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Abstract— Supervised cross-modal hashing has received wide
attention in recent years. However, existing methods primarily
rely on sample-wise semantic relationships to evaluate the seman-
tic similarity between samples, overlooking the impact of label
distribution on enhancing retrieval performance. Moreover, the
limited representation capability of traditional dense hash codes
hinders the preservation of semantic relationship. To overcome
these challenges, we propose a new method, Joint Semantic
Preserving Sparse Hashing (JSPSH). Specifically, we introduce
a new concept of cluster-wise semantic relationship, which
leverages label distribution to indicate which samples are more
suitable for clustering. Then, we jointly utilize sample-wise and
cluster-wise semantic relationships to supervise the learning of
hash codes. In this way, JSPSH preserves both kinds of semantic
relationships to ensure that more samples with similar semantics
are clustered together, thereby achieving better retrieval results.
Furthermore, we utilize high-dimensional sparse hash codes that
offer stronger representation capability to preserve such more
complex semantics. Finally, an interaction term is introduced in
hash functions learning stage to further narrow the gap between
modalities. Experimental results on three large-scale datasets
demonstrate the effectiveness of JSPSH in achieving superior
retrieval performance.

Index Terms— Cross-modal retrieval, hashing, sample-
wise semantics, cluster-wise semantics, clustering, discrete
optimization.

I. INTRODUCTION

IN THE past decade, the growing availability of multimedia
data on the Internet has made cross-modal retrieval become
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Fig. 1. When disregarding the distribution of labels, the sample-wise semantic
similarity between A and B and that between A and C are identical. However,
given that there are more samples affiliated with label C, it is desirable for
A to be more akin to C than B, to produce more correct retrieval outcomes.
This relationship is referred to as cluster-wise semantic relationship in this
paper.

a research hotspot. Cross-modal retrieval [1], [2], [3], [4], [5],
[6], [7] refers to the task of retrieving data across different
modalities, such as using a piece of text to retrieve the
corresponding image, video, or audio, etc. To cope with
the large amount of multimedia data and improve retrieval
efficiency, hashing technology [8], [9] has been widely used in
the field of cross-modal retrieval, resulting in the development
of cross-modal hashing methods [10], [11], [12], [13], [14],
[15]. These methods map data of different modalities into a
shared Hamming subspace, enabling fast retrieval of multi-
modal data through the simple XOR operation.

In general, cross-modal hashing methods can be broadly
classified into unsupervised [11], [13], [14], [16], [17] and
supervised methods [18], [19], [20], [21]. Supervised cross-
modal hashing methods, which make use of label information,
can more effectively mine the semantic relationships between
multi-modal data and often achieve better retrieval results.
Nevertheless, since the widely used logical labels are rela-
tively rough supervision information, how to use them more
efficiently to mine the relationships between multi-modal data
and supervise the learning of corresponding hash codes is still
an open problem. To the best of our knowledge, existing meth-
ods [21], [22], [23], [24], [25] typically estimate the similarity
between samples based on the cosine distance or inner prod-
uct of their corresponding labels, capturing the sample-wise
semantic relationship. However, these approaches ignore the
fact that the distribution of labels can be highly diverse across
different datasets, and such information is crucial to further
improving retrieval quality. For example, let us consider a
scenario where there are three labels A [0,0,1,1], B [1,0,0,1],
and C [0,1,1,0], and their corresponding sample sizes are 1,
10, and 100, respectively, as shown in Fig. 1. The similarity
between A and B and that between A and C, calculated by the
cosine distance of their labels, are both 1/2. However, since
there are more samples corresponding to label C, we may
expect that more correct samples can be retrieved during the
retrieval phase if A is closer to C. Therefore, in addition to
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the sample-wise semantic relationship, we can also consider
a cluster-wise semantic relationship. In this context, the
cluster-wise similarity between A and C is a measure of how
well they belong to the same cluster of samples, compared
to A and B. Obviously, considering the cluster-wise semantic
relationships of labels in supervised cross-modal hashing can
potentially lead to more accurate retrieval results.

Furthermore, the representation capability of traditional
dense hash codes commonly used in cross-modal hashing is
limited. Traditional hash encoding scheme map multi-modal
data into dense −1 and 1 codes, requiring long hash codes
to achieve better retrieval performance [26], [27], [28]. This
results in additional storage space burden and lower retrieval
efficiency. Meanwhile, there is also a similarity mismatch
between dense hash codes and labels. Specifically, as labels
consist of binary values 0 and 1, their similarity range is
SL

∈ [0, 1], where SL
= 0 represents semantic irrelevance

(negative relationship), and SL > 0 represents semantic
relevance (positive relationship). However, the similarity range
of traditional dense hash codes is SB

∈ [−1, 1], where SB
≤ 0

represents negative relationships, and SB > 0 represents
positive relationships. To bridge the mismatch in value range,
some methods [24], [29] use 2SL

−1 to estimate SB . However,
in this case, positive relations in SL (0 < SL < 0.5) will be
incorrectly estimated as negative relations. In addition, most
of the current two-stage cross-modal hashing methods [12],
[24], [25], [28], [29] learn the hash function separately for
each modality, which leads to a lack of interaction between
modalities, ultimately hindering the capability to bridge the
heterogeneous gap.

