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ABSTRACT

Lip tracking has played a significant role in a lip reading system. In this paper, we present a local region
based approach to lip tracking, which consists of two phases: (i) lip contour extraction for the first lip
frame, and followed by (ii) lip tracking in the subsequent lip frames. Initially, we construct a localized
color active color model provided that the foreground and background regions around the object are
locally different in color space. In the first phase, we find a combined semi-ellipse around the lip as the
initial evolving curve and compute the localized energies for curve evolution such that the lip image is
separated into lip and non-lip regions. Then, we utilize a 16-point deformable model (Wang et al., 2004
[20]) with geometric constraint to achieve lip contour extraction. In the second phase, we present a
dynamic selection of the radius of local regions associated with the extracted lip contour of the
previous frame to realize lip tracking. The proposed approach not only adapts to the lip movement, but
it is also robust against the appearance of teeth, tongue and black hole. Extensive experiments show the

Deformable model

efficiency of the proposed lip tracking algorithm in comparison with the existing methods.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Lip contour tracking (simply called lip tracking hereinafter)
has received wide attention in recent years because of its
potential applications in a variety of areas such as audio-visual
speech recognition (AVSR) [1], lip reading [2,3], facial expression
analysis [4], human computer interfaces [5] and so forth.
Although various visual tracking methods have been developed
in the literature, e.g., see [6], these methods are usually utilized to
track the object positions, which may not be suitable for deter-
mining the variations of the lip contours. In fact, it is a non-trivial
task to track the lip movements accurately due to its elastic shape
and non-rigid motion, the large variations caused by different
speakers, lighting conditions, low contrast between the lip and
skin, teeth or tongue effect, and so forth.

In the past years, a few techniques have been proposed
towards lip tracking with the focus on segmentation of lip regions
or extraction of lip contours, which can be roughly classified into
two categories: the edge-based approaches and the region-based
approaches. The former basically utilizes the low level spatial
cues such as edge and color information to track the lip move-
ment. For instance, Zhang et al. [7] applied hue and edge
information to achieve the mouth localization and segmentation.

* Corresponding author. Tel.: +852 34115155.
E-mail addresses: ymc@comp.hkbu.edu.hk (Y.-m. Cheung),
xliu@comp.hkbu.edu.hk (X. Liu), youxg@hust.edu.cn (X. You).

0031-3203/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2012.02.024

Eveon et al. [8] detected six key points, through which the fitting
shapes connecting these points were obtained according to the
edge information and color cues. In general, these two techniques
work well under a desired environment, but their performances
may deteriorate if the lips are glossy or their exists image noise.
Moreover, Kass et al. [9], Delmas et al. [10] and Freedman et al. [5]
introduced the applications of active contour model (ACM, i.e.,
snake) to detect the edge of the lip boundary via gradient descent
technique. Unfortunately, this type of active contours often
converge to the wrong result when the lip edges are indistinct
or the lip is very similar to the skin region. Subsequently, Barnard
et al. [11] integrated the edge-based ACM with 2D pattern
matching technique to drive the energy minimizing spline onto
the expected lip contours. However, such a method just employs a
combination of two semi-elliptical shapes to model the lip shape,
which may not fit the actual lip boundary quite well.

In contrast, the region-based approaches mainly utilize the
regional statistic characteristics to realize lip tracking. Typical
examples include deformable template (DT) [12-14], region-
based ACM [15,16], active shape model (ASM) [17-19], and active
appearance model (AAM) [2]. The DT algorithm utilizes a regional
cost function to partition a lip image into the lip and non-lip
regions via a parametric template, which represents the lip shape
properly. The pioneering work introduced by Yuille [12] shows a
lip template specified by a set of parameters, and these para-
meters are altered via an energy minimizing process so that the
lip template can match the lip boundary gradually. Later, Liew
et al. [13] addressed a different lip template and extended Yuille’s
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work by introducing a new cost function to realize lip contour
extraction in color images, while Tian et al. [14] utilized a
symmetrical DT to model the lip shape and formulated the color
distribution inside the closed mouth region as a Gaussian mixture
to regularize the DT. In general, the tracking performance of this
kind of methods will be degraded if a lip shape is evidently
irregular or when the mouth opens widely. The region-based ACM
algorithm featuring on minimizing a regional energy function
always outperforms the edge-based ACM for lip images with
weak edges or without edges. For instance, Chiou et al. [15]
modified the original ACM by adding eight radial vectors within
the lip region to regularize the active contours driving to the lip
boundary. Wakasugi et al. [16] applied the separability of regional
color intensity distributions with ACM to achieve lip contour
extraction. Nevertheless, it has been found that these methods
often suffer from the complex components in oral cavity and are
highly dependent on the parameter initialization. The ASM
approach adopts a set of landmark points to describe the lip
shape, and these points are controlled within a few modes
derived from a training data set. For example, Luettin et al. [17]
applied a set of manually labeled points with ASM to train the
possible lip shapes. Sum et al. [18] presented an optimization
procedure from a point-based model using ASM for extracting the
lip contours. Nguyen et al. [19] integrated multi-features of lip
regions with ASM to learn lip shapes. The AAM algorithm
proposed by Matthews et al. [2] is an extension of ASM algorithm
incorporating the eigenanalysis in gray-level case. Often, the ASM
and AAM are both quite laborious to establish a training data set
with manually cautious calibration and perform a training pro-
cess to determine the lip shapes. Meanwhile, these methods may
not be able to provide a good match to those lip shapes that are
quite distinct from the training data. It is therefore unsuitable for
the robust lip tracking applications from a practical viewpoint.

