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a b s t r a c t 

Single sample per person face recognition is one of the most challenging problems in face recognition 

(FR), where only single sample per person (SSPP) is enrolled in the gallery set for training. Although the 

existing patch-based methods have achieved great success in FR with SSPP, they still have limitations 

in feature extraction and identification stages when handling complex facial variations. In this work, we 

propose a new patch-based method called Robust Heterogeneous Discriminative Analysis (RHDA), for FR 

with SSPP. To enhance the robustness against complex facial variations, we first present a new graph- 

based Fisher-like criterion, which incorporates two manifold embeddings, to learn heterogeneous dis- 

criminative representations of image patches. Specifically, for each patch, the Fisher-like criterion is able 

to preserve the reconstruction relationship of neighboring patches from the same person, while sup- 

pressing the similarities between neighboring patches from the different persons. Then, we introduce 

two distance metrics, i.e., patch-to-patch distance and patch-to-manifold distance, and develop a fusion 

strategy to combine the recognition outputs of above two distance metrics via a joint majority voting for 

identification. Experimental results on various benchmark datasets demonstrate the effectiveness of the 

proposed method. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face recognition (FR) has been receiving considerable attentions

n both computer vision and pattern recognition because of its po-

ential applications in video surveillance [1–3] , access control [4,5] ,

erson re-identification [6,7] , visual tracking [8,9] , just to name a

ew. In spite of great achievement in the past decades, FR is still

ecoming a challenging task due to many types of facial varia-

ions in a query face, e.g., illuminations, shadows, poses, expres-

ions, disguises, occlusions, and misalignments [10] . 

In many practical FR systems, e.g., law enforcement, ID card

dentification, and airport surveillance, there is only one single

ample per person (SSPP) when considering their limited storage

nd privacy policy [11] . As a result, it becomes particularly in-

ractable for FR with SSPP when within-class information is not

vailable to predict the unknown facial variations in query sam-

les. Therefore, a variety of existing discriminative subspace learn-

ng methods such as linear discriminant analysis (LDA) [12] and
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ther Fisher-based methods [13–15] would fail to work in such a

cenario. Moreover, the recent emerging representation-based clas-

ifiers, e.g., sparse representation-based classifier (SRC) [16] and

ollaborative representation-based classifier (CRC) [17] , also suffer

rom heavy performance degeneration, since these classifiers still

equire multiple within-class training samples to reasonably repre-

ent query samples. 

To address the SSPP problem in FR, various methods have been

eveloped recently, which can be roughly classified into two cat-

gories [18] : holistic methods and local methods. Holistic meth-

ds [19–22] identify a query sample using the whole face im-

ge as input. For holistic methods, the main idea is to enlarge

raining samples to acquire within-class information. As described

n [23] , there are two main directions: virtual sample generation

nd generic learning. Virtual sample generation synthesizes vir-

ual samples by virtue of the real training samples. For example,

PCA [24] and SVD-LDA [25] generate virtual samples based on sin-

ular value decomposition (SVD) perturbation. Nevertheless, one

ajor shortcoming of these methods is that the virtual samples

re always highly correlated to the gallery samples and thus can

ardly be considered as independent samples for feature extrac-

ion [23] . In contrast with virtue sample-based methods, generic

earning methods usually introduce an auxiliary generic set with
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Fig. 1. Comparison of the proposed Fisher-like criterion in RHDA with the graph- 

based Fisher criteria in DMMA and SDMME. The points with the same color (or 

shape) indicate patches from the same person. 
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persons not of interest to supplement the raw SSPP gallery set. For

example, Wang et al. [26] proposed a generic learning frame-

work to estimate approximated within-class scatter from generic

set provided that different sets of persons share similar within-

class variations. Representative methods under this framework in-

clude extended SRC (ESRC) [19] , superposed SRC (SSRC) [27] , sparse

variation dictionary learning (SVDL) [20] , collaborative probabilis-

tic labels (CPL) [28] , etc. Although this kind of holistic methods

can alleviate the SSPP problem to some extent, their performance

depends heavily on the elaborately selected generic set. For exam-

ple, the desired generic set is always required to (1) share similar

shooting situations with the gallery set, and (2) contain adequate

facial variations to help predict the unknown variations in query

samples. However, in practical applications, it would be a tough

task to collect sufficient generic samples satisfying such require-

ments. 

For local methods, they recognize a query sample by leverag-

ing local facial features. Usually, a common way to generate local

features is to partition a face sample into several overlapping/non-

overlapping image patches. Thus, this type of local methods [29–

32] is also called patch-based methods, in which each partitioned

patch of a face sample is assumed to be an independent sam-

ple of this person (i.e., class). Based on this assumption, re-

searchers extended conventional subspace learning methods and

representation-based classifiers, e.g., PCA, LDA, SRC, and CRC, to

the corresponding patch-based counterparts, i.e., modular PCA [33] ,

modular LDA [34] , patch-based SRC (PSRC) [16] and patch-based

CRC (PCRC) [29] . Subsequently, they performed SSPP FR via inte-

grating the recognition outputs of all partitioned patches. Further-

more, Lu et al. [23] developed a discriminative multi-manifold

analysis (DMMA) method provided that the partitioned patches

of each person lie in an individual manifold, hence converting FR

to a manifold-manifold matching problem. Based on this work,

Yan et al. [35] proposed a multi-feature multi-manifold learning

method by combining multiple local features to promote recog-

nition performance. Zhang et al. [31] modified DMMA and pro-

posed a sparse discriminative multi-manifold embedding (SDMME)

method by leveraging another sparse graph-based Fisher criterion

to learn a discriminative subspace for partitioned patches. 

Recently, a few attempts [36,37] have been made to incorporate

generic learning into patch-based methods for SSPP FR. For exam-

ple, Zhu et al. [36] extracted the patch variation dictionary from

the generic set, then concatenated them with the gallery patch dic-

tionary to measure the representation residual of each query patch.

These methods have been reported to achieve much better per-

formance compared to the existing patch-based methods for SSPP

FR. However, the desired generic set of them is still difficult to be

collected in practice, like generic learning methods. Therefore, we

only focus on the patch-based methods without generic learning

in this work. 

Despite inspiring performance achieved by the existing patch-

based methods for SSPP FR, these methods still suffer from two

major drawbacks: 

(i) For feature extraction , the graph-based Fisher criteria applied

in the state-of-the-art patch-based methods, i.e., DMMA and

SDMME, cannot generate representations (i.e., features) that

are discriminative enough. Note that LE-graph [38] and l 1 -

graph [39] are two prevalent graphs that characterize the

similarity relationships and reconstruction relationships for

image data, respectively. Then, for the above two patch-

based methods, 
• DMMA preserves LE-graph for the within-class patches,

meanwhile destroying LE-graph for the between-class

patches (see Criterion I in Fig. 1 ). In doing so, the neigh-

boring within-class patches will be pulled close to each
other while the neighboring between-class patches will

be kept far apart in the learned subspace. Nevertheless,

in this criterion, the crucial reconstruction structure of

the within-class patches is neglected, which may cause

the recovered subspace structure to be skewed from the

intrinsic subspace structure. 
• SDMME preserves l 1 -graph for the within-class patches,

meanwhile destroying l 1 -graph for the between-class

patches (see Criterion II in Fig. 1 ). In this criterion, al-

though the reconstruction structure and the similarity re-

lationships of the within-class patches both can be re-

served, the between-class patches may still have chance

to stay nearby because destroying the between-class re-

construction relationship is a weaker penalty compared

to directly suppressing the similarities of the between-

class patches. Moreover, it would be time-consuming to

compute the reconstruction coefficients of the between-

class patches in SDMME, as the number of between-class

patches is much larger than the number of within-class

patches. 

(ii) For identification , it is believed that, given a patch from a

query sample, it should be (1) similar to the patch in the

same position, or/and (2) well reconstructed by its neigh-

boring patches, of the same person in the gallery set. How-

ever, existing patch-based methods only consider one of the

two observations (i.e., distance metrics), which is inadequate

when handling complex facial variations. For example, PSRC

and PCRC simply leverage the similarities of patches in the

same position to identify a query patch. However, when

there exist pose variations or misalignments in the query

sample, the patches of the same position between query

and gallery sample do not match to each other probably,

thus leading the query patch to be easily misclassified. Be-

sides, DMMA and SDMME simply compute the reconstruc-

tion residual between the query patch and its neighbor-

ing patches in the gallery sample for identification. How-

ever, this reconstruction-based distance metric is quite sen-

sitive to the facial variations such as severe illuminations

and shadows in query samples. 

To address the above two issues, we propose a new patch-

ased method called Robust Heterogeneous Discriminative Analysis

RHDA), for FR with SSPP. 