In this paper, we propose a framework based on sparse
hashing to address the aforementioned problems, which is
referred to as Joint Semantic Preserving Sparse Hashing
(JSPSH). Specifically, we propose a joint learning scheme that
incorporates both of the commonly used sample-wise semantic
relationship and a newly introduced cluster-wise semantic rela-
tionship obtained through label clustering. We utilize these
relationships simultaneously to supervise the learning of hash
codes. Furthermore, we leverage the representation capability
of high-dimensional sparse hash codes, which have been
shown to be effective in encoding multi-modal data [25], [30].
With sparse hash codes, there is no issue of mismatching
similarity value domains, as the values of sparse hash codes are
0 or 1, which is the same as labels. Finally, to further narrow
the heterogeneous gap between modalities during the hash
function learning stage, we introduce a new interaction term to
increase the interaction between them. The main contributions
of this paper are summarized as follows:

• We propose a novel approach called Joint Semantic
Preserving Sparse Hashing, which leverages both sample-
wise and cluster-wise semantic similarity to guide the
learning of hash codes. By introducing cluster-wise
semantic relationships, JSPSH ensures that samples with
similar semantics can be clustered together more appro-
priately to achieve better retrieval performance.

• To enable effective learning of these joint semantic cor-
relations, we adopt more expressive high-dimensional
sparse hash codes for encoding multi-modal data.

Compared with traditional dense hash codes, it can better
preserve complex semantic relationships.

• We introduce a new interaction term in the hash func-
tion learning stage, which ensures better alignment
between modalities. This further improves the retrieval
performance of JSPSH by strengthening the relationship
between the different modalities.

• The proposed method was evaluated on three commonly
used public datasets, and the experimental results demon-
strate that our method outperforms existing methods, both
dense and sparse hashing ones.

The remainder of this paper is organized as follows.
Section II makes an overview of some related works.
Section III presents the details of the proposed JSPSH. Then,
Section IV provides the experiment results and analyses.
Finally, a conclusion is drawn in Section V.

II. RELATED WORK

In this section, we briefly classify existing cross-modal
hashing methods based on their encoding method into two cat-
egories: traditional dense hashing and high-dimension sparse
hashing methods.

A. Dense Cross-Modal Hashing

By default, cross-modal hashing usually refers to dense
cross-modal hashing, which encodes multi-modal data into
dense hash codes where each bit in the k-bit hash code must
be 1 or -1. Depending on whether supervised information is
utilized or not, these methods can be further classified into
unsupervised and supervised methods. Unsupervised cross-
modal hashing methods learn hash codes for multi-modal data
without the use of any explicit supervision. They typically
exploit the pairwise information between different modalities
or the underlying manifold structure of data within each
modality to learn the hash codes. A variety of unsupervised
cross-modal hashing methods have been proposed in the lit-
erature. For example, Inter-Media Hashing (IMH) [10] learns
linear hash functions to map multi-modal data into a common
Hamming space by exploring the inter-modal and intra-modal
correlation of different modalities. Collective Matrix Factor-
ization Hashing (CMFH) [11] utilizes the pairwise information
between different modalities and introduces collective matrix
factorization to learn unified hash codes. Same as CMFH,
Latent Semantic Sparse Hashing (LSSH) [31] learns unified
hash codes for all modalities by utilizing the sparse coding and
matrix factorization techniques. Besides, Composite Correla-
tion Quantization (CCQ) [32] jointly map both multi-modal
data into an isomorphic latent space and learn correspond-
ing hash codes by composite quantization. Fusion Similarity
Hashing (FSH) [33] employs a fusion strategy to learn hash
codes by constructing an un-directed graph among different
modalities. Collective Reconstructive Embedding (CRE) [34]
also learn unified binary codes by reconstructing embedding of
multi-modal data collectively. More recently, Robust Unsuper-
vised Cross-Modal Hashing (RUCMH) [35] further improves
the robustness of cross-modal hashing by exploring the relation
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between modalities with only partial or even no pairwise
information.

Supervised cross-modal hashing methods utilize the addi-
tional information provided by labels or annotations to learn
hash codes. For example, Semantics Preserving Hashing
(SePH) [18] uses labels to learn a similarity distribution,
with the objective of maximizing the similarity between
the learned hash codes and the given distribution. Gener-
alized Semantics Preserving Hashing (GSPH) [23] propose
a cross-modal hashing algorithm that can seamlessly handle
multi-label and single-label, paired data, and unpaired data
scenarios, making it applicable to a wide range of real-
world scenarios. Besides, Discriminative Cross-modal Hashing
(DCH) [36] uses labels to learn a classifier, with the aim
of generating more discriminative hash codes. To further
reduce quantization error, DCH employs the Discrete Cyclic
Coordinate (DCC) [37] descent method to discretely update
the learned hash code. Label Consistent Matrix Factorization
Hashing (LCMFH) [38] and Scalable disCRete mATrix faC-
torization Hashing (SCRATCH) [12] simultaneously leverage
heterogeneous multi-modal data and labels to learn consistent
hash codes that preserve semantic similarity as much as
possible. Matrix Tri-Factorization Hashing (MTFH) [22] is the
first cross-modal hashing method that attempts to represent
different modal data with hash codes of different lengths,
which can help capture more information from each modality.
Fast Cross-Modal Hashing (FCMH) [24], on the other hand,
emphasizes both global and local similarity preservation in the
process of learning hash codes, and proposes a discrete update
framework to optimize the objective function. To make better
use of label information, Adaptive Label correlation based
asymmEtric Cross-modal Hashing (ALECH) [29] uses more
adaptive labels to supervise the learning of hash codes.