In recent years, lip image analysis in color space, e.g., CIELAB,
CIELUV and HSV, has received much attention as the color can
provide additional significant information that is not available in
gray-level cases. Wang et al. [20] generated probability map of lip
region in color space via fuzzy clustering method incorporating
shape function (FCMS) and developed an iterative point-driven
optimization scheme to fit the lip boundary based on pre-
generated probability map. Subsequently, Leung et al. [21] further
extended the above work with an elliptic shape function to
segment the lip region in color space. Similar and related works
can be found in [22,23]. It is found that this kind of methods can
significantly simplify the detection and location of the lip regions.
Nevertheless, as the distributions of skin, tongue and lip may
overlap and diversify among different speakers, it may make such
a method inaccurate and unstable to achieve lip segmentation or
lip contour extraction, particularly in the case of mouth opening
widely. Meanwhile, the implementation of these methods often
suffers from the appearance of tongue or black hole as shown in
Fig. 1, although multiple pre-processing procedures can reduce
the teeth effect.

lower lip

Fig. 1. A lip region incorporated the appearance of teeth, tongue and black hole in
oral cavity.

More recently, Eveno et al. [24] attempted to combine the
merits of the above-stated approaches and proposed a jumping
snake with a parametric model composed of four cubic curves to
achieve lip tracking. It is effective in most cases, but which is
highly dependent on pre-and-post-processing techniques and
adjustment process to make the model match the lip shape
appropriately. Differing from the above region-based approaches,
Jian et al. [25] addressed a modified attractor-guided particle
filtering framework to track the lip contours. Unfortunately, such
a method needs to segment a set of representative lip contours
manually as the shape priors in advance. Furthermore, Ong et al.
[26] proposed a learnt data-driven approach via linear predictors
to track the lip movements, but which needs a data set composed
of different types of lip shapes in advance. Further, this method,
as well as the one in [25], involves the complicated iterative
learning to match the lip shape, whose computation is time-
consuming.

Thus far, almost all the region-based approaches involve the
globally statistical characteristics. Subsequently, their perfor-
mance may deteriorate upon the appearance of teeth, tongue or
black hole. Until very recently, when object in an image has
heterogeneous statistics or complex components, it is found that
the localized active contour model (LACM) [27], which utilizes the
local statistical characteristics, can generally achieve a better
segmentation result as shown in Figs. 2 and 3(d). Nevertheless,
this model highly depends on the appropriate selection of
correlative parameters. Often, the improper parameters, e.g.,
ulterior evolving curve with small local radius or proper evolving
curve with large local radius, could lead to erroneous extractions
as shown in Fig. 3(c). In addition, Ref. [27] does not consider the
prior knowledge about color information, which actually provides
more information to improve the extraction performance, espe-
cially when the images are shadowed, shaded and highlighted
[28,29].

In this paper, we present a local region based approach to lip
tracking with two phases: (i) lip contour extraction for the first
lip frame, and followed by (ii) lip tracking in the subsequent lip
frames. Initially, we introduce a new kind of active contour
model, namely localized color active color model (LCACM), pro-
vided that the foreground and background regions around the
object are locally different in color space. In the first phase, we
find a combined semi-ellipse around the first lip image as initial
evolving curve and compute the localized energies for curve
evolution such that the lip image is separated into lip and non-
lip regions. Then, we utilize a 16-point deformable model [20]
with geometric constraint to achieve lip contour extraction. In the
second phase, we present a dynamic selection of the radius of
local regions associated with the extracted lip contour of the
previous frame to realize lip tracking. The proposed approach is
adaptive to lip movement, and robust against the appearance of

a b

— evolving curve [ 1ocal interior

[] interesting object B local exterior

Fig. 2. Graphical representation of the active contour model: (a) evolving curve
with diverging directions along the arrow; (b) the description of local interior and
local exterior region.



3338 Y.-m. Cheung et al. / Pattern Recognition 45 (2012) 3336-3347

a b c d
Fig. 3. (a) Original lip image with some uneven illuminations and noise effects; (b) conventional region-based ACM extraction result; (c) LACM based extraction result
with the improper parameters; (d) LACM based extraction result with the proper parameters.

the teeth, tongue and black hole. Experimental results have
shown the promising results.

The remainder of this paper is organized as follows: Section 2
will overview the LACM and its extension to the LCACM. Section 3
goes into the details of describing the proposed approach, in
which the illumination equalization, the appropriate selection of
parameters including the initial evolving curve, local radius and
lip model, are presented. In Section 4, experimental results are
conducted to compare the proposed approach with the existing
methods. Finally, we draw a conclusion in Section 5.

2. Localized color active contour model

This section introduces the framework of LCACM extended
from the work proposed by Lankton [27,30] provided that the
foreground and background regions around the object are locally
different in color space. As shown in Fig. 2(b), given a proper
initial evolving curve, the local regions centered at each of the
points along the curve can be split into the local interior and local
exterior, respectively. Accordingly, a set of localized energies can
be computed. By minimizing those energies, the evolving curve
can gradually converge to the boundary of the object. The
advantage of this framework is that the objects associated with
complex appearances or intensity inhomogeneities can be suc-
cessfully segmented using the localized energies, while the
corresponding global energies may fail.

