595570.0195 0.614770.0088 0.672470.0067 0.686370.0173 0.6904 70.0192
Yale/32 0.694570.0288 0.659470.0291 0.694570.0168 0.706270.0200 0.282570.0268 0.7204 70.0112
COIL20/4 0.736870.0116 0.746370.0191 0.736070.0198 0.739070.0109 0.659470.0168 0.7507 70.0092
USPS/20 0.852570.0104 0.795670.0197 0.8528 70.0197 0.848270.0117 0.804970.0103 0.845470.0147
Isolate/4 0.6599 70.0134 0.577170.0238 0.659970.0182 0.655270.0309 0.617670.0185 0.646370.0179
MNIST/40 0.840170.0074 0.779370.0114 0.8416 70.0091 0.840770.0077 0.739870.0181 0.808470.0075
COIL100/10 0.665270.0102 0.655870.0055 0.676670.0093 0.688570.0087 0.527470.0125 0.7976 70.0093

Fig. 5. Classification accuracies of some subspace learning methods versus the dimensions on six corrupted data sets.
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the increasing ordered eigenvalues of the eigenfunction of Eq. (36)
are exactly the first d columns of E. Φ = { }span E is the subspace
spanned by eigenvectors of the generalized eigenfunction (36) of
weighted PCA.

In the following, we discuss the relationship between Q got by
JSPCA and the eigenvectors of Eq. (36).

Substituting Eq. (19) into Eq. (13), we have,

λ= ( + ) ( )−Q D XX XX D EU . 37T T T
2

1
1

Note that when λ → 0 and XXT is full rank, we have →Q D EUT
1 .

Denote our sparse subspace as Ω. Then, Ω = { } →span Q span
Φ{ } = { } =D E span E1 . When =D I1 , Eq. (36) becomes ξ αξ=XXT ,

which is the eigen equation of traditional PCA. The D1 in JSPCA is
not usually I.

4.3. Computational complexity analysis

The main computational complexity of JSPCA have two steps in
each iteration, the first step is to compute λ= ( + ) ¯−Q D XX XX D PT T

2
1

1

with ( )O m3 . The second step is to compute the SVD of
¯ =D XX D Q EDUT T

1 1 , whose computational complexity is also

( )O m3 at most. Therefore, the computational complexity of one
iteration will be up to ( )O m3 . If the algorithm needs t iteration steps,
then the total computational complexity is in the order of ( )O tm3 .
5. Experiments

To evaluate JSPCA, we compare it with the traditional PCA and
its variants including PCA [6], RPCA [19], OMRPCA [16], SPCA [25],
and SSL [27]. In order to compare the dimensionality reduction
performance of different methods objectively and persuasively, we
test these methods on each data set using the nearest neighbor
(NN) classifier to obtain the classification accuracy.

Additionally, in order to test the robustness to outliers of JSPCA,
we simulate the following two levels of corruptions:

(1) Block occlusions: The block occlusions are randomly added
to different locations in each image with block size of 10�10.

(2) Random pixel corruptions: The pixels are randomly chosen
from each image and corrupted by salt & pepper noises. The rate of
corrupted pixels is 10%.

Our experiments are divided into two groups: One is the ex-
periments on the original data sets; the other is the experiments
on the corrupted data sets. The so-called corrupted data sets are
constructed in this way: we add the block occlusions on AR and
Yale (Extended Yale B) data sets; we add random pixel corruptions
Fig. 6. Parameter selecti
on ORL, COIL20, USPS, Isolate, MNIST, and COIL100 data sets. Fig. 2
shows some original images in the first row and the corresponding
corrupted images in the second row.

5.1. Data sets

The ORL face data set, including frontal views of faces with
different facial expressions and lighting conditions, contains 40
individuals and each individual contains 10 face images. Here, we
resize each image to 56�46 pixels.

The AR face data set [30,31], including frontal views of faces
with different facial expressions, lighting conditions and occlu-
sions (glasses and scarf), contains 120 individuals in which each
individual contains 26 images. Here, we resize each image to
50�40 pixels.