For the first issue, based on the purposes of the reconstruction-

ased l -graph and the similarity-based LE-graph, we propose a
1 
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Fig. 2. The flowchart of the proposed RHDA method. The left blue arrows and the 

right red arrows represent the flows of the DSME associated with patch-to-patch 

distance metric and DMME associated with patch-to-manifold distance metric in 

RHDA, respectively. 
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ew graph-based Fisher-like criterion in RHDA model to conduct

iscriminant analysis across both l 1 -graph and LE-graph. The for-

er preserves the sparse reconstruction relationship of the neigh-

oring patches from the same person, and the latter suppresses

he similarities of the neighboring patches from the different per-

ons (see Fisher-like criterion in Fig. 1 ), so as to improve the dis-

riminant ability of the patch distributions in the learned subspace

ompared with that of DMMA and SDMME. To the best of our

nowledge, the Fisher-like criterion can be the first attempts to

onsider the cooperation of heterogeneous graphs to characterize

he discriminant structure of image data. We will demonstrate the

uperiority of the proposed Fisher-like criterion in Section 2.1.3 . 

For the second issue, we present two different discrimina-

ive manifold embeddings, namely discriminative single-manifold

mbedding (DSME) and discriminative multi-manifold embed-

ing (DMME). The two embeddings model the whole partitioned

atches over all persons as a single manifold and multiple man-

folds, respectively, and are then incorporated into the Fisher-like

riterion to generate heterogeneous discriminative representations

or image patches. Subsequently, we introduce two distance met-

ics, i.e., patch-to-patch distance and patch-to-manifold distance,

ssociated with the single manifold and multiple manifolds, re-

pectively; and develop a fusion strategy by assigning the het-

rogeneous representations to the two distance metrics and com-

ining their recognition outputs via joint majority voting to iden-

ify the unlabeled query sample. In doing so, the proposed RHDA

ethod can greatly enhance the robustness against complex fa-

ial variations and achieve promising recognition performance. Ex-

erimental results on five benchmark datasets, i.e., AR, CAS-PEAL,

ERET, E-YaleB and Multi-PIE, verify the effectiveness of RHDA for

R with SSPP. 

Moreover, it is worth noting that the deep learning based meth-

ds [40–44] , e.g., DeepID [40] , VGG-Face [41] and stacked de-

oising auto-encoders [42] , have achieved great success in face

erification and identification. Benefiting from these works, some

ttempts have been tried recently to employ the deep neural

etworks to address the SSPP FR problem. For instance, Gao

t al. [45] proposed a stacked supervised auto-encoders (SSAE)

ethod, in which the faces with different variations were treated

s the contaminated samples, then a stacked denoising auto-

ncoders based deep neural network was leveraged to recover the

lean part of the contaminated samples as well as to extract their

ommon features for image representation. However, in SSAE, the

raining set that trained the network was directly partitioned from

he whole evaluated dataset, which is not applicable from a practi-

al view point and may also cause over-fitting problem. In contrast,

archami et al. [46] and Yang et al. [47] utilized the convolutional

eural networks (CNNs) to extract the deep features of input im-

ges (or image patches), and collected external face datasets in the

eb to train the networks, which could benefit the generalization

bility of the deep model. Motivated by these, in this work, we also

onsider to apply the pre-trained CNNs to generate high-semantic

eatures for the gallery and query samples, and explore the feasi-

ility of combining our RHDA with the deep features to address

he practical SSPP FR problem. 

We highlight the contributions of our work as follows: 

• We propose a new patch-based method called RHDA for single

sampler per person face recognition. 
• We develop a new graph-based Fisher-like criterion to conduct

discriminant analysis across both l 1 -graph and LE-graph, so as

to improve the discriminative ability of patch distribution in the

learned subspace. 
• We present a joint majority voting strategy to both consider the

patch-to-patch and patch-to-manifold distances for face identi-
fication. s
Compared with our preliminary work in [48] , this paper has

ade four major extensions: (1) We have improved the patch-to-

atch distance metric by additionally leveraging the contributions

f the neighboring patches at current position, to enhance the ro-

ustness against the mismatch between gallery and query sam-

les. (2) We have further evaluated the performance of DSME with

atch-to-patch distance and DMME with patch-to-manifold dis-

ance, respectively, and compared them with that of RHDA, to ver-

fy the effectiveness of the fusion strategy, i.e, joint majority vot-

ng, in face identification stage. (3) We have analyzed the compu-

ational complexity and studied the parameter sensitivity of RHDA.

4) We have conducted extensive experiments to evaluate the per-

ormance of RHDA, and compared it with other state-of-the-art

ethods, including the popular deep learning based methods on

SPP FR. 

The reminder of the paper is organized as follows. Section 2 in-

roduces the proposed RHDA method in detail. Section 3 evaluates

he performance of RHDA, and provides the experimental results.

ection 4 discusses other possible pattern recognition applications

f RHDA. Finally, Section 5 concludes the paper. 

. The proposed method 

This section presents the proposed RHDA in two steps: het-

rogeneous feature extraction and face identification . For heteroge-

eous feature extraction, we first construct an intrinsic graph and

 penalty graph, then propose two discriminative manifold em-

eddings, i.e., DSME and DMME, and finally leverage a Fisher-like

riterion to generate heterogeneous discriminative subspace repre-

entations for image patches. For face identification, we introduce

wo distance metrics, i.e., patch-to-patch distance and patch-to-

anifold distance, and develop a fusion strategy to exploit the het-

rogeneous subspace representations and identify each unlabeled

uery sample via a joint majority voting. As described above, the

owchart of RHDA is illustrated in Fig. 2 . 

.1. Heterogeneous feature extraction 

.1.1. Graph construction 

Suppose X = [ x 1 , · · · , x N ] ∈ � 

D ×N is a gallery set with N persons,

here x i is the image of the i th person. We first partition each x i 
nto M non-overlapping local patches with an equal size d , then

oncatenate the patches column by column. For example, we de-

ne the patch set of the i th person as X i = [ x i, 1 , x i, 2 , · · · , x i,M 

] ∈
 

d×M . Subsequently, we leverage l 1 -graph and LE-graph to con-

truct an intrinsic graph G and penalty graph G 

′ , respectively. S w 
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Fig. 3. Illustration of the Fisher-like criterion. The points with the same color (or 

shape) indicate the patches from the same person, while the points with different 

colors (or shapes) indicate the patches of different persons. 
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and S b denote the corresponding reconstruction weight and affin-

ity weight matrices in G and G 

′ , respectively. 

In the intrinsic graph G , we aim to measure the representation

ability of patches from the same person (i.e., class). Hence, we first

design a within-class dictionary for each patch (e.g., x i, j ) as fol-

lows: 

A i, j = X i / x i, j = [ x i, 1 , · · · , x i, j−1 , x i, j+1 , · · · , x i,M 

] . (1)

Then, the representation coefficients of the remaining within-class

patches for x i, j can be computed as follows: 

αi, j = arg min 

αi, j 

|| x i, j − A i j αi, j || 2 F + || αi, j || 1 . (2)

Therefore, the within-class reconstruction weight matrix W i for the

i th person is defined as follows: 

W i = [ W i, 1 , · · · , W i, j , · · · , W i,M 

] ∈ � 

M×M , (3)

W 

p 
i, j 

= 

⎧ ⎨ 

⎩ 

αp 
i, j 

0 < p < j 

0 p = j 

αp−1 
i, j 

j < p < M, 

(4)

where W 

p 
i, j 

denotes the p th element of W i, j . Hence, S w 

for whole patches over all persons can be defined as S w =
diag ( W 1 , · · · , W i , · · · , W N ) ∈ � 

M N×M N . 

In the penalty graph G 

′ , we aim to measure the similarity of

patches from different persons. For each x i, j , we let x 
p 
i, j 

repre-

sent its p th neighboring patch, and calculate the affinity weight

between x i, j and other patches as 

̂ W 

p 

i, j = 

{
exp(−|| x i, j −x p 

i, j 
|| 2 

σ 2 ) if x 

p 
i, j 

∈ N k 1 ( x i, j ) 

0 otherwise , 
(5)

where N k 1 
( x i, j ) denote the k 1 -nearest between-class patches of

x i, j . Then, we let ̂ W ∈ � 

M N×M N represent the affinity weight matrix

for the total MN patches by assigning the value of each 

̂ W 

p 

i, j into

the corresponding position. Hence, S b in graph G 

′ can be directly

set as S b = 

̂ W ∈ � 

M N×M N . 

2.1.2. Discriminative manifold embeddings 

We propose discriminative single-manifold embedding (DSME)

and discriminative multi-manifold embedding (DMME), respec-

tively, as follows. 