Thanks to the impressive performance of deep learning on
various tasks [39], [40], [41], [42], deep cross-modal hashing
methods [27], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53] have recently gained significant attention
and have shown promising results. These methods utilize the
latest deep learning techniques, such as knowledge distillation
and contrastive learning, to learn feature representations from
multiple modalities and use these representations to generate
compact hash codes. However, they are typically more com-
putationally expensive and hard to be optimized under the
discrete constraint.

B. High-Dimension Sparse Hashing
High-dimensional sparse hashing is a technique in which

data is mapped into a higher-dimensional Hamming space,
with only a small subset of bits containing information. This
approach contrasts with dense hashing, where all bits in
the hash code must be either 1 or -1. In high-dimensional
sparse hashing, the number of bits carrying information is
significantly smaller than the total number of bits, resulting in
a sparse representation that is more efficient in terms of storage
and computation. The first high-dimensional sparse hashing
work, Fly-Hash [54], was inspired by the biological fruit
fly olfactory circuit and modified Locally Sensitive Hashing
(LSH) [55], originally dense hashing, into a high-dimensional

sparse version. The key characteristic of this approach is
that it uses a hash function to project the data into a high-
dimension Hamming space, where only a small number of bits
contain information. Specifically, a winner-take-all strategy is
employed, that is, the largest r elements of the output of
hash function are set to 1 and the rest are set to 0. In Fly-
Hash, the hash mapping function is randomly generated, so it
cannot make use of the inherent information of data. In order
to address this issue, some data-driven methods have been
proposed, such as Bio-Inspired Hashing (Bio-Hash) [56] and
Optimal Sparse Lifting Hashing (OSLHash) [57]. Although the
performance has been significantly improved, these methods
are still limited to single modality retrieval tasks.

More recently, high-dimensional sparse hashing has been
firstly introduced in cross-modal hashing by High-dimensional
Sparse Cross-modal Hashing (HSCH) [25]. HSCH maps multi-
modal data into a high-dimensional sparse Hamming space,
where only a small number of bits contain information. Com-
pared with dense hashing, high-dimensional sparse hashing
has been shown to have more efficient expression ability and
better retrieval performance. Later, an online version of HSCH
has also been proposed [30]. However, to date, there are still
only a small number of cross-modal hashing methods based
on high-dimensional sparse hashing.

III. PROPOSED METHOD

A. Notations

Assume that there are n pieces of multi-modal data XI ∈

Rd1×n and XT ∈ Rd2×n that represent image and text data,
respectively, where d1 and d2 indicate the dimensions of image
and text data, respectively. Their corresponding label matrix
is denoted as L ∈ {0, 1}

c×n , where c represents the number
of data categories. Li j = 1 if the j-th sample, either image or
text, belongs to the i-th category; otherwise, it is 0. The aim
is to simultaneously map XI and XT to a high-dimensional
Hamming space and obtain a unified hash code B ∈ {0, 1}

k×n ,
where k denotes the dimension of the Hamming space. Unlike
traditional dense hash codes, only r elements in each hash
code of B are assigned a value of 1, and the rest are all 0.
Thus, in this paper, r is utilized to indicate the length of the
sparse hash code, while the sparse rate of the hash code is
represented as τ = r/k.

The other symbols used in this paper are defined as follows:
|| · ||F represents the Frobenius norm of a matrix. || · ||2 rep-
resents the 2-norm of a vector. tr(·) represents the trace of
a matrix. 1m represents an m-dimensional all-ones column
vector. Im represents an m × m identity matrix.

The proposed JSPSH is a two-stage model that consists of
three main parts: semantic relationship exploring, hash codes
learning, and hash functions learning. The overall framework
of JSPSH is depicted in Fig. 2.

B. Semantic Relationship Exploring

1) Sample-Wise Semantics Relationship: We first leverage
the label information to capture the sample-wise semantic
relationship Sc. In this semantic relationship, each sample is
treated as an independent entity, and the similarity between
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Fig. 2. The proposed JSPSH framework is a two-stage approach for learning hash codes. In the first stage, both sample-wise and cluster-wise semantic
relationships are simultaneously extracted using label information. The sample-wise semantic relationship is obtained by computing the cosine distance
between labels. To obtain different levels of cluster-wise semantic relationships, various cluster numbers are selected for clustering. Then, we compute
the final cluster-wise semantic relationship as a weighted average of the cluster-wise semantic relationships at various levels. Finally, the sample-wise and
cluster-wise semantic relationships are jointly used to train high-dimensional sparse hash codes. In the second stage, hash functions are learned for the different
modalities using the learned hash codes. To reduce the heterogeneous gap between the modalities, a constraint is added between the different hash functions
to enhance their interaction.

each pair of entities is calculated based on their corresponding
labels. One of the most commonly used metrics is to compute
the cosine similarity between the samples, resulting in an
n-by-n similarity matrix Ss = cos(L, L). However, if we
directly use Ss in the subsequent optimization process, the
time complexity of the solution will be at least O(n2),
making it challenging for the algorithm to be applied to large-
scale datasets. To address this issue, we are inspired by [58]
to decompose the cosine similarity calculation into a more
efficient operation

Ss = L̄⊤L̄, (1)

where each column of L̄ is a normalized vector, i.e.,
L̄∗ j = L∗ j/||L∗ j ||. Since the dimension of L̄ is c × n,
we can prioritize left-side matrix multiplication in the sub-
sequent optimization process to avoid generating an n × n
matrix. This will help reduce both the time and space
complexity.