2.1. Overview of the LACM

Let I denote a pre-specified image defined on the domain €,
and C denote a closed curve represented as the zero level set of a
signed distance function (SDF) ¢, i.e., C={u|¢(u) =0} [27]. The
interior of C is specified by the following approximation of the
smoothed Heaviside function:

1, P < —¢,
0, Pu) > ¢,
Hp(u) = (M
1{1 +Q +1sin (n (u)) } otherwise.
2 e T €

Similarly, the exterior ¢ can be defined as (1-H¢p(u)). The
derivative of H¢(u), which is a smoothed version of the Dirac
delta function:

1, Pu)=0,
0, s
Seb(u) = ; o |pw)| <& @
—{1 +cos ( ) } otherwise,
2¢ &

is utilized to specify the area adjacent to the curve C. For
simplicity, parameters u and v are utilized as the two indepen-
dent spatial variables, each of which represents a single point
within an image. Using this notation, the characteristic function
B(u,v) marked the local regions in terms of a radius parameter r

can be described as follows:

1, llu—vl<r,

0 otherwise. ®

B(u,v)= {

By ignoring the complex appearances of an image that may
arise outside the local region, the contributions along the evolving
curve within the local region are considered. In addition, an
energy function is defined in terms of a generic force function F,
which is a generic internal energy metric to measure the local
adherence to a given model at each point along the curve [30].
Hence, the evolutionary energy E(¢) can be formulated as follows:

E)= [ opw) [ Baww)-Fdw).g) dv du @

In Eq. (4), the purpose of the multiplication with the Dirac
function d¢(u) in the outer integral over u is utilized to capture a
much broader range of objects. It ensures that the curve will not
change topology by spontaneously developing new contours,
although it still allows contours to be split and merged. Finally,
to keep the curve smooth, a regularization term is added into the
localized energies. Specifically, the arc length of the curve is
penalized and weighted by a parameter A. The resulting energy
E(¢) is formulated as follows:

B = [ og) [ Buw)-Faw.¢w) dv du
4 / SVl du. )
Qu

By taking the first variation of energy F with respect to ¢, the
following evolution equation can be obtained [30]:

% ()= 0¢(u) L B(u,v) - Vpu FdW),¢v)) dv
. [ Vo)
+ 20 (uwydiv ( V¢(u)|> IVl 6)

It is noteworthy that almost all the region-based segmentation
energies can be put into this framework.

2.2. An extension to LCACM

By taking into account the color information, the framework of
LACM can be extended to the color space in case I represents a
color image, which provides additional significant information
that is unavailable in gray-level space. Ref. [27] lists three well-
known examples of the energy function for representing the
regional energies, i.e., uniform modeling (UM) energy [31], mean
separation (MS) energy [32], and histogram separation (HS)
energy [33]. In this Sub-section, we extend MS energy only to
color space and embed it into the framework of LACM. It should
be noted that the underlying techniques are surely applicable to
the UM and HS energies as well.

For simplicity, the localized equivalents of p;,(u) and g, (1)
marked by B(u,v) at a point u represent the vector-valued mean
intensities of local interior and local exterior regions, respectively.
Given D-dimensional measurements of a color vector, i.e.,

in (W) = {ph ), ... b W)}, 7
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/“Lout(u) = {/“t(l)ut(u)v s vﬂgut(u)}' (8)

[v)={lj(v),....Ip(V)}, 9

the localized versions of the mean intensities ,u{-‘n(u) and gk, (u)
within the k channel of the color space can be formulated as
follows:

k _ 1
Hhw= 4t [ B How) L dv, (10)
KeW) = L/ Bu,v) - (1=HpW)) - L (v) dv an
Houe - Aout(u) Q, ' k '

where  Ap(u) = [o BWV) - Hp@)dv  and  Aour(t) = [, Bu,v)-
(1—H¢p(v)) dv represent the areas of the local interior and local
exterior regions, respectively. Hence, a localized region-based
energy in color space formed from MS energy [32] is obtained:

1 D
Fusc = =5 > (M)~ Hgu (W)”. (12)

k=1
By substituting the derivative of Fy;sc into Eq. (6), the local
region-based flow can be computed through the following level
set evolution:
o¢p < k k
S =00 [ Buw)-o¢w)- > (G-l
v I

k=1

()—uk ()
T Autt) ))d”

()i W)
Ain(u)

V)
Vo)

Note that the optimal energy for evolution can be obtained
when p;,(u) and p,,.(u) are the most different at each point u
along the contour. In the evolutionary process, the value of the
SDF ¢(u) is updated iteratively until the evolving curve converges
to the object boundary. Consequently, the object can be segmen-
ted through the zero level set {u|¢(u) = 0}. This framework can be
effectively utilized for segmenting the color objects associated
with heterogeneous statistics or complex appearances.

+X§q§(u)div< ) IVl (13)

3. The proposed lip tracking algorithm

The proposed lip tracking algorithm consists of two phases:
(i) lip contour extraction for the first lip frame, and followed by
(ii) lip tracking in the subsequent lip frames. First, we introduce
an effective illumination equalization method to reduce lighting
asymmetry. Then, we find a combined semi-ellipse contiguous to
the lip region as the initial evolving curve for evolution such that
the lip image can be segmented into lip and non-lip regions.
Subsequently, we utilize a deformable model with the geometric
constraint to achieve lip contour extraction. Finally, we present a
dynamic selection of the radius of local regions associated with

3339

the extracted lip contour of the previous frame to realize lip
tracking.