DSME : It models the whole patch set over all persons as a

single manifold. For simplicity, we define the whole patch set

as: ̂  X = [ ̂  x 1 , · · · , ̂  x q , · · · , ̂  x MN ] ∈ � 

d×MN , where ̂  x q = x i, j , i = � q M 

� , j =
q − Mi + M. Then, on one hand, we aim to preserve the reconstruc-

tion structure of neighboring within-class patches. On the other

hand, we also expect to suppress the similarities of neighboring

patches from different classes. Formally, we can achieve the tar-

get by learning a shared projection basis U ∈ � 

d×r for all patches

and optimizing the following two objective functions generated in

graph G and G 

′ , respectively: 

min �w ( U ) = 

∑ 

i 

‖ U 

T ̂ x i − � j S 
w 

i j U 

T ̂ x j ‖ 

2 , (6)

max �b ( U ) = 

∑ 

i, j 

‖ U 

T ̂ x i − U 

T ̂ x j ‖ 

2 S b i j . (7)

DMME : It models the whole patch set as a collection of mul-

tiple manifolds, and supposes that patches of each subject lie in

an individual manifold. As a result, a set of N projection bases

V = { V 1 , V 2 , · · · , V N } will be learned for N persons. Formally, we

need to optimize the following two objective functions: 

max J 1 ( V i ) = 

M ∑ 

j=1 

k 1 ∑ 

p=1 

‖ V 

T 
i x i, j − V 

T 
i x 

p 
i, j 

‖ 

2 
F 
̂ W 

p 

i, j , (8)
in J 2 ( V i ) = 

M ∑ 

j=1 

‖ V 

T 
i x i, j − V 

T 
i X i W i, j ‖ 

2 
F , (9)

here J 1 generated from G 

′ ensures that, if x i, j and x 
p 
i, j 

are close

ut from different subjects, they should be separated as far as pos-

ible after projection. Moreover, J 2 from G is to preserve the recon-

truction relationship of the within-class neighboring patches after

rojection. 

.1.3. Feature extraction via a fisher-like criterion 

We develop a new Fisher-like criterion to extract discrimina-

ive features across the two heterogeneous adjacency graphs, i.e.,

 1 -graph and LE-graph. Specifically, it aims to simultaneously pre-

erve the reconstruction relationship of neighboring within-class

atches in l 1 -graph, while suppressing neighboring patches of dif-

erent classes in LE-graph. We provide the illustration of the Fisher-

ike criterion in Fig. 3 . 

Then, for DSME, Eqs. (6) and (7) are first rewritten in the fol-

owing forms: 

in �w ( U ) = ‖ ( I − S w ) U 

T ̂ X ‖ 

2 
F 

= tr{ U 

T ̂ X [ I − ( S w ) T ]( I − S w ) ̂  X 

T 
U } 

= tr( U 

T ̂ X M 

w ̂ X 

T 
U ) , 

max �b ( U ) = 

∑ 

i, j 

tr{ [ U 

T ( ̂  x i −̂ x j )( ̂  x i −̂ x j ) 
T U ] S b i j } 

= 2 tr[ U 

T ̂ X ( D 

b − S b ) ̂  X 

T 
U ] 

= 2 tr( U 

T ̂ X L b ̂ X 

T 
U ) , 

here M 

w = ( I − S w ) T ( I − S w ) , D 

b is a diagonal matrix with D 

b 
ii =

j S 
b 
i j , L 

b = D 

b − S b is the Laplacian matrix. 

By incorporating the proposed Fisher-like criterion, the final ob-

ective function for DSME becomes: 

ax 
U 

�b ( U ) 

�w ( U ) 
= 

tr( U 

T ̂ X L b ̂ X 

T 
U ) 

tr( U 

T ̂ X M 

w ̂ X 

T 
U ) 

, (10)

hen, the maximization problem in Eq. (10) can be transformed to

he following generalized eigen-decomposition problem: 

 

 L b ̂ X 

T 
U = λ̂ X M 

w ̂ X 

T 
U , (11)

here { λi } r i =1 
denote the r largest positive eigenvalues with

1 ≥ ���λr > 0, and U are the corresponding eigenvectors. Since the

imension of patches (i.e, d ) is always smaller than the number
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f total patches (i.e., MN ), the matrices ̂ X L b ̂ X 

T 
and 

̂ X M 

w ̂ X 

T 
can be

onsingular and the eigen-problem in Eq. (11) will be solved sta-

ly. For the extreme case that d > MN , we will adopt the SVD+LGE

Linear Graph Embedding) approach [49] to stably solve the above

igen-problem. After obtaining the shared projection basis U , the

ubspace representation for each patch x i, j is defined as U 

T x i, j . 

For DMME, we define the Fisher-like criterion as 

ax 
V 

J( V ) = 

N ∑ 

i =1 

(J 1 ( V i ) − J 2 ( V i )) . (12)

 1 ( V i ) and J 2 ( V i ) can be simplified as follows: 

J 1 ( V i ) = tr{ V 

T 
i [ 

M ∑ 

j=1 

k 1 ∑ 

p=1 

( x i, j − x 

p 
i, j 

)( x i, j − x 

p 
i, j 

) T ̂ W 

p 

i, j ] V i } 

= tr( V 

T 
i H 1 V i ) , 

J 2 ( V i ) = tr[ V 

T 
i 

M ∑ 

j=1 

( x i, j − X i W i, j )( x i, j − X i W i, j ) 
T V i ] 

= tr( V 

T 
i H 2 V i ) , 

here 

 1 = 

M ∑ 

j=1 

k 1 ∑ 

p=1 

( x i, j − x 

p 
i, j 

)( x i, j − x 

p 
i, j 

) T ̂ W 

p 

i, j , (13) 

 2 = 

M ∑ 

j=1 

( x i, j − X i W i, j )( x i, j − X i W i, j ) 
T . (14) 

Note that the N projection bases are independent and thus J( V )

an be simply computed as the sum of N subfunctions J 1 ( V i ) −
 2 ( V i ) of each V i , which can be separately solved via the follow-

ng eigen-decomposition problem: 

( H 1 − H 2 ) v = λv . (15) 

Let v 1 , v 2 , · · · , v d i be the eigenvectors corresponding to the

 i largest positive eigenvalues { λ j } d i j=1 
with λ1 ≥ · · · ≥ λd i 

> 0 .

hen, the projection basis for the i th class is indicated as V i =
 v 1 , v 2 , · · · , v d i ] , and the subspace representation for each patch

 i, j is represented as V 

T 
i x i, j . 

Fig. 4 illustrates the partitioned image patches of six face sub-

ects (each image is partitioned into 64 patches) from FERET

ataset in the original manifold, and the subspaces learnt by

MMA [23] , SDMME [31] and our DMME. For the sake of observa-

ion, we utilize the powerful visualization tool, i.e., t-SNE [50] , to

how the resulting map as a three-dimensional plot. From Fig. 4 , it

an be observed that: 

• First, the patches in the original manifold are rather scattered,

and there is a high overlapping among the manifolds corre-

sponding to different subjects. 
• Second, the scattering of patches in the subspaces from DMMA

and SDMME are better than those in the original manifold, but

there are still a small amount of overlapping patches among

different subjects. 
• Third, there is a clear separation for the patches of different

subjects in the subspace learnt by our DMME, and the separa-

bility between different class clusters are better than those in

DMMA and SDMME. 

The inspiring results empirically verify the rationality of the

isher-like criterion, and also demonstrate its superior discriminant

bility over the graph-based Fisher criteria adopted in DMMA and

DMME methods. 
.2. Face identification 

In this section, we introduce the patch-to-patch and patch-to-

anifold distances, and present a fusion strategy based on the two

istance metrics for identification. 

.2.1. Patch-to-patch distance 

Given a query face sample y , we partition it into M non-

verlapping local patches { y 1 , y 2 , · · · , y M 

} . Subsequently, inspired

y PCRC [29] , we introduce the patch-to-patch distance as the first

istance metric , and utilize regularized least square to identify each

uery patch y j . Specifically, we apply the shared projection basis

 ∈ � 

d×r generated by DSME to project y j and each patch x i, j of

he same position in the gallery set into a common subspace, and

onstruct a local patch dictionary D j as: 

 j = [ U 

T x 1 , j , · · · , U 

T x i, j · · · , U 

T x N, j ] ∈ � 

r×N , (16)

here U 

T x i, j denotes the subspace representation for the j th patch

f the i th person in the gallery set. 

To further enhance the representation ability of the local dic-

ionary D j and to better handle the mismatch (e.g., misalignment

r pose variation) between gallery and query samples, we extract

he neighboring patches of x i, j at current position to supplement

he local dictionary D j . Considering the facts that 1) large value of

eighborhood size will introduce lots of irrelevant patches into the

allery patch dictionary to degrade the recognition performance,

nd 2) increase the recognition time cost, we thus set the value

f the neighborhood size to be 1 in the following experiments.

pecifically, the extraction strategy is presented as follows (refer

o Fig. 5 ): 

• First, as shown in Fig. 5 (a), when x i, j lies in the corner of the

image, the neighboring 3 patches are extracted. 
• Second, as shown in Fig. 5 (b), when x i, j lies in the edge (not the

corner) of the image, the neighboring 5 patches are extracted. 
• Third, as shown in Fig. 5 (c), when x i, j does not lie in the edge

of the image, the neighboring 8 patches are extracted. 