It is evident that the value range of Ss in Eq. (1) falls
within the interval [0, 1]. However, in traditional dense cross-
modal methods, since the dense hash code values are either
−1 or 1, their similarity values are limited to the range of
[−1, 1]. To rectify this incompatibility, some methods [24],
[29], [58] incorporate an offset term as follow

S′
s = 2L̄⊤L̄ − 1n1⊤

n , S′
s ∈ [−1, 1]

n×n . (2)

Although the value ranges are aligned in Eq. (2), offset
correction will lead to misclassification of positive samples in
Ss (0 < Ss < 0.5) as negative samples (−1 < S′

s < 0). This
problem arises because the traditional dense hash code has

the ability to finely describe the relationship between negative
sample pairs, i.e., it can calculate the specific value in the
range [-1, 0] for the relationship between negative sample
pairs. However, the similarity Ss obtained from labels usually
marks the relationship between all negative sample pairs as 0.
Therefore, simple offset correction does not fully resolve the
inherent contradiction between the dense hash code and the
similarity based on label construction.

In this paper, the use of high-dimensional sparse hashing
allows for a perfect circumvention of this problem. The simi-
larity calculated based on the sparse hash code B ∈ {0, 1}

k×n

also indicates the relationship between all negative sample
pairs as 0, just like Ss , resulting in a natural alignment with Ss .
Moreover, the powerful representation ability of sparse hash
codes enables better mining of the relationship between all
positive sample pairs.

2) Cluster-Wise Semantic Relationship: While the sample-
wise semantic relationship has been widely used and shown
satisfactory performance [22], [23], [29], [30], [58], it over-
looks the overall distribution of labels that may play a critical
role in further improving retrieval results. For instance, in the
example illustrated in Fig. 1, if the sample-wise semantic
similarity between label A and other labels is the same,
we desire it to be closer to the label that contains more
samples, which could ensure that more correct results can
be retrieved. To this end, we introduce cluster-wise semantic
relationship to capture this similarity tendency. Specifically,
we hope to further enhance the retrieval results by exploring
which labels should be closer or clustered together based on
the distribution of labels.
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To obtain the cluster-wise semantic relationship, we treat
each label in L as a feature and use k-means algorithm to
cluster L. Based on the clustering results, we define the cluster-
wise semantic similarity between two samples as follow:

Si j =

{
1, if C(i, j) = 1
0, otherwise,

(3)

where C(i, j) = 1 indicates that the i-th label and j-th label
belong to the same cluster.

As Eq. (3) shows, S is an n × n matrix, which would also
result in an O(n2) time complexity as analyzed previously.
To avoid this problem, we propose assigning new labels to
samples based on the clustering results. Specifically, we treat
all samples within the same cluster as the same class and
assign the same one-hot label to them. Then, we obtain a new
label matrix L̃ ∈ {0, 1}

p×n , where p is the number of clusters
specified in the clustering algorithm. With these new labels,
we can calculate the cluster-wise semantic similarity of the
data using the following formula:

S̃c = L̃⊤L̃. (4)

Same as Eq. (1), the time complexity O(n2) can be avoided
by prioritizing left-side matrix multiplication.

During the clustering of labels, a thorny issue is determining
the optimal number of clusters p. Given that label distribu-
tion varies across datasets, it is challenging to set the most
appropriate p for each dataset. Fortunately, as clustering is
not the ultimate objective of our proposed approach, we could
focus less on the selection of p. Our goal is just to extract
cluster-wise semantic information between samples through
clustering. Consequently, we can instead extract different
levels of cluster-wise semantic information by varying the
value of p. Specifically, we can choose m different numbers of
clusters, denoted as {pi }

m
i=1. With different pi , we can obtain

different clustering results and corresponding new labels L̃(i).
Furthermore, this enables us to obtain a series of cluster-wise
semantic similarity matrices

S̃(i)
c = L̃(i)⊤L̃(i), i = 1, 2, . . . , m. (5)

To leverage cluster-wise semantic relationships across dif-
ferent levels simultaneously, we compute the final cluster-wise
semantic similarity Sc as a weighted average of the cluster-
wise semantic similarities S̃(i)

c obtained at different numbers
of clusters pi . Specifically, we use different weights wi to
adjust the contribution of each level of clustering to the final
cluster-wise semantic similarity, that is,

Sc =

m∑
i=1

wi S̃(i)
c =

m∑
i=1

wi L̃(i)⊤L̃(i), s.t.
m∑
i

wi = 1. (6)

Considering that a larger number of clusters pi will result in
stronger correlations between samples belonging to the same
cluster, we believe the corresponding relationship S̃(i)

c to be
more informative. Therefore, we set the weights wi in Eq. (6)
proportional to pi . Then, the weights are computed as follows:

wi =
pi∑m

i=1 pi
, i = 1, 2, . . . , m. (7)

Fig. 3. When the sample-wise semantic relationship between C and B and
that between C and A are the same, i.e., d1 = d2, k-means algorithm will
cluster C with A because there are more samples corresponding to label A.
By preserving this cluster-wise semantic relationship, it can be guaranteed that
more semantically similar samples are clustered around C in the retrieval set.

Remark. Why can clustered results provide effective cluster-
wise semantic relationship which benefits the retrieval results?
On one hand, clustering labels that are semantically simi-
lar enhances the sample-wise semantic relationship. In other
words, it helps identify which sample-wise semantic relation-
ships need to be highlighted. On the other hand, when the
sample-wise semantic relationship between labels is the same,
clustering results can provide better ranking. For instance,
in Fig. 3, assume that the sample-wise semantic relationship
between C and B, and C and A is the same, i.e., d1 = d2.
Since there are more samples corresponding to label A, the
center point of cluster 2 will be closer to A. Therefore, in the
clustering process, C will be closer to the center point of
cluster 2, i.e., d3 < d4, and C will be clustered with A.
This cluster-wise semantic relationship tends to make C and
A closer to ensure that more semantically similar samples are
gathered around. This decision is more advantageous when
A and B are negative samples of each other. For instance,
suppose that the labels A,B, and C correspond to 001, 100,
and 101, respectively. In this case, it is better to make C closer
to A because it can ensure more correct retrieval results.