3.1. Illumination equalization

[llumination is one of the most significant factors that affect
the appearance of an image. It often leads to heterogeneous
intensities due to the different albedos of the object surface and
the shadows cast from different illumination directions, which
can be regarded as the uneven background, illumination asym-
metry, and also known as non-uniform intensity distribution.
Often, during the video capture of the lip motions, the unbalanced
lighting conditions falling on different directions may cause the
uneven illuminations frequently, which always lead to intensity
heterogeneous. Hence, illumination equalization has played an
important role in image analysis and processing. Liew et al. [13]
has introduced an effective way to reduce the effects of uneven
illumination provided that the illumination falls along the vertical
direction. This method just adopts the luminance value of single
point along the boundary, which may be susceptible to the image
noise. Under such circumstances, we therefore propose an
improved illumination equalization method via the analysis of
local regions along the image boundary, which is more robust
against noise and adaptive to the multifarious illumination
directions.

We first consider two regular illumination directions: (1) the
horizontal direction as shown in Fig. 4(a), and (2) the vertical
direction as shown in Fig. 4(b). Given a located lip image of size
mx n, let L(ij), L(i,j) represent the luminance value before and
after illumination equalization, respectively. Note that the uneven
illumination can be regarded as the linear along its direction.
Instead of utilizing the intensity value of a single boundary point,
the mean value within a local region of size (2p+1) x (2q+1) is
employed in our proposed method. Consequently, the luminance
value adjusted by illumination equalization can be mathemati-
cally formulated as follows (see Appendix A for details):

[llumination direction (1):

.. (n=2j+1)- (r(p)—l(p)) ;
L(ij)+ 20-1) , ie[1,p),
. . —2j+1). —p)—l(m— .
Bijy={ Lip+=ET )z((r,i"_l]f S e mopml, (14)
.. (=2j+1)- (r()—1G)) . .
L, j)+ 2-1) , ie[p,m—p];
[llumination direction (2):
.. (m=2i+1)- (b(q)—t(Q)) ;
LG,j)+ 3m—1) , jellq),
. . —2i+1) - (b(n—q)—t(n— .
Ldj = L(IJ)+(m = )2((m(f1)q) tn-9) je(n—gn},  (15)
. (m=2i+1) - (b()—t(j)) ;
L(ij)+ 2m-1) . jelg.n—ql,
b top 2Ii+l
D 8
m

n
bottom

Fig. 4. Two regular illumination directions: (a) horizontal direction; (b) vertical direction.
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b

Fig. 5. Examples of illumination equalization: (a) original lip image with uneven illumination effect; (b) lip image after the adjustment via illumination equalization.

where [(i) and r(i) denote the mean intensity of left and right
borders within a local region of size 2p+1) x (2q+1) at the i-th
row, respectively. Similarly, t(j) and b(j) denote the mean inten-
sity of top and bottom borders at the j-th column individually.
The size of local region can be optionally setat 3 x 3,3 x50r5 x 3
according to the image scale requirement. To demonstrate the
effectiveness of the proposed illumination equalization method,
Fig. 5(a) and (b) show an example of the lip image before and
after illumination equalization, where the uneven illumination is
along the horizontal direction. It can be clearly observed that the
uniform illumination can be obtained and the dark part of the
right region has been significantly reduced. Further, if the illumi-
nation direction is not the previous-stated one, e.g., diagonal
direction, we can perform the illumination equalization with
illumination direction (a) and (b).

3.2. Lip contour extraction

Lip contour extraction is of crucial importance to the lip
tracking system. However, the opening mouth incorporates the
components like teeth, tongue and black hole, which always
causes the complex statistical characteristics in the whole mouth
region. In LCACM, the appropriate selection of the parameters
such as the initial evolving curve C and local radius r will play an
important role in determining the statistical characteristics for lip
contour extraction. Intuitively, the initial evolving curve that
contiguously encircles the lips will reduce the evolutionary
process undoubtedly.

In the last decade, some researchers have successfully
employed an elliptic shape function to model the lip shapes
[21]. Evidently, almost all the lips can be encircled within an
elliptic region. Nevertheless, in case the mouth opens widely,
some marginal parts of the elliptic region may be far away from
the lip boundary. As investigated by Mark et al. [11] and shown in
Fig. 6(b), the biological lip shapes of the upper and lower lip are
usually different, which can be modeled by a combination of two
semi-elliptical shapes. Such a combined semi-ellipse can be better
contiguous to the lip boundary compared with a single elliptic
shape, which can therefore be utilized as the initial evolving curve
embedded into LCACM framework for lip contour extraction.

According to Refs. [34,35], the primary lip corner dots can be
successfully detected through the intensity variations and color
cues. As shown in Fig. 6(c), the upper lip usually has the three
geometric corner points due to the Cupidon’s bow, i.e., dip point,
left peak point and right peak point. To construct the upper semi-
ellipse, only one upper corner dot is needed. Therefore, we utilize
the middle value between the left peak and right peak to
represent the upper point for constructing the upper semi-ellipse.
From the practical viewpoint, the lip corner dots need not exactly
fit the geometric position of lip structure. Instead, as shown in
Fig. 6(a), an approximate position within a local region is enough.
Therefore, we label the left corner, right corner, upper corner and
lower corner points as La, Lb, Va and Vb, and let (x.,y.) be the

left peak Va

”_ ght peak upper lip

dip point

La Lb

lower lip

Fig. 6. The construction of the combined semi-ellipse: (a) lip corner dots
detection; (b) a combined semi-ellipse around the lip; (c) standard lip model
with a dip point and two peak points; (d) geometric description of a combined
semi-ellipse.