The Yale face data set [32,33] contains 2414 frontal face images
of 38 individuals [32] under different lighting conditions. Each
individual contains about 64 images and half of the images are
corrupted by shadows or reflection. Here, each image is cropped
and resized to 50�40 pixels.

The COIL20 image data set [34] contains 20 individuals in
which each individual contains 72 images and each image is taken
at pose intervals of 5°. Here, each image is converted to a gray-
scale image of 32�32 pixels.

The USPS data set [35] contains totally 9298 digit images from
0 to 9, each of which is of size 16�16 pixels, with 256 gray levels
per pixel.

The used Isolate data set [36] contains totally 150 speakers
who spoke the name of each letter of the alphabet twice. The
speakers are grouped into sets of 30 speakers each and are re-
ferred to as Isolate1 through isolate5. Here, we refer Isolate1 as
the used Isolate data set where the dimensionality is 617 and
size is 1560.

The used MNIST data set (http://www.cad.zju.edu.cn/home/
dengcai/Data/MLData.html) contains totally 4000 digit images
from 0 to 9, each of which is of size 28�28 pixels, with 784 gray
levels per pixel.

The COIL100 data set (http://www.cad.zju.edu.cn/home/deng
cai/Data/MLData.html) contains 100 individuals in which each
individual contains 72 images and each image is taken at pose
intervals of 5°. Here, each image is converted to a gray-scale image
of 32�32 pixels.

5.2. Experiments on the original data sets

5.2.1. Experiments on the facial data sets
On the ORL data set, we randomly select 3, 5, and 7 samples
on on six data sets.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html


Fig. 7. Objective value versus iteration number on six data sets.

Fig. 8. Visualization of the first ten bases images of JSPCA on different data sets. Each basis image corresponds to a basis vector from projection matrix Q.
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from per individual as training set and use the remaining as
testing set. On the AR data set, we randomly select 8, 13, and 18
samples from per individual as training set and use the remaining
as testing set. On the Yale data set, we randomly select 22, 27, and
32 samples from per individual as training set and use the re-
maining as testing set. When the optimal subspace dimensionality
is fixed, the optimal transformation matrix with row-sparsity is
learned and used for feature extraction. On each data set, each
experiment is independently performed 20 times and the average
classification accuracy with standard deviation are calculated and
reported in Table 1. Figs. 3(a)–(c) show the variations of the
classification accuracy with different subspace dimensionality.
From Fig. 3(a), the experimental results show that JSPCA obtains
the best classification accuracy on the 30th dimensionality. From
Fig. 3(b), we can see that the classification accuracy of each
method varies with different subspace dimensionality, in which 13
samples per individual are randomly selected as the training set
and the remaining is used as testing set. The experimental results
show that JSPCA can obtain the best classification accuracy com-
pared with the other methods. From Fig. 3(c), the experimental
results show that JSPCA can obtain the best classification accuracy
compared with the other methods.



Table 4
Reconstruction error comparisons of six PCA methods on the training samples of
COIL20 data set using different dimensions.

Methods 10 20 30 40 50 60

PCA ×1.8442 105 ×1.4265 105 1.2485
× 105

1.0937
× 105

9.9127

×104

9.1058

×104

RPCA 2.0528 × 105 1.5905 × 105 1.3409
× 105

1.2248
× 105

1.0911
× 105

9.6751

×104

OMRPCA 1.9450 × 105 1.4503 × 105 1.2750
× 105

1.1498
× 105

1.0348
× 105

9.6341

×104

SPCA 4.5913 × 105 4.4378 × 105 4.3226
× 105

4.1953
× 105

4.1361
× 105

4.1428
× 105

SSL 4.5851 × 105 4.5392 × 105 4.5264
× 105

4.5236
× 105

4.5375
× 105

4.5386
× 105

JSPCA 2.4480 × 105 2.0410 × 105 1.8658
× 105

1.8138
× 105

1.7298
× 105

1.6691
× 105

Table 5
Reconstruction error comparisons of six PCA methods on the training samples of
AR data set using different dimensions.