C. Hash Codes Learning

After obtaining the sample-wise and cluster-wise semantic
relationships, we will use them to jointly learn unified hash
codes B. The learned hash codes B should ideally preserve
the semantic information at both the sample and cluster levels.
To this end, we define following object function:

min
B

||B⊤B − rSs ||
2
F + α||B⊤B − rSc||

2
F ,

s.t. B ∈ {0, 1}
k×n, B⊤1k = r1n, (8)

where hyper-parameter α is used to balance the ratio between
the two types of semantic relationships. We have also intro-
duced two constraints to the function. Specifically, B ∈

{0, 1}
k×n and B⊤1k = r1n ensure binary values and the

sparsity of the learned hash codes B, respectively. However,
they have also made the optimization of the object function
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Eq. (8) into an NP-Hard problem. To address this challenge,
we adopt an asymmetric hashing strategy [59] and introduce
an intermediate variable H ∈ Rk×n . Specifically, we remove
the discrete constraints of one B in the matrix multiplication
and transform it into a continuous variable H. We then add a
constraint item between B and H to reduce quantitative losses.
Additionally, to minimize redundancy among different bits
of the hash codes, we further apply an orthogonal constraint
on H. As a result, Eq. (8) is transformed into the following
problem:

min
H,B

||H⊤B − rSs ||
2
F + α||H⊤B − rSc||

2
F + β||B − H||

2
F ,

s.t. B ∈ {0, 1}
k×n, B⊤1k = r1n, HH⊤

= nr/kIk . (9)

Then, we can disassemble the solution of Eq. (9) into two
steps of H-Step and B-Step to optimize them alternately.

H-Step: Fix B, Eq. (9) can be reformulated into the follow-
ing sub-problem:

max
H

tr((rBSs + αrBSc + βB)H⊤),

s.t. HH⊤
= nr/kIk . (10)

We use V = rBSs + αrBSc + βB. According to [30] and
[60], the optimal solution of Eq. (10) is given by

H =
√

nr/k[Q, Q̄][T, T̄]
⊤, (11)

where the matrix Q is obtained from the eigen-decomposition
of matrix VV⊤. Define

VV⊤
= [Q, Q̃]

[
6 0
0 0

]
[Q, Q̃]

⊤, (12)

where 6 ∈ Rk′
×k′

is the diagonal positive eigenvalue matrix,
and k′ is the rank of VV⊤. Matrix Q ∈ Rk×k′

consists of
corresponding eigenvectors of positive eigenvalues and Q̃ ∈

Rk×(k−k′) consists of k − k′ eigenvectors of eigenvalue 0.
Then, Q̄ ∈ Rk×(k−k′) can be obtained by performing the Gram-
Schmidt process on Q̃. Matrix T = V⊤Q6−1/2

∈ Rn×k′

and
T̄ ∈ Rn×(k−k′) is a random orthogonal matrix.

Considering that the calculation of V involves the matrix
multiplication of S, which can result in a time complexity of
O(n2), we propose to calculate V using the following formula

V = r(BL̄⊤)L̄ + αr
m∑

i=1

wi (BL̃(i)⊤)L̃(i)
+ βB. (13)

As a result, by prioritizing left-side matrix multiplication,
the time complexity of V decreases from O(kn2) to O(ckn),
where c, k ≪ n. Section III-F gives a detailed analysis.

B-Step: Fix H, Eq. (9) can be reformulated into the follow-
ing sub-problem:

max
B

tr((rHSs + αrHSc + βH)B⊤),

s.t. B ∈ {0, 1}
k×n, B⊤1k = r1n . (14)

The optimal solution is given by

B = signr (rHSs + αrHSc + βH)

= signr (r(HL̄⊤)L̄ + αr
m∑

i=1

wi (HL̃(i)⊤)L̃(i)
+ βH), (15)

where signr is a function that transforms a real-number vector
x into a string of sparse hash code and is defined as follow:

signr (x) =

{
1, if x is the top-r largest elements
0, otherwise . (16)

The winner-take-all strategy is adopted by the signr (x).
This strategy activates only the largest r -bit elements in x
and leaves the rest to 0.

D. Hash Functions Learning

After obtaining the hash codes, it is necessary to learn the
hash functions that map the data of different modalities to
the hash codes. One conventional approach is to use a linear
classification model, that is,

min
P∗

||B − P∗X∗||
2
F , ∗ = {I, T }, (17)

where P∗ denotes the hash functions to be learned. This
approach considers each bit of data mapping to a hash code as
a distinct binary classification problem. Nevertheless, since B
is strictly binary and P∗X∗ is continuous, there will inevitably
be a residual distance between them, and its direction will be
uncontrollable. These errors affect the validity of the generated
hash codes, especially due to the winner-take-all strategy
used to generate high-dimension sparse hash codes during
the retrieval phase. To address this issue, [30] has proposed
introducing an error correction term and using sample-wise
semantic information to enhance the constraints on the map-
ping function as follow

min
P∗

||B − P∗X∗||
2
F + γ ||rSc − B⊤(P∗X∗)||

2
F , ∗ = {I, T },

(18)

where γ is generally a hyper-parameter with a small value to
control the degree of error correction.