origin center of the combined semi-ellipse, whose mathematical
equations are formulated as follows:

Xc = % (Lay +be). Ye= %(Lay +Lby)v

_ Lby—Lay
0 = arctan (m) ,
a=3(Lbx—Lay* +(Lby—Lay)*)'/?,
bup = (Vax—xc)* +(Vay—y)*)'/2,

biow = (Vby—xc)? +(Vby—y)»)'/2,

X1 cosf sinf X—X¢
{Y}_{—sine cos@}' y=yc|
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X2 y? X2 y?
@ =l @t "

2
up blow

where a is the semi-major axes, b,, and by, are the upper and
lower semi-minor axes, respectively. 0 is the inclined angle,
which is positively defined at the counter-clockwise direction.
Consequently, as shown in Fig. 6(b) and (d), such a combined
semi-ellipse will be utilized as the initial evolving curve
embedded in LCACM for lip contour extraction.

Further, the radius of local region marked by B(u,v) is another
crucial parameter in LCACM to be considered when computing
localized energies. As introduced in [27], the radius of the local
region should be chosen based on the scale of the object of
interest and the proximity of the surrounding clutter. As the pre-
specified evolving curve is contiguous to the lip boundary, by a
rule of thumb, it is effective to set r=by,/2 for lip contour
extraction in most cases, which is robust against the clutter such
as the teeth, tongue or black hole. Note that the value of r should
become smaller if the lip image incorporates the mouth opening
widely. Although the selected local interior region may contain a
very small fraction of the complex components of the oral cavity,
it cannot affect the extraction performance while the large part
may fail.

3.3. Lip model

In general, the extracted lip contours using above-stated
method may be lack of geometric constraint occasionally. In the
past years, some researchers have adopted different models to
keep the geometric shape of lip contours. For example, Ref. [14]
adopts four key points with two parabolas to model the outer lip
contour, whereas Ref. [24] employs six key points with the cubic
curves connected to describe the lip shape. In this paper, we
adopt a 16-point geometric deformable model proposed in [20] to
model the lip shapes, which is more flexible and physically
meaningful in comparison with the less points based lip models.
As shown in Fig. 7, the lip shape can be partitioned into three
parts, in which the point set: {p1, p2, P3, P4, P5s} represents the part
of upper-left lip, while {ps, ps, p7, Ps, Po} and {p1, p16, P15, P14, P13,
P12, P11, P10, Do} describe the part of upper-right lip and lower lip,
respectively. Its high flexibility and variability can model the lip
shapes even for quite asymmetric or variational mouths.

Nevertheless, it is found that the dip point ps in this 16-point
model may not be well obtained to represent the geometric
position in some cases, which is influenced by the clutter around
the dip point due to the convex structure of lips. Hence, ps is
always constrained by the points ps and pe, i.e., the vertical
coordinate value of point ps is not more than points p, and pe.
The constrained condition can be formulated as

ps(¥) if ps(y) < min{p4(¥),psM)},

ps(y) = { min{p,(y),ps(y)} otherwise. an

Fig. 7. A 16-point lip model introduced by Wang et al. [20].

Moreover, we employ the cubic spline interpolation (CSI) con-
necting the key points to piecewise approximate the lip shape
[36,37], which always offers true continuity and smoothness
between segments (see Appendix B for the details). Such an
operation is physically meaningful in the vision, which can be
well utilized for both lip contour extraction and lip tracking
applications.

3.4. Lip tracking

Given a sequence of lip motion frames, a lip shape of one frame
only changes a little compared with the neighboring one. Hence,
as shown in Fig. 8, after extracting the lip contour of the previous
lip frame, we let it be the initial evolving curve embedded in
LCACM to track the lip contour of the current frame.

Nevertheless, as shown in Fig. 8(f), the extracted lip contour of
the previous frame may be inside the current one, especially in
the process of opening a mouth. Under the circumstances, an
inappropriate selection of radius, i.e., large radius, will make the
evolution curve diverging to an inaccurate direction. Therefore,
the dynamic selection of the radius of the local region is
addressed for lip tracking.

Algorithm 1. The lip tracking algorithm.

Input:

1: Lip frame image I;_1, [; € Q.

2: The extracted contour C;_; of lip image I;_;.

Pre-processing:

3: Lip image pre-processing, i.e., noise remove, illumination
equalization.

4: Let C;_q be the zero level set of a SDF ¢, i.e.,
Ci1 = (u|$pw)=0).

5: Sett=0,temp=3,e=1.3,1=0.05.

Begin:

6: Compute the middle thickness Lt;_; of I;_; via Eq. (6).

7: while temp > n do

8: Specify the points adjacent to the evolving curve of
number N; via Eq. (2).

9: forj=1,j<N;j++ do

10: Assign proper r to the B(u;,v) via Eq. (18).

11: Compute the localized energy E(¢(u;)) via Eq. (12).
12: Compute 2 (u;) via Eq. (13).

13 D) = pup+ 2 ().

14: end for

15 temp=max| 2|, jel,...,N.

16:  t=t+1 X% Iteration times.

17: end while

18: C; = {u|¢(u) = 0}. % The tracking contour of current lip frame.

end.

Output:

19: Obtain the tracking result ¢; with model and geometric
constraint via Eq. (17).