Methods 50 60 70 80 90 100

PCA 2.3924 ×
106

2.2343 ×
106

2.0741 ×
106

1.9710 ×
105

1.9196 ×
106

1.8540 ×
106

RPCA 2.5253 ×
106

2.4010 ×
106

2.2146 ×
106

2.1242 ×
106

2.1115 ×
106

1.9867 ×
106

OMRPCA 2.3622 ×
106

2.2078 ×
106

2.0536 ×
106

1.9511 ×
106

1.8988 ×
106

1.8348 ×
106

SPCA 8.6334 ×
106

8.3803 ×
106

8.1822 ×
106

7.9305 ×
106

7.7310 ×
106

7.4437 ×
106

SSL 9.8424 ×
106

9.8421 ×
106

9.8418 ×
106

9.8413 ×
106

9.8412 ×
106

9.8410 ×
106

JSPCA 3.5027 ×
106

3.4986 ×
106

3.5156 ×
106

3.5730 ×
106

3.5860 ×
106

3.6118 ×
106
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In fact, it is difficult to get high classification accuracy on these
facial data sets due to the different variations such as occlusions in
AR, illuminations in Yale and pose variations in ORL. However, the
experimental results from Table 1 and Figs. 3(a)–(c) show that
JSPCA can obtain the better classification accuracy than other
compared methods. This is because JSPCA uses the ℓ2,1-norm to
constrain the projection matrix. In this way, the projection matrix
with row-sparsity can indicate the importance degree of the fea-
tures. On the other hand, JSPCA uses the ℓ2,1-norm to constrain the
loss term, and the loss term can be gradually trending to the
smaller value by D1 (see Eq. (5)). Therefore, JSPCA is robust to the
negative influence of the data set with complicated variations to
some extent. The obtained projection matrix is intuitively dis-
played in the first row of Fig. 4.

5.2.2. Experiments on the non-facial data sets
On the COIL20 data set, we randomly select 4, 5, and 6 samples

from per subject as training set and use the remaining as testing
set. On the USPS data set, we randomly select 10, 15, and 20
samples from per subject as training set and use the remaining as
testing set. On the Isolate data set, we randomly select 4, 5, and
6 samples from per subject as training set and use the remaining
as testing set. When the optimal subspace dimensionality is fixed,
the optimal transformation matrix with row-sparsity is learned
and used for feature extraction. Each experiment is independently
performed 20 times and the average classification accuracy with
standard deviation are calculated and reported in Table 2. Figs. 3
(d)–(f) show the variations of the classification accuracy with dif-
ferent subspace dimensionality. From Fig. 3(d), the experimental
results show that JSPCA obtains the approximated classification
accuracy with the other compared methods. From Fig. 3(e), the
experimental results show that JSPCA obtains the approximated
classification accuracy with the other compared methods. From
Fig. 3(f), the experimental results show that SSL obtains the best
classification accuracy and JSPCA gets an approximated result to
SSL. To sum up, from Table 2 and Figs. 3(d)–(f), we can see that the
experimental results obtained by JSPCA approximate to that of
other compared methods. The obtained projection matrix on some
non-facial data sets are intuitively displayed in the second row of
Fig. 4.

5.3. Experiments on the corrupted data sets

Table 3 lists the experimental results with the optimal subspace
dimensionality on the eight corrupted data sets where ORL face
data set uses 5 samples per individual as the training set, AR face
data set uses 13 samples per individual as the training set, Yale
face data set uses 32 samples per individual as the training set,
COIL20 data set uses 4 samples per subject as the training set,
USPS data set uses 20 samples per subject as the training set, and
Isolate data set uses 4 samples per subject as the training set. Fig. 5
shows the variation of the classification accuracy of each method
versus the different dimensionality on the corrupted data set.
Compared with Fig. 3, we can see that JSPCA not only outperforms
the other compared methods on the three original facial data sets,
but also outperforms them on the corrupted non-facial data sets.
Moreover, JSPCA approximates the OMRPCA and SPCA on the
corrupted non-facial data sets.

Although JSPCA performs well on the corrupted data sets
compared to the other methods, JSPCA suffers from the influence
of random corruptions inevitably due to its ability of feature se-
lection. Therefore, JSPCA is more robust to the slight complicated
variations in the original data sets rather than the added random
corruptions on the original data sets.