Consequently, with such a dictionary expansion, the stability

nd robustness of the patch-to-patch distance metric can be im-

roved. 

Next, for U 

T y j , its representation coefficients over D j are com-

uted by 

̂ j = arg min 

ρ j 

{‖ U 

T y j − D j ρ j ‖ 

2 + λ‖ ρ j ‖ 

2 } , (17)

here ̂ ρ j = [ ̂  ρ j, 1 ; ̂ ρ j, 2 ; · · · ; ̂ ρ j,N ] . Hence, the identification output of

he query patch y j is defined as: 

 

f ( y j ) = arg min 

k 

{‖ U 

T y j − D j,k ̂  ρ j,k ‖ 

2 / ‖ ̂

 ρ j,k ‖ 

2 } . (18)

.2.2. Patch-to-manifold distance 

Furthermore, we introduce the patch-to-manifold distance as

he second distance metric , which targets to measure the recon-

truction capability of the reference manifold. As depicted in

MME, the patch set X i for the i th person is treated as an individ-

al manifold. Then, the distance between the query patch y j and

 i can be computed by 

( y j , X i ) = min ‖ V 

T 
i y j − �k 2 

p=1 
c p G 

p 

k 2 
( V 

T 
i y j ) ‖ 

2 , (19)

here V i ∈ � 

d×d i is the projection basis generated by DMME,

 

p 

k 2 
( V 

T 
i y j ) denotes the p th member of k 2 -nearest neighbors of V 

T 
i y j 

n V 

T 
i X i , and c p represents the reconstruction coefficient corre-

ponding to G 

p 

k 2 
( V 

T 
i y j ) . For this distance metric, the identification

utput of the query patch y j is computed by 

 

s ( y j ) = arg min d( y j , X k ) . (20)

k 
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Fig. 4. Visualization of patch distributions in the (a) original manifold, and subspaces learnt by (b) DMMA, (c) SDMME and (d) our DMME. 

Fig. 5. Extraction strategy of neighboring patches for expanding the local dictionary D . The highlighted box indicates the position of the patch x i j . 

 

 

 

 

 

 

 

 

m  

t  

d  

p  

d

 

t  

t  

d  
2.2.3. Joint majority voting 

In the final stage, we aim to identify the unlabeled query sam-

ple y by exploiting the identification outputs of all the query

patches { y 1 , y 2 , · · · , y M 

} . One should note that L f ( y j ) and L s ( y j )

obtained by two distance metrics may be different. Therefore, it

would be difficult to decide which output should be adopted. To

this end, we thus present a fusion strategy by leveraging both the

outputs of two distance metrics and determine the final label of

the query sample via a joint majority voting. Moreover, in the joint
ajority voting, we attempt to expand the voting rights from the

op-1 predicted label to the top- k predicted label set for the two

istance metrics, as it is believed that the correct label of the query

atch is more likely to lie within the top- k predicted label candi-

ates. 

Specifically, we let { L f 
i 
( y j ) } T 1 i =1 

and { L s 
i 
( y j ) } T 2 i =1 

be the top- T 1 and

op- T 2 predicted label set for the query patch y j from the patch-

o-patch and patch-to-manifold distance metrics, respectively, and

efine vote f , vote s ∈ � 

N as the initial zero vectors. Then, the label
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1  
f the query sample y , i.e., L ( y ) ∈ � 

N , can be determined using the

oint majority voting presented in Algorithm 1 . 

lgorithm 1 Joint majority voting. 

equire: { L f 
i 
( y j ) } T 1 i =1 

, j = 1 , · · · , M; { L s 
i 
( y j ) } T 2 i =1 

, j = 1 , · · · , M; zero

vectors vote f , vote s ∈ � 

N 

nsure: L ( y ) ∈ � 

N 

1: for j = 1 : M do 

2: for i = 1 : T 1 do 

3: vote f (L 
f 
i 
( y j )) = vote f (L 

f 
i 
( y j )) + 1 

4: end for 

5: for i = 1 : T 2 do 

6: vote s (L s 
i 
( y j )) = vote s (L s 

i 
( y j )) + 1 

7: end for 

8: end for 

9: L ( y ) = arg max k ( vote f (k ) + vote s (k )) , k = 1 , · · · , N 

In fact, the proposed joint majority voting can be interpreted as

 special case of ensemble learning involving two weak classifiers,

.e., DSME with patch-to-patch distance and DMME with patch-to-

anifold distance. When facing with simplex facial variations such

s expression, slight illumination and disguises, the votes for the

orrect label can be further reinforced in this fusion since the two

istance metrics are both robust against these variations. Moreover,

hen facing with other challenging facial variations such as mis-

lignment, pose and severe illumination, or the combinations of

ultiple variations, maybe not both of the voting vectors for patch-

o-patch and patch-to-manifold distance metrics would be discrim-

native. However, the fusion of the two distance metrics can still

1) generate complementary information, and (2) increase the er-

or tolerance, for identification, which is believed to achieve more

table and better performance than that using any of single dis-

ance metric. 

. Experimental results 

In this section, five experiments in total in the subsequent sub-

ections are performed to show the effectiveness of the proposed

HDA method. Specifically, in Section 3.1 , we evaluate the per-

ormance of RHDA for FR with SSPP, on AR, FERET, CAS-PEAL, E-

aleB and Multi-PIE datasets. In Section 3.2 , we evaluate the perfor-

ance of the two discriminative manifold embeddings, i.e., DSME

nd DMME, respectively, and verify the effectiveness of the joint

ajority voting for face identification. In Section 3.3 , we study the

arameter sensitivity of RHDA. In Section 3.4 , we analyze the com-

utational complexity of RHDA. Lastly, in Section 3.5 , we evaluate

he performance of RHDA by combining it with the deep learning-

ased features on the unconstrained Labeled Faces in the Wild

LFW) dataset. All experiments are carried out on a host (CPU: Dual

-core Intel Xeon X5570 2.93GHz 8MB L3 Cache, RAM: 32GB). 

.1. Performance of RHDA for SSPP FR 

In this experiment, our purpose is to evaluate the performance

f our RHDA for FR with SSPP. Subsequently, we perform FR ex-

eriments on five popular benchmark face datasets, including AR,

ERET, CAS-PEAL, E-YaleB and Multi-PIE datasets. 

Comparing algorithms: We compare our RHDA with 13 rep-

esentative holistic and local methods that are used to address

he SSPP FR problem, including PCA [51] , (PC) 2 A [52] , 2DPCA [53] ,

aplacianfaces [54] , representation-based classifiers, i.e., SRC and

RC, virtual sample-based method, i.e., SVD_LDA, generic learning

ethods, i.e., ESRC, and the state-of-the-art SVDL and CPL, and

atch-based methods, i.e., DMMA and the state-of-the-art PCRC

nd SDMME. Among the 13 comparing methods, i.e., PCA, (PC) 2 A,
DPCA , Laplacianfaces, SVD_LDA , SRC, CRC, ESRC, PCRC, DMMA,

DMME, SVDL and CPL, we have implemented (PC) 2 A, SVD_LDA,

MMA, SDMME and CPL by ourselves, and the codes of other 8

ethods are obtained from the original authors. 

Parameter setting: In SSPP FR experiments, the face images

ere resized to 48 × 48 pixels on AR, FERET, CAS-PEAL and E-YaleB

nd Multi-PIE datasets. For (PC) 2 A, the weighting parameter α was

et as 0.25. For SVD_LDA, the first three singular values and the

orresponding singular vectors were applied to synthesize virtual

amples. For laplacianfaces, the number of nearest neighbors k was

elected as 3 to construct the adjacency graph. For all the patch-

ased methods such as PCRC, DMMA, SDMME and our RHDA, the

on-overlapping patch size was set as 8 × 8 pixels for a fair compar-

son. In addition, the other values of parameters k 1 , k 2 , k , and σ in

MMA were empirically tuned to be 30, 2, 2, and 100, respectively.

or SDMME, the l 1 -ls toolbox was used to solve its l 1 -minimization

roblem as suggested in [31] , and the balance factor λ was tuned

o be 0.001. For SRC, CRC, PCRC, ESRC, the values of the regular-

zation parameter λ were searched from {0.0 01, 0.0 05, 0.01, 0.05,

.1} to achieve the best results over five evaluated datasets. For

VDL and CPL, the parameters were set according to the sugges-

ions in [20] and [28] , respectively. Specifically, the parameters λ1 ,

2 and λ3 of SVDL were set to be 0.001, 0.01 and 0.0 0 01, respec-

ively, and the parameters λ, δ1 , δ2 , τ 1 and τ 2 of CPL were set

o be 0.01, 0.3, 3, 1.618, 1.618, respectively. As to our RHDA, the

alue of the parameter k 1 in Eq. (8) was empirically set as N (the

umber of gallery subjects), k 2 in Eq. (19) , λ in Eq. (17) , and σ
n Eq. (5) were fixed as 2, 0.001, and 1, respectively. The values of

he combinations of T 1 & T 2 in joint majority voting were fixed as

 1 = T 2 = 1 over five evaluated datsets except two cases on FERET

nd E-YaleB datasets, where we will describe their settings in the

ollowing experiments. 