To the best of our knowledge, the middle thickness of the upper lip
is usually smaller than the lower one, which may change during the
speaking. Accordingly, we take this middle-upper lip thickness Lt as
an effective parameter in our algorithm. As shown in Fig. 8(c),
according to the pre-specified lip model, Lt can be approximately
estimated along the line segment ops via the intensity variations
processed with a low-pass filter [34]. Meanwhile, Lt is also con-
strained by Eq. (18) simultaneously, where the position of central
point o is computed through the coordinate value of points p; and
Po, L&, 0(X) = (p1(X) +po(x))/2, 0(¥) = (p1(¥) +Po(¥))/2. Therefore, we
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Fig. 8. (a) Lip contour extraction of the previous lip frame; (b) 16 key points obtained according to the lip model; (c¢) computation of the parameter Lt; (f and i) current lip
frame with mouth opening and closing, respectively; (e and h) lip contour extraction; (d and g) geometric constraint with lip model.

let the dynamic parameter r; be

1”,‘=Lti71, i=2,...Nf,
2 ‘ (18)
Lt; < min{|(ops);|, 3 [(opy )|}, j=1,...---Np—1,

where Lt;_; represents the middle-upper lip thickness of the
previous frame and N denotes the total number of frames. The
value of r; can be well utilized in LCACM as the local radius for
tracking the current lip contour. The lip tracking algorithm is given
in Algorithm 1, where 7 is a small threshold value that determines
the stop condition of the evolving process. Similar to the case of lip
contour extraction phase, the local region with the dynamic radius
selection may also contain a very small fraction of the complex
components of oral cavity, which, however, may not affect the
tracking performance.

4. Experiments

The proposed lip contour extraction and lip tracking methods
have been implemented and tested on a large number of lip images
and videos. The experiments ran on an Intel® Core™2 Quad Q9450
2.66 GHz machine with Matlab R2007b image processing toolkit. In
our experiments, we projected the RGB lip images into the CIELAB
color space upon the fact that the Euclidean distances are percep-
tually uniform in CIE-1976 color space while non-uniform in RGB
space [29]. We employed a 3 x 3 mean filter to reduce the noise
effect and executed the illumination equalization in L channel. MS
energy was employed for computing the regional energy, and the
parameter 4 was set at 0.3.

4.1. Experiment 1

We have applied the proposed lip contour extraction method to
the 200 frontal face images from the CVL face database [38] and 500
face images from our laboratory database. To measure the difference
between the extracted contour and real contour, we manually drew

the lip contours to present the comparisons of contour matching
performance in terms of the mean square error (MSE):

N,
‘l P
MSE= 03~ /0 40y (19)

i=1

where x;, y; are the coordinate values of the lip contour point i
obtained by the proposed method, x¥, y* are the actual coordinate
values obtained by precisely manual annotation, and N, denotes
the total number of the selected contour points. In addition, the
extraction performance tested on each database was measured by
nc/ne, where n, is the total number of the test database and n. is the
correctly extracted number with the value of MSE less than a
pre-defined threshold Ac. In this paper, according to the image scale
of the test database, parameter Ac is set at 2 and 3 for each
test database, respectively. We set N, at 16 and let the positions of
the annotated points be the same as the lip model presented
in Section 3.3.

Two snapshot results of lip contour extraction are shown in
Figs. 9 and 10, in which the original lip images associated with the
opening mouth incorporate the appearance of teeth and tongue, and
also involve some certain light reflections acted on the lips. The scale
of these two lip images are of size 101 x 146 and 126 x 160,
respectively. It can be seen that the lip contour extraction results
obtained by Kass et al. [9] usually obtained an inaccurate result when
the lip edges are indistinct in grey level case. The other existing
methods, e.g., Liew et al. [13] aiming at minimizing a cost function
with a deformable model, Werda et al. [39] employing the color and
geometric based model, Wakasugi et al. [16] utilizing the separability
of multi-dimensional distributions with globally statistic character-
istics, are susceptible to the complex appearance in the oral cavity
and unable to make a good match of the real lip boundary, especially
in extracting very irregular lip shapes. Another way to achieve lip
contour extraction via lip segmentation using FCMS [21] is shown in
Figs. 9(d) and 10(d), respectively. Although the teeth can be easily
detected due to its striking difference from the surroundings, the
membership distributions may fail to reflect the lip region accurately
due to the effect of tongue and black hole in oral cavity, lighting
reflection and other clutters around the lips. In addition, it is difficult



Y.-m. Cheung et al. / Pattern Recognition 45 (2012) 3336-3347 3343

b c

Fig. 9. (a) Original RGB lip image; (b) lip contour extraction obtained by Kass et al. [9]; (c) lip contour extraction obtained by Liew et al. [13]; (d) membership distribution
obtained by Leung et al. [21]; (e) lip contour extraction obtained by Werda et al. [39]; (f) lip contour extraction obtained by Wakasugi et al. [16]; (g) lip contour extraction
obtained by LACM [27] with proper parameters in grey level case; (h) lip contour extraction obtained by LCACM; (i) lip contour extraction obtained by the proposed

method.