However, the aforementioned two methods have a lim-
itation: there is a lack of interaction between modalities
during the hash function learning process, which can result
in misalignment of the hash codes of different modalities.
In the hash function learning stage, it is assumed that data of
different modalities share the same hash code B = BI = BT ,
where BI and BT represent the hash codes of image data
XI and text data XT , respectively. However, Eq. (17) and
Eq. (18) essentially use BI and BT independently to learn
hash functions for different modalities, which weakens the
assumption BI = BT . This can cause misalignment of the hash
codes of different modalities, as shown in Fig. 4. Although
both distances from PI XI and PT XT to B are small, the
directions are different. Ideally, we would like to achieve the
effect in Fig. 4(b). To address this, we introduce an interaction
term PI XI −PT XT in the hash function learning stage, which
re-emphasizes the assumption BI = BT . Consequently, the
overall optimization function becomes

min
PI ,PT

||B − PI XI ||
2
F + γ ||rSc − B⊤(PI XI )||

2
F

+ ||B − PT XT ||
2
F + γ ||rSc − B⊤(PT XT )||2F

+ µ||PI XI − PT XT ||
2
F + λR(PI , PT ), (19)
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Fig. 4. When hash codes of different modalities are not aligned, two different
situations can arise: (a) both PI XI and PT XT have small distances to B but
in different directions, and (b) both PI XI and PT XT have small distances to
B and in the same direction.

where µ and λ are two hyper-parameters and R(PI , PT ) =

||PI ||
2
F +||PT ||

2
F represents the regularization term imposed on

PI and PT . In Eq. (19), we use only the sample-wise semantic
relationship for error correction. There are two reasons for
this decision. Firstly, we believe that hash codes B have effec-
tively integrated both sample-wise and cluster-wise semantic
information in the hash codes learning stage. Secondly, using
multiple standards for error correction, i.e., using both sample-
wise and cluster-wise semantic relationships simultaneously,
may introduce contradictions and be counterproductive for
learning hash functions.

Finally, we can alternately solve PI and PT to optimize
Eq. (19) as follows

PI = ((1 + λ)Ik + γ BB⊤)−1(BX⊤

I + µPT XT X⊤

I

+ γ r(BL̄⊤)(L̄X⊤

I ))(XI X⊤

I + ωId1)
−1, (20)

PT = ((1 + λ)Ik + γ BB⊤)−1(BX⊤

T + µPI XI X⊤

T

+ γ r(BL̄⊤)(L̄X⊤

T ))(XT X⊤

T + ωId2)
−1, (21)

where ωId1 and ωId2 are two small items (ω = 0.01) to avoid
the singularity of matrix X∗X⊤

∗ .
Compared to previous methods [28], [29], [30], [61] that

only involve data from the corresponding modalities in training
hash functions, our proposed optimization process simultane-
ously involves data from all modalities in the training process.
For example, when solving PI , both XI and XT are involved,
which enhances the interaction between different modalities.
This interaction not only narrows the heterogeneous gap but
also allows for the use of information from multiple modalities
to learn a better hash function P∗.

The whole training process of JSPSH including semantic
relationship exploring, hash codes learning, and hash functions
learning is summarized in Algorithm 1.

E. Proof of Convergence

In this section, we analyze the convergence of JSPSH.
During the hash code learning stage, all variables B and
H have closed-form solutions to their corresponding sub-
problems. Let L(B, H) denote the value of the object function
Eq. (9), and we have L(Bt+1, Ht+1) ≤ L(Bt+1, Ht ) ≤

L(Bt , Ht ), where t is the number of iterations. According to
the bounded monotone convergence theory [62], the algorithm
will converge to a stable solution. Similarly, during the
hash functions learning stage, all variables PI and PT have
closed-form solutions to their corresponding sub-problems.

Algorithm 1 JSPSH
Input: Cluster number {pi }

m
i=1, Image data XI , text

data XT , and corresponding labels L;
Output: Unified hash codes B, image hash function

PI , and text hash function PT ;
1 Semantic relationship exploring:
2 for i = 1 to m do
3 Use k-means algorithm to cluster L into pi

clusters;
4 Assign new label L̃(i) to data based on the

clustering results;
5 end
6 Hash codes learning:
7 Randomly initialize B and H with a standard normal

distribution;
8 for i ter = 1 to max iteration do
9 Update H by Eq. (11);

10 Update B by Eq. (15);
11 end
12 Hash functions learning:
13 for i ter = 1 to max iteration do
14 Update PI by Eq. (20);
15 Update PT by Eq. (21);
16 end

Using L(PI , PT ) to denote the value of the object function
Eq. (19), we have L(Pt+1

I , Pt+1
T ) ≤ L(Pt+1

I , Pt
T ) ≤ L(Pt

I , Pt
T ).

In summary, the convergence of the JSPSH algorithm can be
guaranteed.

F. Complexity Analysis

The JSPSH algorithm involves three main components:
label clustering, hash code learning, and hash function learn-
ing. The time complexity of the label clustering stage is
O(

∑m
i tcpi n), where t is the maximum iteration. It is impor-

tant to note that this stage is performed only once, and the
results are saved and utilized for subsequent calculations.
Therefore, the time complexity of this stage is not counted.
In the hash codes learning stage, the time complexity of
solving H and B in each round are O(ckn +

∑m
i kpi n + kn +

k2n+k3) and O(ckn+
∑m

i kpi n+kn+nk log2 r), respectively.
In the hash functions learning stage, the time complexities of
solving P1 and P2 in each round are O(k2(k+n+1)+kn(d1+

d2 + c) + cd1(n + k) + kd1 + d2
1 (n + d1 + 1) + kd1(k + d1))

and O(k2(k + n + 1) + kn(d1 + d2 + c) + cd2(n + k) + kd2 +

d2
2 (n + d2 + 1) + kd2(k + d2)), respectively. As k, c, r, d1, d2,

and pi are all constants and much smaller than n, the time
complexity of the JSPSH algorithm can be considered linear
to the size of the training set n, i.e., O(n). Therefore, it can
efficiently process large-scale datasets.