.1.1. Evaluation on AR dataset 

The AR dataset [55] consists of over 40 0 0 frontal face images

f 126 people from two sessions, and each session has 13 face

mages per subject, which involve different variations of facial ex-

ressions, illuminations and disguises (i.e., sunglasses and scarf).

ollowing the setting in [18] , the first 80 subjects from Session-

 were used for evaluation, while another 20 subjects were ran-

omly selected from the remaining set in the same Session as the

eneric set for generic learning methods. The standard face im-

ges taken with neutral expression and under uniform illumination

ere selected to form the gallery set, while the rest 12 images of

ach subject were arranged to form 5 probe sets b-f (i.e., expres-

ion, illumination, sunglasses+illumination, scarf+illumination and 

isguises). Furthermore, to make the experiment more challenging,

e designed a new probe set g by adding random block occlusion

i.e., 30% occlusion) into the expression probe set. The gallery sam-

le and the 6 probe sets of one subject on AR dataset are shown

n Fig. 6 . 

Table 1 lists the recognition results of all the methods on AR

ataset. From Table 1 , we have the following observations. First,

HDA achieves the best recognition performance in all cases we

ave tried (prob sets b-g). Second, RHDA outperforms the state-of-

he-art generic learning CPL and SVDL methods. For example, for

he variations in expression (probe set b) and disguises&occlusion

probe sets d-g), RHDA improves the recognition accuracies of CPL

y 11.66%, 14.58%, 29.17%, 17.75% and 22.91%, respectively. In ad-

ition, for the variation with simplex illumination (probe set c),

lthough SVDL and CPL have already achieved quite high perfor-

ance (i.e., 94.58%), RHDA still outperforms these methods and

btains 97.00% recognition accuracy. Third, RHDA consistently out-

erforms the state-of-the-art patch-based PCRC method. Specifi-

ally, compared with PCRC, RHDA delivers 10.83%, 4.00%, 16.67%,

6.25%, 6.88% and 15.83% of improvements in probe sets b-g, re-
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Fig. 6. The gallery and probe samples of one subject on the AR, FERET, CAS-PEAL, E-YaleB, Multi-PIE and LFW-a datasets, respectively. 

Table 1 

Recognition accuracy (%) on AR dataset ( Best ; Second Best ). 

Methods Probe set b Probe set c Probe set d Probe set e Probe set f Probe set g 

PCA [51] 78.75 62.92 33.33 10.42 38.75 32.08 

(PC) 2 A [52] 79.17 60.00 37.08 10.00 35.00 20.58 

2DPCA [53] 83.33 68.33 38.33 12.50 40.00 26.25 

Laplacianfaces [54] 77.08 73.75 45.83 15.83 48.13 24.17 

SVD_LDA [25] 75.52 55.00 38.33 14.58 40.63 33.75 

SRC [16] 85.42 77.08 46.67 24.58 53.75 39.58 

CRC [17] 82.92 76.67 45.00 27.08 54.37 33.33 

ESRC [19] 83.33 93.75 76.25 60.00 76.25 44.58 

PCRC [29] 86.25 93.00 79.58 79.17 92.50 51.25 

DMMA [23] 84.17 56.42 48.75 44.17 74.38 55.83 

SDMME [31] 85.42 58.83 50.42 45.42 76.25 55.42 

SVDL [20] 84.58 94.58 80.83 62.83 81.37 43.75 

CPL [28] 85.42 94.58 81.67 66.25 81.63 44.17 

RHDA 97.08 97.00 96.25 95.42 99.38 67.08 
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spectively. Forth, the recent patch-based methods such as DMMA

and SDMME perform poor under the variations containing illu-

mination (probe sets c-e). However, compared with the holistic

representation-based classifiers such as ESRC, CRC and SRC, SD-

MME and DMMA have shown to be more robust against the ran-

dom block occlusion (prob set g). Fifth, as to the other holistic

methods like laplacianfaces, SVD_LDA, (PC) 2 A and 2DPCA, they ac-

quire similar recognition results with PCA in most cases. 

3.1.2. Evaluation on FERET dataset 

The FERET dataset [56] is sponsored by the US Department of

Defense through the DARPA Program, and consists of 14,126 im-

ages from 1199 subjects. In this experiment, we aim to evaluate

the robustness of RHDA against the facial variations of poses, illu-

minations and expressions on FERET dataset. To this end, we se-

lected 700 face images of 100 subjects from seven subsets (ba,

bj, bk, bd, be, bf and bg) on FERET dataset. Following the strat-

egy on AR dataset, we also utilized the first 80 subjects for evalu-

ation, while the remaining 20 subjects were chosen as the generic

set. The neutral images of all subjects were used to construct the

gallery set, and the rest 6 images were arranged to form 3 probe
ets b-d (i.e., expression, illumination and poses). Please note that,

he values of T 1 & T 2 of RHDA for probe set d were empirically set

s T 1 = 1 , T 2 = 10 . The gallery sample and the 3 prob sets of one

ubject on FERET dataset are shown in Fig. 6 . 

Table 2 presents the recognition results of all the methods on

ERET dataset. It is clear that RHDA again performs the best in the

hree cases. For example, compared with the second best method

n each case, RHDA improves the recognition accuracies by 2.87%,

.62% and 6.56%, respectively. Furthermore, we are interested to

nd that, the performance of PCRC degrades seriously for the vari-

nce of pose (prob set d). It may be because that, the pose varia-

ions always result in mismatch of the corresponding patches, and

imply considering the patch-to-patch distance may lead PCRC to

ake misjudgment when identifying a query patch. By contrast,

ur RHDA exhibits greater robustness against pose variation as well

s other facial variations compared with PCRC and other compar-

ng methods owing to two important factors. On the one hand, the

isher-like criterion in RHDA can extract highly discriminant in-

ormation hidden in partitioned patches and meanwhile improves

he discriminative ability of patch distribution in underlying sub-

paces; on the other hand, RHDA considers both the patch-to-patch
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Table 2 

Recognition accuracy (%) on FERET dataset ( Best ; Second Best ). 

Methods Probe set b Probe set c Probe set d 

PCA [51] 72.50 73.75 48.44 

(PC) 2 A [52] 75.62 68.13 44.69 

2DPCA [53] 78.13 75.00 51.56 

Laplacianfaces [54] 72.50 71.25 22.81 

SVD_LDA [25] 70.00 63.75 30.00 

SRC [16] 75.00 72.50 43.13 

CRC [17] 74.38 73.75 41.56 

ESRC [19] 81.25 80.00 48.13 

PCRC [29] 77.50 76.25 21.25 

DMMA [23] 81.25 52.50 49.69 

SDMME [31] 82.50 52.50 54.69 

SVDL [20] 84.38 80.63 54.37 

CPL [28] 83.75 79.37 50.06 

RHDA 87.25 86.25 61.25 

Table 3 

Recognition accuracy (%) on CAS-PEAL dataset ( Best ; Second Best ). 

Methods Probe set b Probe set c 

PCA [51] 70.33 27.11 

(PC) 2 A [52] 70.44 24.22 

2DPCA [53] 73.11 27.56 

Laplacianfaces [54] 66.44 44.00 

SVD_LDA [25] 69.78 39.33 

SRC [16] 77.11 37.78 

CRC [17] 78.22 59.78 

ESRC [19] 81.78 65.56 

PCRC [29] 64.89 66.89 

DMMA [23] 71.00 38.44 

SDMME [31] 70.78 36.00 

SVDL [20] 84.00 63.11 

CPL [28] 82.89 69.33 

RHDA 85.33 85.56 
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Table 4 

Recognition accuracy (%) on E-YaleB dataset ( Best ; Second Best ). 