5.4. Parameter settings

For the proposed optimization problem in Eq. (9), there are one
parameter, i.e., λ. We first use the grid search method to search the
optimal parameter λ in the scope of [ ]−10 , 106 6 , and then narrow
the search scope to be [ ]0, 6.4 . As can be seen, Fig. 6 shows the
influence of different settings of λ on six data sets. On ORL data set,
the impact is small and the more robust parameter range is
[ ]0.05, 0.8 . On AR data set, the best classification performance can
be got when λ = 0.05 and the more robust parameter range is
[ ]0, 0.8 . On Yale data set, the best classification performance is got
when λ = 0.05 and the more robust parameter range is [ ]0, 0.8 . On
COIL20 data set, the best classification performance corresponds to
λ = 0.2 and the more robust parameter range is [ ]0, 0.4 . On USPS
and Isolate data sets, the best classification performance corres-
ponds to λ = 0.05. We can see that JSPCA can achieve better
classification performance over a reasonable range of λ, and is
robust to the different settings of λ as long as the values are in the
reasonable range. Overall, the better classification performance is
usually achieved when λ is close to 0.05. However, when λ → 0,
the classification accuracy will decrease. This indicates that the
regularization parameter λ is also important for JSPCA to achieve
its best performance.

5.5. Observations

Based on the experimental results shown in the above sub-
sections, we have the following observations and analyses:

(1) Sparsity of JSPCA: The regularization term of JSPCA is im-
posed by ℓ2,1-norm, which is defined to encourage the rows of the
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projection matrix to be zero. Hence, the projection matrix Q can be
used to indicate the significance of the features, which are in-
tuitively displayed in Fig. 4. This shows that the regularization
term of JSPCA imposed by ℓ2,1-norm can exclude the redundant
features and improve the classification performance.

(2) Convergence of JSPCA: Theoretical analysis in Section 4.1
indicates that JSPCA is convergent. Fig. 7 shows the convergence
curves of JSPCA on six data sets where the max iteration number is
140.

(3) Bases images of JSPCA: To further observe JSPCA, we give the
bases images of JSPCA on four data sets (see Fig. 8). Specifically, for
the facial data sets, the selected features are those important
features such as eyes, nose, mouth, and facial contour. For those
non-facial data sets, the selected features are the different con-
tours of different subjects.

5.6. Discussion

In this paper, JSPCA is proposed to find representative features
from the original high-dimensional space. The found re-
presentative features have been used for classification tasks. Al-
though JSPCA outperforms the other PCA methods in most of
classification experiments, a series of PCA methods including
JSPCA achieve the low classification accuracy overall. This is be-
cause these PCA methods do not use class labels to extract dis-
criminative features. Any dimensionality reduction method with-
out using class labels does not always extract effective features for
classification. In the future, our method would be extended to the
supervised method to solve the skewed/imbalanced classification
problem.

In order to further rich the proposed method, the found re-
presentative features are also used for reconstruction experiments
as shown in Tables 4 and 5.

From these two tables, we can see that JSPCA achieves a better
reconstruction than SPCA and SSL. This is because JSPCA is able to
select the effective features for reconstruction while SPCA and SSL
are not. Moreover, JSPCA has a worse reconstruction than PCA,
RPCA, and OMRPCA. This is a matter of course because JSPCA in-
evitably suffers from the loss of some information.
6. Conclusion

In this paper, JSPCA is designed by relaxing the orthogonal
constraint of transformation matrix Q, introducing another trans-
formation matrix P and imposing joint ℓ2,1-norms on both loss
term and regularization term. The proposed method has more
freedom to jointly select the useful features for a low-dimensional
representation and is robust to outliers. A simple yet effective al-
gorithm is designed for the optimization problem. A series of
theoretical analyses are discussed which reveal some intrinsic
qualities of the proposed method. In essence, JSPCA is the
weighted PCA with sparsity. Experiments on eight benchmark data
sets show the feasibility and effectiveness of JSPCA compared to
the original PCA and its variants.
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