IV. EXPERIMENT
A. Experimental Settings

1) Datasets: To measure the retrieval ability of JSPSH,
we conducted experiments on three commonly used large-
scale datasets, including MIRFlickr [63], IAPR TC-12 [64]
and NUS-WIDE [65].



2996 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 4, APRIL 2024

TABLE I
THE MAP RESULTS (MAP@50) OF THE PROPOSED JSPSH AND OTHER COMPARED BASELINES ON

THREE DATASETS. THE BEST RESULTS ARE IN BOLDFACE

MIRFlickr is a dataset that comprises 25,000 image-text
pairs, divided into 24 categories. Each image is represented
by a 512-dimensional GIST feature, and each text is repre-
sented by a 1,386-dimensional bag-of-words vector. To ensure
effective training, we eliminated data with textual tags less
than 20 and selected 20,015 pairs of valid data. From the
remaining data, we randomly selected 2,000 data points as
the query set and used the rest for retrieval and training sets.

IAPR TC-12 dataset consists of 20,000 image-text pairs
with a total of 255 different classes. Each piece of data is
labeled with at least one of these categories. Each image is
represented by a 512-dimensional GIST feature, and each text
is represented by a 2,912-dimensional bag-of-words vector.
Following the setting in [30], we randomly selected 2000 data
points as the query set, and used the remaining data points for
retrieval and training.

NUS-WIDE is a larger dataset compared to the previ-
ous two datasets, consisting of 269,648 image-text pairs
and 81 different categories. Following the settings in [43],
for the experiments conducted in this paper, only the
10 most frequently occurring categories of samples, totaling
186,577 pairs, were used. Each image is represented by a
500-dimensional SIFT feature, while the corresponding text
is represented by a 1,000-dimensional binary tagging vector
representation. We randomly selected 2,000 pieces of data as
the query set, while the remaining samples were used as the
retrieval and training sets.

2) Evaluation Metrics: In this paper, we conducted two
cross-modal retrieval tasks: I2T, which retrieves images based
on text queries, and T2I, which retrieves text based on
image queries. We employed three commonly used metrics
to evaluate the performance of JSPSH and all compared
methods, namely mean average precision (mAP), precision-
recall (PR) curve, and top-K precision curve. A higher mAP
and top-K precision value as well as a larger area under the PR
curve indicate better retrieval performance. When calculating
precision, we considered a search result to be correct if it
shares at least one label with the query.

3) Baselines and Implementation Details: To verify the
effectiveness of the proposed JSPSH, we compared it with
nine state-of-the-art cross-modal hashing methods, includ-
ing DCH [36], SCRATCH [12], DLFH [66], LFMH [67],
BATCH [68], WATCH [28], ALECH [29] and HSCH [30].
Among these methods, HSCH is the only high-dimensional
sparse cross-modal hashing method, while the remaining meth-
ods are traditional dense hashing methods. The codes for all
comparison methods are kindly provided by their authors, and
all parameters follow the settings in the corresponding papers.
All experiments are conducted on the server equipped with
Intel i7-12700KF CPU@ 3.7 GHZ and 64 GB RAM.

4) Parameters Setting: The parameters used in JSPSH are
set as follows: α = 1, β = 10, µ = 3, γ = 0.01, λ = 0.01, and
τ = 0.05 for all datasets. However, since the label distribution
varies across datasets, we set different clustering parame-
ters {pi }

m
i=1 for each dataset. Specifically, we set clustering

parameters to {100, 200, 500} for MIRFlickr and IAPR TC-12
datasets, whereas for the larger scale NUS-WIDE dataset,
we set clustering parameters to {50, 100, 200, 500, 1000}.

B. Retrieval Performance
In this section, we analyze the retrieval performance of the

proposed JSPSH and compare it with other methods from
three aspects. Table I presents the mAP results of all methods
on the three datasets. Moreover, Fig. 5 and Fig. 6 illustrate
the PR curve and top-K precision curve of all methods on
the MIRFlickr dataset, respectively, with hash code lengths
varying from 2 to 32 bits. Based on these results, we draw the
following conclusions:

• The superiority of high-dimensional sparse hashing meth-
ods, JSPSH and HSCH, over traditional dense hashing
algorithm is evident from the mAP results presented
in Table I. In particular, JSPSH and HSCH exhibit
robustness in low-dimensional scenarios, such as r = 2
or 4, thereby demonstrating their potential in encoding
abundant information using a fewer number of hash
bits. This highlights the representation capability of
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Fig. 5. The PR curves of JSPSH and compared baselines on MIRFlickr.

Fig. 6. The top-K precision curves of JSPSH and compared baselines on MIRFlickr.

high-dimensional sparse hash codes, thereby proving their
efficacy in the field of retrieval tasks.