Methods Probe set b Probe set c Probe set d 

PCA [51] 93.17 62.92 25.36 

(PC) 2 A [52] 53.75 68.13 23.57 

2DPCA [53] 61.25 75.00 25.36 

Laplacianfaces [54] 64.17 71.25 22.50 

SVD_LDA [25] 85.00 27.08 14.64 

SRC [16] 96.67 56.67 15.00 

CRC [17] 95.83 52.50 15.00 

ESRC [19] 99.83 95.33 61.43 

PCRC [29] 10 0.0 0 93.33 66.43 

DMMA [23] 99.17 41.67 17.14 

SDMME [31] 99.17 39.83 15.43 

SVDL [20] 10 0.0 0 98.58 71.07 

CPL [28] 10 0.0 0 98.33 70.71 

RHDA 10 0.0 0 99.17 74.29 
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nd patch-to-manifold distances via joint majority voting, which

an generate complementary information and increase the error

olerance for identification. 

.1.3. Evaluation on CAS-PEAL dataset 

The CAS-PEAL dataset [57] contains 99,594 images of 1040 sub-

ects (595 males and 445 females) with variations including ex-

ression, facing direction, accessory, lighting, age, etc. In this ex-

eriment, we aim to further evaluate the performance of RHDA

nder facial occlusions, as CAS-PEAL is considered to be the largest

ublic dataset with occluded face images available. We utilized 200

ubjects from the Normal and the Accessory categories of CAS-

EAL, thus each subject has 1 neutral image, 3 images with differ-

nt glasses and 3 images with different hats. The first 150 subjects

ere used for evaluation, and another 50 subjects were selected

s the generic set. The neutral images of all subjects were used

o construct the gallery set, and the rest 6 images were arranged

o form 2 probe sets b-c (i.e., glasses and hats). The gallery sam-

le and the 2 probe sets of one subject on CAS-PEAL dataset are

hown in Fig. 6 . 

Table 3 lists the recognition results of all the methods on CAS-

EAL dataset, where we can observe that RHDA still performs the

est in both cases. Please note that, in CAS-PEAL dataset, except

he glasses and hats disguises, there could also exist some slight

isalignments because of the manually cropping. Moreover, the

ats in some face images would bring about illumination variations

r even shadows that hinder recognition (see Fig. 6 ). Consequently,

he patch-based methods such as SDMME and DMMA perform

oor in both cases. In contrast, the holistic generic learning meth-

ds such as CPL, SVDL and ESRC are less sensitive to illuminations

nd shadows, and obtain good results on CAS-PEAL by introduc-
ng the supplementary information (e.g., facial variations of wear-

ng similar glasses or hats) from the generic set to help predict the

uery variations. Nevertheless, benefiting from the Fisher-like cri-

erion and the joint majority voting strategy, RHDA still achieves

romising recognition performance and outperforms the state-of-

he-art generic learning CPL and SVDL methods even without the

elp of auxiliary generic set. The inspiring results demonstrate the

ffectiveness of RHDA when handling combinations of multiple fa-

ial variations. 

.1.4. Evaluation on E-YaleB dataset 

The Extended YaleB (E-YaleB) dataset [58] consists of 2414 im-

ges of 38 subjects under various illumination conditions, which

an be divided into five subsets (i.e., 7, 12, 12, 14 and 19 images per

ubject). Subset 1 is under normal illumination condition (light-

ng angle: 0 °-12 °), Subsets 2–3 describe slight-to-moderate lumi-

ance variations (lighting angle: 13 °–25 ° and 26 °–50 °), and Sub-

ets 4–5 characterize severe illumination variations (lighting an-

le: 51 °–77 ° and > 77 °). In this experiment, we aim to test the

erformance of RHDA under different illumination angles. There-

ore, we selected the first 20 subjects for evaluation, and the

est 18 subjects were used as the generic set. The first image

f each subject in Subset 1 was chosen as the gallery sample,

hile the samples in Subsets 2–4 were formed as 3 probe sets

-d. It is worth mentioning that, in probe set d, the values of

 1 & T 2 of RHDA were set to be T 1 = 5 , T 2 = 1 . The gallery sample

nd the 3 probe sets of one subject on E-YaleB dataset are shown

n Fig. 6 . 

Table 4 shows the recognition results of different methods on

-YaleB dataset. We can observe that, as the illumination angle in-

reases, the performance of all the methods will degrade in dif-

erent degrees. However, our RHDA still achieves the best perfor-

ance in the three cases, and performs slightly better than the

eneric learning methods such as CPL and SVDL. Besides, we are

nterested to find the patch-based DMMA and SDMME suffer heavy

erformance decline under large illumination angle (i.e., prob set

), while the patch-based PCRC could maintain relative good re-

ults in this case. The plausible reason is that, both of DMME and

DMME are based on the patch-to-manifold distance, which may

erform instable under large global variations such as severe il-

uminations; while PCRC leverages the patch-to-patch distance for

dentification, and this distance metric can be robust against such

hallenging variations. Moreover, RHDA improves 4.57%, 39.68%

nd 38.49%, w.r.t. the average recognition rates, over PCRC, SD-

ME and DMMA, respectively, which also explains that the fusion

f the patch-to-patch and patch-to-manifold distance metrics can

nhance the performance compared with that of using any single

istance metric. 
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Table 5 

Recognition accuracy (%) on Multi-PIE dataset ( Best ; Second Best ). 

Methods Probe set b Probe set c Probe set d 

PCA [51] 50.42 46.67 51.67 

(PC) 2 A [52] 45.42 68.13 49.17 

2DPCA [53] 50.42 46.67 51.67 

Laplacianfaces [54] 47.50 71.25 44.58 

SVD_LDA [25] 46.67 43.75 45.83 

SRC [16] 55.42 53.75 56.67 

CRC [17] 60.42 48.33 52.92 

ESRC [19] 67.50 61.67 61.67 

PCRC [29] 72.92 80.42 67.50 

DMMA [23] 66.25 65.83 63.75 

SDMME [31] 60.17 61.00 60.17 

SVDL [20] 73.75 65.83 66.67 

CPL [28] 72.50 65.42 67.50 

RHDA 85.42 92.92 75.42 
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3.1.5. Evaluation on Multi-PIE dataset 

The Multi-PIE dataset [59] is a comprehensive face dataset of

337 subjects with each containing faces images across 6 expres-

sions (i.e., neutral, smile, surprise, squint, disgust and scream) in 4

different sessions, 15 poses, and 20 illuminations. In this subsec-

tion, we aim to evaluate the robustness of RHDA against different

expressions in different shooting scenarios. Hence, in the experi-

ment, we selected 120 subjects in expression subset of 4 different

sessions, where the first 80 subjects were used for evaluation and

the rest 40 subjects were used as generic set. The neutral image

of each subject in session 1 was chosen as gallery sample, while

the rest 9 images were formed as three probe sets b-d. The gallery

sample and the 3 probe sets of one subject on Multi-PIE dataset

are also illustrated in Fig. 6 . 

Table 5 presents the results of all the methods on Multi-PIE

dataset. On this dataset, all the comparing patch-based methods

including PCRC, SDMME and DMMA are observed to achieve good-

ish performance for probe sets b-d, which are comparable with or

even better than that of the state-of-the-art generic learning meth-

ods such as CPL and SVDL. This is because the patch-to-patch dis-

tance metric in PCRC, and the patch-to-manifold distance metric in

SDMME&DMMA are both robust against the local variations (e.g,

expressions) in the three cases, even though the shooting sessions

have been changed. In a similar fashion, it is believed that the fu-

sion of the two distance metrics in our RHDA can further reinforce

the discriminative ability of the joint voting results, thus making

the predicted label in recognition stage more correct and reliable.

Such analysis can be empirically verified by the superior perfor-

mance of our RHDA in Table 5 , where RHDA has delivered obvious

improvements of 11.67%, 12.50% and 7.92% over the second best

method in the three cases, respectively. 

3.1.6. Summary 
• RHDA consistently achieves promising recognition performance

in all cases on AR, FERET, CAS-PEAL, E-YaleB and Multi-PIE

datasets, which confirms the effectiveness of RHDA when deal-

ing with complex facial variations in query samples. 
• Compared with the state-of-the-art patch-based methods such

as PCRC and SDMME, RHDA greatly enhances the recognition

performance in all cases over five evaluated datasets, especially

for occlusions and pose variation. 
• Even without the help of auxiliary generic set, the patch-based

RHDA still outperforms the state-of-the-art generic learning

CPL and SVDL methods in almost all cases over five evaluated

datasets. 

3.2. Performance of DSME and DMME for SSPP FR 

In this subsection, we evaluate the recognition performance of

DSME and DMME on AR, FERET, CAS-PEAL, E-YaleB and Multi-PIE
atasets, respectively. Note that, for DSME, the improved patch-

o-patch distance is used for identification; while for DMME, the

atch-to-manifold distance is employed. In the experiment, we

rst verify the effectiveness of the improved patch-to-patch dis-

ance, by comparing the performance of our DSME in this paper

ith that of DSME in [48] (using original patch-to-patch distance

etric) over five evaluated datasets. As shown in Fig. 7 , through

xtracting the neighboring patches in gallery samples to expand

he local dictionary, the improved patch-to-patch distance metric

nables DSME to perform better than DSME in [48] . Specifically,

SME improves the average recognition accuracies over DSME

n [48] by 9.42%, 7.04%, 5.99%, 5.43% and 17.00% on AR, FERET, CAS-

EAL, E-YaleB and Multi-PIE datasets, respectively. 