Fig. 10. (a) Original RGB lip image; (b) lip contour extraction obtained by Kass et al. [9]; (c) lip contour extraction obtained by Liew et al. [13]; (d) membership distribution
obtained by Leung et al. [21]; (e) lip contour extraction obtained by Werda et al. [39]; (f) lip contour extraction obtained by Wakasugi et al. [16]; (g) lip contour extraction
obtained by LACM [27] with proper parameters in grey level case; (h) lip contour extraction obtained by LCACM,; (i) lip contour extraction obtained by the proposed
method.
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to draw a satisfactory lip contour along this line. By contrast, as
shown in Table 1, the proposed lip contour extraction method has
achieved a more satisfactory result with the smallest value of contour
matching performance. This means that the proposed approach can
well match the actual lip boundaries in comparison with the above-
mentioned methods. It should be pointed out that the proposed
method need not any image pre-processing technique to reduce the
teeth or tongue effect. The analysis of the statistical characteristics in
color space can provide more significant information that is unavail-
able in grey-level case, which can make the extracting performance
more robust as shown in Figs. 9(gh) and 10(gh), respectively.
Furthermore, the utilization of a 16-point deformable model with
geometric constraint to describe a lip shape is physically meaningful
in the vision.

More experimental examples are shown in Fig. 11. It can be
clearly observed that the lip contours with opening mouth,
rotation or deformation, can be accurately extracted. As shown
in Table 2, the average extraction performance obtained by Kass
et al. [9] was just 76.7%, which often failed to match the actual lip
boundary appropriately due to the low contrast along the lip
edges. The other methods, i.e., Liew et al. [13], Leung et al. [21],
Werda et al. [39] and Wakasugi et al. [16], are all often degraded
their performance especially in extracting very irregular lip
shapes. Further, it can be found that these methods aiming at
investigating the edge information or global statistical character-
istics are somewhat sensitive to the uneven illuminations and
susceptible to the complex appearance in oral cavity as well. In
contrast, the proposed method aiming at local region analysis can
successfully avoid the complex appearance in oral cavity such
that the extracted lip contours can well match the real lip
boundary. The average extraction performance is reached up to
96.1%. From the experimental results, the proposed lip contour
extraction method is tolerant to the uneven illumination, rota-
tion, deformation, the appearance of teeth, tongue and black hole.

Simultaneously, we have also investigated the unsatisfactory
results (i.e., 3.9% of the test database), and found that they all have
the very poor contrast between the lip and surrounding skin regions,
or have obvious mustaches and beards around the lip regions.

Table 1
The comparison of lip contour matching performance.

Data Counter matching performance (MSE)
set

Kass Liew Leung Werda Wakasugi Our

etal. [9] etal [13] etal. [21] etal [39] etal [16] method
Fig. 9 4.0857 2.6972 3.7735 2.7522 2.9051 1.7327
Fig. 10 4.2762  2.7904 4.0927 2.8112 3.1086 1.8768

4.2. Experiment 2

We have conducted the proposed lip tracking algorithm on a
large number of speaking videos collected by our laboratory in a
relatively uniform illumination environment. Image acquisition
was performed using an HD-capable camera (SONY HDR-CX110)
with the capturing frame-rate at 30 fps and the scale size of
located lip images was set at 72 x 116.

Three representative groups of tracking results are shown in
Figs. 12-14, respectively. It can be observed that the lip contours
can be successfully tracked using the proposed algorithm in the
process of mouth opening and closing. As shown in Fig. 13,
although the thickness of the lip is changing over the lip move-
ments, the proposed approach with the dynamic selection of
radius can effectively prevent the complex components that may
appear in the local region such that the accurate tracking results
are obtained. We compared the proposed method with four
existing approaches (i.e., [14,11,20,24]) via the tracking perfor-
mance, which is measured by the average contour matching
performance MSE within a group frames, i.e.

Ny N,
C 1 - 2 2
MBE= g3 32X+ 0y 20

j=1i=1

where Ny denotes the total number of the tracking frames.

As shown in Table 3, the values of tracking performance MSE
obtained by the proposed algorithm are smaller than the other
four existing methods. This means that the tracked contours using
the proposed method can well match the actual lip boundaries.
Meanwhile, the utilization of a 16-point deformable model with
geometric constraint to model the lip shape is physically mean-
ingful. Comparatively speaking, the method proposed by Tian
et al. [14] often suffered from the complex components in oral
cavity and failed to well match the non-symmetrical lip shapes.
Barnard et al. [11] just employed a combination of two semi-
elliptical shapes to model the lip shape, which cannot fit the
actual lip boundary quite well especially in very irregular lip
shapes. Wang et al. [20] had shown the better extraction and

Table 2
The comparison of lip contour extraction performance.

Data  Extraction performance ((n./n;) x %)
set

Kass Liew Leung Werda Wakasugi Our
et al. [9] etal.[13] etal. [21] etal.[39] etal.[16] method
(%) (%) (%) (%) (%) (%)
CVL 79.5 92.5 89 91 90.5 97
[38]
Our lab 75.6 88.4 81.6 87.6 85.8 95.8
Average 76.7 89.57 83.71 88.57 87.14 96.1

Fig. 11. The experimental results of lip contour extraction from CVL face database using the proposed algorithm.
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Fig. 12. Lip tracking results in speaking the English digital *
(h) Frame 29.

a b

(h) Frame 29.

‘1”: (a) Frame 3, (b) Frame 7, (c) Frame 12, (d) Frame 15, (e) Frame 18, (f) Frame 21, (g) Frame 26, and

Fig. 13. Lip tracking results in speaking the English digital “5”. (a) Frame 3, (b) Frame 8, (c) Frame 13, (d) Frame 16, (e) Frame 19, (f) Frame 22, (

(g) Frame 27, and

Fig. 14. Lip tracking results in speaking the Chinese digital “9”. (
(h) Frame 30.

Table 3
The comparison of lip tracking performance.