Moreover, we further test whether the joint majority voting

ombining the patch-to-patch and patch-to-manifold distance met-

ics can further enhance the robustness against complex query

ariations. To this end, we compare the performance of DSME,

MME and their fusion, i.e, RHDA, over five datasets in Table 6 .

t can be observed that, each of DSME and DMME has its own

dvantages and could handle different variations. For example,

SME shows greater robustness against illumination compared

ith DMME, but is more sensitive to pose variation and misalign-

ent. Nevertheless, by reasonably combining the patch-to-patch

istance metric in DSME and the patch-to-manifold distance met-

ic in DMME via the joint majority voting, RHDA can take advan-

ages of the two distance metrics to further enhance the robust-

ess and achieve the best recognition performance in all probe

ases over five evaluated datasets. 

.3. Parameter sensitivity study 

This subsection studies the sensitivity of the parameters of our

HDA model. Note that the parameter σ in Eq. (5) has little effects

n the performance of RHDA over five datasets, we thus show the

esults of the remaining parameters such as k 1 in Eq. (8) , k 2 in

q. (19) , λ in Eq. (17) , the combinations of T 1 & T 2 ( T 1 , T 2 > 0), and

he patch size. Figs. 8–12 show the effects of k 1 , k 2 and λ on the

ecognition accuracies of RHDA over AR, FERET, CAS-PEAL, E-YaleB

nd Multi-PIE datasets, respectively. It can be seen that the recog-

ition performance of RHDA is insensitive to the selection of the

bove three parameters, when the values of k 1 , k 2 and λ are set

ithin the ranges from N /4 to 4 N , 1 to 5, and 0.001 to 0.01, re-

pectively. 

Fig. 13 (a)–(o) illustrate the effects of the combination of T 1 & T 2 
n 15 cases over five evaluated datasets, where we can observe

hat the performance of RHDA changes little when tuning the com-

inations of T 1 & T 2 in most cases on the five datasets. However, in

ew special cases, slightly expanding the value of T 1 or T 2 helps en-

ance the performance of RHDA. For example, for probe set d (i.e.,

ose variation) on FERET, increasing the value of T 2 could boost

he performance of RHDA. It is because that patch-to-manifold dis-

ance metric is robust against the misalignments and pose vari-

tions, while patch-to-patch distance metric is not stable in this

ase due to the mismatch of the corresponding patches. In con-

rast, for probe set d (illuminations angles: 51 °–77 °) on E-YaleB,

ncreasing the value of T 1 could benefit the final performance, as

atch-to-patch distance metric is more robust against severe illu-

inations compared with patch-to-manifold distance metric. 

Moreover, we empirically probe the effect of patch size on

he accuracy of RHDA. The performance of RHDA using patches

ith different sizes on AR, FERET, CAS-PEAL, E-YaleB and Multi-PIE

atasets are shown in Fig. 14 , where we can see that RHDA is, to

ome extent, sensitive to the patch size. However, we also notice

hat RHDA always performs the best when the patch size is chosen

s 8 × 8. A plausible explanation is that, the 8 × 8 patches usually

over the semantically meaningful parts of the face (taking 48 × 48
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Fig. 7. The comparisons of our DSME in this work and DSME in [48] on (a) AR, (b) FERET, (c) CAS-PEAL, (d) E-YaleB and (e) Multi-PIE datasets. 

Table 6 

The comparisons of DSME, DMME and RHDA under various types of variations. For each tested case, the method with 

the highest performance is marked with “1st ” to indicate the most robust method, and the latter two are marked 

with “2nd ” and “3rd ”, respectively, according to their performance. 

Variation factors DSME DMME RHDA 

Expression probe set b on AR 92.17% ( 3rd ) 92.50% ( 2nd ) 97.08% ( 1st ) 

probe set b on FERET 80.00% ( 3rd ) 81.25% ( 2nd ) 87.25% ( 1st ) 

Illumination probe set c on AR 94.50% ( 2nd ) 63.33% ( 3rd ) 97.00% ( 1st ) 

probe set c on FERET 83.00% ( 2nd ) 57.50% ( 3rd ) 86.25% ( 1st ) 

probe set b on E-YaleB 99.87% ( 2nd ) 99.58% ( 3rd ) 10 0.0 0% ( 1st ) 

probe set c on E-YaleB 98.75% ( 2nd ) 43.67% ( 3rd ) 99.17% ( 1st ) 

probe set d on E-YaleB 72.79% ( 2nd ) 18.83% ( 3rd ) 74.29% ( 1st ) 

Disguise probe set f on AR 93.88% ( 2nd ) 90.62% ( 3rd ) 99.38% ( 1st ) 

Pose probe set d on FERET 35.31% ( 3rd ) 53.44% ( 2nd ) 61.25% ( 1st ) 

Expression + Illumination probe set b on Multi-PIE 80.50% ( 2nd ) 72.08% ( 3rd ) 85.42% ( 1st ) 

probe set c on Multi-PIE 85.08% ( 2nd ) 77.08% ( 3rd ) 92.92% ( 1st ) 

Expression + Block occlusion probe set g on AR 60.67% ( 2nd ) 55.42% ( 3rd ) 67.08% ( 1st ) 

Sunglasses + Illumination probe set d on AR 92.33% ( 2nd ) 73.33% ( 3rd ) 96.25% ( 1st ) 

Scarf + Illumination probe set e on AR 90.67% ( 2nd ) 68.33% ( 3rd ) 95.42% ( 1st ) 

Glasses + Misalignment probe set b on CAS-PEAL 71.22% ( 3rd ) 81.56% ( 2nd ) 85.33% ( 1st ) 

Hats + Shadow probe set c on CAS-PEAL 78.11% ( 2nd ) 44.89% ( 3rd ) 85.56% ( 1st ) 

Expression + Illumination + Pose probe set d on Multi-PIE 72.50% ( 2nd ) 67.50% ( 3rd ) 75.42% ( 1st ) 
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ace image for example), like the eyes, the lips, the nose, and these

artitioned patches could possess the most informative and dis-

riminative information for identification. It is worth noting that,

n practical applications, the optimal patch size is also affected by

he aligning and cropping way of face images as well as the final

ropped size. 

.4. Computational complexity analysis 

In this subsection, we briefly anal yze the computational com-

lexity of the training phase in our RHDA model, which involves

wo heterogeneous discriminative embeddings called DSME and

MME, respectively. Let N be the number of samples in the
raining set, and each sample image is partitioned into M non-

verlapping local patches with an equal size d . The sparse op-

imization problem in Eq. (2) of the graph construction step is

olved via the basis pursuit de-nosing (BPDN)-homotopy algo-

ithm [60] , and the number of iterations is denoted as t . For

SME, the complexities of computing the within-class reconstruc-

ion weights and the between-class affinity weights in graph con-

truction step can be O (t d 2 N + t dMN) [61] and O ( d ( MN ) 2 ), respec-

ively. Besides, the solving of the eigen-problem in Eq. (11) requires

 (( MN ) 3 ) [49] . Let Q = MN, then the time complexity of DSME can

e O (t d 2 N + t d Q + d Q 

2 + Q 

3 ) . For DMME, its major difference with

SME lies in the representation generation step, which involves N

ndependent eigen-problems in Eq. (15) and costs time of O ( NM 

3 )
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Fig. 8. (a) to (c) are the recognition accuracies of RHDA versus the parameters k 1 , k 2 and λ on AR dataset. k 1 varies from N /4 to 4 N ( N indicates the number of gallery 

subjects), k 2 varies from 1 to 5 and λ varies from 0.001 to 0.1. 

Fig. 9. (a) to (c) are the recognition accuracies of RHDA versus the parameters k 1 , k 2 and λ on FERET dataset. k 1 varies from N /4 to 4 N ( N indicates the number of gallery 

subjects), k 2 varies from 1 to 5 and λ varies from 0.001 to 0.1. 

Fig. 10. (a) to (c) are the recognition accuracies of RHDA versus the parameters k 1 , k 2 and λ on CAS-PEAL dataset. k 1 varies from N /4 to 4 N ( N indicates the number of 

gallery subjects), k 2 varies from 1 to 5 and λ varies from 0.001 to 0.1. 