Method Tracking performance [MSE]

Tian et al.  Barnard et al. Wangetal. Evenoetal. Our

[14] [11] [20] [24] method
Group 1 3.874 3.272 2.232 2.463 1.892
Group 2 4.109 3.316 2.153 2.535 1.954
Group 3 4.235 3.513 2.359 2.775 2171

tracking results when the probability maps are well obtained.
However, the probability maps may not be accurately generated
due to the clutter around the lips and the visibility of the tongue
or black hole such that the performance is deteriorated. Eveno
et al. [24] introduced a parametric model composed of four cubic
curves associated with some adjustment process to fit the lip

(a) Frame 1, (b) Frame 6, (c) Frame 11, (d) Frame 15, (e) Frame 20, (f) Frame 21, (g) Frame 26, and

boundary. Such a method is effective in most cases, but which
may fail to well match the lip boundary in case some fractions of
lip edges are difficult to differentiate.

Further, we randomly selected 10 groups of lip frames to evaluate
the average computation time of the proposed lip tracking algorithm
in comparison with the above four approaches. For lip contour
extraction phase, the approach proposed by Tian et al. [14] needs
the assistance of manually locating the mouth region while the
approach presented by Barnard et al. [11] also requires to manually
select the lip region of interest. We followed the instructions of the
method [24] and manually selected a single point located above the
upper lip region to perform the lip contour extraction. As listed in
Table 4, the computation time obtained by the proposed method is
0.695 s, which is smaller than the result obtained by the method [20]
and is comparable to the result obtained by the approach [24]. For the
lip tracking phase, the average computation time of tracking one
frame by the proposed approach is 0.103 s, which is less than the
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Table 4
The comparison of the computation time.

Method Computation time (s)

Tian et al.  Barnard et al. Wang et al. Eveno et al. Our
[14] [11] [20] [24] method
First Manual Manual 1.232 0.623 0.695
frame
Tracking 0.097 0.089 0.133 0.171 0.103
frame

values generated by the methods in [20,24], because the method [20]
needs to compute the probability map every frame while the method
in [24] requires a bit more pre-and-post-processing techniques and
adjustment process to fit the lip boundary. Although the average
computation time of tracking one lip frame is a bit higher than the
results obtained by Tian et al. [14] and Barnard et al. [11], the
proposed method can well match the actual lip boundary with a
better tracking performance as shown in Table 3. It is effective to
utilize the extracted contour of the previous lip frame to track the
current one. Such a way can significantly reduce a large amount of
computation time when there exists a long lip sequence. Meanwhile,
the computation time is closely related to the region scale. The
proposed lip tracking algorithm would generally take less time when
the scale of the test lip images is smaller.

5. Conclusion

In this paper, we have introduced the framework of LCACM,
through which the color objects incorporating complex appearances
or intensity inhomogeneities can be effectively segmented. Accord-
ingly, we have presented a two-phase local region-based approach to
lip tracking. Being adaptive to the lip movements, the proposed
approach features: (1) less pre-processing steps such as teeth
removal, training data capture and training process, and (2) perfor-
mance robustness to the appearance of teeth, tongue and black hole.
The experimental results have shown its promising results in
comparison with the existing methods. Nevertheless, in case the
mustache effect around the lip region becomes noticeable, the
proposed approach, as well as the other existing ones, needs an
image pre-processing to detect the region of mustache and mask it
out. We leave this study elsewhere as a future work.
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Appendix A. Illumination equalization

[llumination direction (1): Let I(i) and r(i) denote the mean
intensity of left and right borders within a local region (2p+1) x

(2g+1) at the i-th row:

. 1 P d .
l(l): mk; Z L(l+k,l)-

—pl=—q

r(i)= 7(2p+1)(2q+1) Z Z LG+k,]).

k=-pl=n-2q

We can obtain the new illuminance value:

l(l) r(l) r(i)—l(i)

Laj) =Laj)+ =2 G-+
1

~ Lijy+ (j - ﬁ> (1t~ l(l))

n=2j+1) - (r(H-1)
2(n—-1) ’

=L(i,j)+

[llumination direction (2): Let t(j) and b(j) denote the mean
intensity of top and bottom borders within a local region
2p+1) x (2q+1) at the j-th column:

0= G, 3, L

. 1 m q .
iy L Lik,j+1).
() (2p+1)(2q+l)k:;2p,;q (D

We can obtain the new illuminance value:

(I) b(]) bG)—tG)
2

— L)+ (f - —) (bj)—t()

(m=2i+1) - (b(H)— t(]))
2(m-1)

La.j)=Laj)+ (i-1)+

=L(i,j)+

Appendix B. Cubic spline interpolation

Cubic Spline Interpolation (CSI) is an effective method that
offers true continuity between the segments. For a data set x; of
n+1 points, it can construct a cubic spline with n piecewise cubic
polynomials between the data points. If

So(X), X € [X0,X1],

S0 — $1 (), X € [x1,X2],

Sno1(X), X € [Xn_1,Xn]

represents the spline function interpolating the function f, it
requires that:

e The cubic polynomial matches the interpolating property:

S(x) =f(xp).

e The splines need to join up:

Si_1(%;) = Si(x;), i=1,...,n—1.

e In order to make the interpolation as smooth as possible, the
first and second derivatives should be continuous, i.e.,

S (x)=Si(x), S/ (x)=S/(x), i=1,...,n—1.
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For the practical applications, there are two primarily standard
choices as follows:

e Natural cubic spline:
S"(x0)=0, S’(x,)=0.

e Complete cubic spline:

S"(x0) =f"(X0), S"(Xn) =f"(xn).
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