Fig. 11. (a) to (c) are the recognition accuracies of RHDA versus the parameters k 1 , k 2 and λ on E-YaleB dataset. k 1 varies from N /4 to 4 N ( N indicates the number of gallery 

subjects), k 2 varies from 1 to 5 and λ varies from 0.001 to 0.1. 
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Fig. 12. (a) to (c) are the recognition accuracies of RHDA versus the parameters k 1 , k 2 and λ on Multi-PIE dataset. k 1 varies from N /4 to 4 N ( N indicates the number of 

gallery subjects), k 2 varies from 1 to 5 and λ varies from 0.001 to 0.1. 

Table 7 

Training time (in seconds) used by different meth- 

ods on AR dataset. 

Methods Training time 

CPL [28] 0.9133 

DMMA [23] 4.1767 

SVDL [20] 75.1430 

SDMME [31] 136.8938 

RHDA 11.4568 
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n total. Hence, the time complexity of DSME is O (t d 2 N + t dQ +
Q 

2 + QM 

2 ) . Overall, since DSME and DMME in our RHDA model

an be executed parallelly, the time complexity of RHDA can be

 (t d 2 N + t d Q + d Q 

2 + Q 

3 ) . Furthermore, the memory complexity

f RHDA is O (MN(d + MN)) . 

We also list the training time of the proposed RHDA method,

nd compare it with the other four popular SSPP FR methods, in-

luding two generic learning methods, i.e., CPL and SVDL, and two

atch-based methods, i.e., DMMA and SDMME. Table 7 shows the

ime spent on the training phase by these methods, where the

ATLAB R2016a software and AR dataset were used. 

From Table 7 , we can observe that, the training time of RHDA

s not the most one, and is far less than that of SVDL and SDMME.

 plausible reason is twofold: First, compared with SVDL, RHDA

eeds not perform time-consuming dictionary learning on the

eneric set. Second, compared with SDMME, the Fisher-like crite-

ion enables RHDA to avoid the computation of the reconstruction-

ased weights for the numerous between-class image patches,

hich would save much time. 

Please note that, as the training phase is always an offline pro-

ess in practical applications, the testing time thus becomes the

ey metric to measure the reality of one method. Hence, we fur-

her record the testing time of the proposed RHDA method. On

verage, the testing time of RHDA is 0.3245 s 1 , which is less than

he acceptable 0.5 s. In a nutshell, the computational time of RHDA

ill not limit its applications from the practical viewpoint. 

.5. Evaluation on LFW dataset with deep features 

The LFW dataset [62] consists of the faces of 5749 subjects in

nconstrained environment. The face images collected under the

nconstrained environment with inaccurate alignment make the

FW data extremely challenging for face verification, let alone FR
1 As the expanded gallery patch dictionary for the patch-to-patch distance can be 

repared in advance before the identification stage, we thus not count its time cost 

n the testing time. 

o  

d  

d

ith SSPP. In this experiment, we further evaluate the proposed

HDA with the deep feature on this challenging LFW dataset. We

mploy the MatConvNet [63] toolbox, with a 37-layer VGG-Face

odel [41] pre-trained on a very large scale dataset (2.6M im-

ges, over 2.6K subjects) being used. Since RHDA is a patch-based

ethod, we thus choose the feature generated from the 32th layer

nd convert it to 64 × 64 tensor-based feature for RHDA. For con-

enience, the proposed RHDA method using VGG-Face deep feature

s called RHDA+VGG-Face for short. 

In the experiment, we choose two deep learning based meth-

ds, i.e., DeepID [40] and J oint and C ollaborative R epresentation

ith local A daptive C onvolution F eature (JCR-ACF) [47] , for com-

arison. Besides, since DMMA and SDMME are closely related to

ur RHDA, we thus report the results of DMMA using VGG-Face

eature, i.e., DMMA+VGG-Face, and SDMME using VGG-Face fea-

ure, i.e., SDMME+VGG-Face, for reference. Moreover, for compar-

tive studies, we also report the recognition results of RHDA and

he other 7 comparing methods including SRC, ESRC, PCRC, DMMA,

DMME, SVDL and CPL, using the raw pixels as feature. For the

xperimental configuration, we followed the protocol in JCR-ACF,

nd utilized a subset of 158 subjects with no less than 10 images

er subject from LFW-a to form the evaluation and generic sets.

he first 50 subjects were used for evaluation and the remain-

ng 108 subjects were used for generic learning. The first image

f each subject was selected as the gallery sample, and the rest 9

mages were used for testing. For the deep learning based DeepID

nd JCR-ACF, their parameters were set in accordance with [47] .

he parameters for the other comparing methods including SRC,

CRC, ESRC, SVDL, CPL, DMMA, SDMME, DMMA+VGG-Face and

DMME+VGG-Face were tuned to achieve their best results. For

ur RHDA&RHDA+VGG-Face, the parameters k 1 , k 2 , λ, σ , T 1 and

 2 were empirically set to be 50, 2, 0.001, 1, 4 and 4, respectively.

he performance of all the methods on LFW dataset are reported

n Table 8 . 

From Table 8 , we can observe that, with raw pixel features, no

ethods achieve very high accuracy because of the extremely chal-

enging facial variations in uncontrolled setting. Nevertheless, our

HDA still works better than other comparing methods with im-

rovements ranging from 4.67%-17.45%. Moreover, benefiting from

he VGG-Face feature, the recognition accuracy of RHDA can be sig-

ificantly enhanced from 32.89% to 87.56%, and achieves slightly

etter results than that of JCR-ACF (i.e., 86.00%), the state-of-the-

rt deep learning based method that addresses the SSPP FR prob-

em. This experiment again demonstrates the discriminating power

f the deep VGG-Face feature, and provides a feasible way to ad-

ress the practical SSPP FR problem by combining our RHDA with

eep features. 
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Fig. 13. The recognition accuracies of RHDA versus the combinations of parameters T 1 & T 2 on 15 cases over AR, FERET, CAS-PEAL, E-YaleB and Multi-PIE datasets. (a)-(d), 

(e)-(g), (h) and (i), (j)-(l), and (m)-(o) show the results of prob sets b-e, b-d, b and c, b-d, b-d on AR, FERET, CAS-PEAL, E-YaleB and Multi-PIE, respectively. T 1 and T 2 both 

vary from 1 to 5. 
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Fig. 14. The performance of RHDA using patches with different sizes on (a) AR, (b) FERET, (c) CAS-PEAL, (d) E-YaleB, and (e) Multi-PIE datasets. 

Table 8 

Recognition accuracy (%) of different methods 

on LFW dataset. 

Raw pixel based methods Accuracy 

SRC [16] 17.11 

DMMA [23] 16.22 

SDMME [31] 15.44 

PCRC [29] 21.78 

ESRC [19] 24.00 

SVDL [20] 28.22 

CPL [28] 27.56 

RHDA 32.89 

Deep learning based methods Accuracy 

DeepID [40] 70.70 

JCR-ACF [47] 86.00 

DMMA + VGG-Face 82.33 

SDMME + VGG-Face 81.11 

RHDA + VGG-Face 87.56 
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. Discussions 

Although the proposed RHDA is specifically designed for SSPP

R in this work, it can also be applicable to other pattern recog-

ition applications. Two typical examples are undersampled FR

64] where each subject contains few training samples (more than

ingle sample), and imbalanced FR [65] where some subjects con-

ain sufficient training samples while the other subjects contain

ery limited training samples or even single training sample. In

act, the two problems can be considered as the simplified cases

f SSPP FR, because not all subjects are restricted to contain sin-

le sample for training like SSPP FR. Under such circumstances, the

raining patches of each subject would increase remarkably and

ore discriminative information can be captured. Hence, It is ex-

ected that the proposed RHDA still performs well for the above

wo FR tasks. 
Moreover, RHDA can also be applied to the image set

ased classification problems such as video-based FR under con-

trained/unconstrained conditions [66] . In this case, each frame

f the video is treated as an independent sample of this subject.

hen, the patch-based RHDA can be easily extended to the sample-

ased RHDA by modeling the whole samples over all videos as

 single manifold and multiple manifolds (refer to DSME and

MME), respectively. Thus, the video-based FR can be formulated

s a combination of sample-to-sample and sample-to-manifold

atching problem. 

. Conclusion 

This paper proposes a new patch-based method, i.e., RHDA,

or FR with SSPP. The proposed RHDA has two major advantages,

o that it shows good robustness against different types of facial

ariations or occlusions in the query face. The first advantage at-

ributes to the Fisher-like criterion, which is able to extract the

idden discriminant information across two heterogeneous adja-

ency graphs, and meanwhile improve the discriminative ability of

atch distribution in underlying subspaces. The second one is the

oint majority voting strategy by considering both the patch-to-

atch and patch-to-manifold distances, which can generate com-

lementary information as well as increase the error tolerance

or identification. Experimental results on AR, FERET, CAS-PEAL, E-

aleB, Multi-PIE and LFW datasets have demonstrated the effec-

iveness of the proposed method in comparison with the existing

ounterparts. 
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