• JSPSH consistently outperforms HSCH in terms of
retrieval performance, which highlights the efficacy of
cluster-wise semantic relationships. Both JSPSH and
HSCH leverage high-dimensional sparse hash codes to
encode information, with the main difference being that
HSCH only uses sample-wise semantic relationships in
hash code learning while JSPSH utilizes both sample-
wise and cluster-wise semantic relationships. The super-
vised learning of hash codes with the help of cluster-wise
semantic relationships provides more precise information
based on label distribution to determine which hash codes
should be closer in Hamming space, resulting in better
grouping of semantically similar samples and superior
retrieval performance.

The PR curve and top-K precision curve depicted in
Fig. 5 and Fig. 6 further support these analyses. It is evi-
dent that the gap between traditional dense hashing methods

and high-dimensional sparse hashing methods is substantial,
particularly when the dimension of hash codes is low, such
as r = 2 and 4. When comparing JSPSH and HSCH, it is
observed that JSPSH consistently outperforms HSCH in terms
of retrieval precision, under the same recall rate. Furthermore,
JSPSH always ensures that a higher number of relevant
samples appear within the top-K retrieved results, except when
r = 4. These observations suggest that JSPSH is better suited
to ensure that semantically similar samples are distributed
around the query. In other words, with the help of cluster-
wise semantic information, JSPSH can ensure that samples
are more appropriately clustered in the retrieval set.

C. Efficiency Analyses

In Section III-F, we presented a theoretical analysis showing
that the time complexity of JSPSH is linearly related to the
size of the training set. To validate this analysis, we provide
experimental data on the training time complexity, training
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TABLE II
THE TRAIN TIME COMPLEXITY, TRAINING TIME (SECONDS), AND RETRIEVAL TIME (SECONDS) OF THE

PROPOSED JSPSH AND OTHER COMPARED BASELINES ON MIRFLICKR DATASET

TABLE III
THE MAP RESULTS (MAP@50) OF JSPSH AND ITS FOUR VARIANTS ON MIRFLICKR AND IAPR

TC-12 DATASETS. THE BEST RESULTS ARE IN BOLDFACE

time, and retrieval time of all methods on the MIRFlickr
dataset. The results are presented in Table II. Regarding the
training time, while the time complexity of most methods is
O(n), there are variations in the actual time required due
to different coefficients such as c2k and k3 in time com-
plexity. Since they are significantly smaller than n, they are
disregarded when calculating the time complexity. Generally,
the training time of JSPSH is comparable to other methods.
We believe that a slight increase in training time is a reasonable
trade-off considering the significant improvement in retrieval
performance offered by JSPSH. As for the retrieval time, all
methods achieve similar performance with the same hash code
length. This indicates that sparse hash codes do not impose an
additional computational burden during the retrieval phase.

D. Ablation Study

In JSPSH, we made three key contributions. First, we intro-
duced the concept of cluster-wise semantic relationships
and used it in conjunction with sample-wise semantic rela-
tionships to jointly supervise the learning of hash codes.
Second, we replaced traditional dense hash codes with high-
dimensional sparse hash codes, whose effectiveness has
already been validated in Section IV-B. Third, we introduced
an interaction term during the hash function learning process
to narrow the heterogeneous gap. To validate the effectiveness
of the first and third contributions, we conducted ablation
experiments on five variants of JSPSH. Specifically, JSPSH-1
used only sample-wise semantic relations to train hash codes.

TABLE IV
THE DIFFERENCES BETWEEN VARIANTS OF JSPSH IN ABLATION STUDY

JSPSH-2 and JSPSH-3 used both semantic relations to jointly
train hash codes, but only used p = 100 and p = 500 for
the cluster-wise semantic relationship obtained from clustering
results, respectively. JSPSH-4 used both semantic relations
to jointly train hash codes and {pi } = {100, 200, 500}, but
removed the interaction term during hash functions learning
stage. Finally, JSPSH-5 replaces the high-dimension sparse
hash codes in JSPSH with dense hash codes, keeping other
settings unchanged. The specific differences between all vari-
ants are summarized in Table IV. The results are reported in
Table III.

By comparing JSPSH-1, JSPSH-2, JSPSH-3, and JSPSH,
we can verify the role of the cluster-wise semantic relationship.
The results lead to the following conclusions:

• The introduction of cluster-wise semantic information,
irrespective of its level, proves beneficial to the final
retrieval performance. In most cases, JSPSH-2, JSPSH-3,
and JSPSH perform better than JSPSH-1, which only uses
sample-wise semantic information to learn hash codes.
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Fig. 7. Parameters analyses of JSPSH on MIRFlickr dataset.

• The cluster-wise semantic relationship required by dif-
ferent data sets varies. Specifically, for the MIRFlickr
data set, the results obtained by JSPSH-2 (p = 100) and
JSPSH-3 (p = 500) are comparable. However, for the
IAPR TC-12 data and above, the results of JSPSH-3 are
significantly better than those of JSPSH-2. Theoretically,
the larger the value of p, the more accurate the cluster-
wise semantic information is, which is more conducive
to the learning of hash codes. However, the validity of
this information also depends on the distribution of the
label itself, which requires further investigation.

• The cluster-wise semantic relationship that is adapted
to hash codes with different representation capabilities
varies. When the representation ability of the hash code
is limited, that is when r is small, too complex semantic
information may not be beneficial to the learning of the
hash code. For instance, when r = 4, the I2T results
of JSPSH-2 on the MIRFlickr dataset are significantly
higher than those of other variants. Conversely, when
the hash code representation ability is adequate, that is
when r is larger, more appropriate semantic information
can stimulate its representation potential. For instance,
when r = 16, the results of JSPSH-3 outperform all other
variants on the IAPR TC-12 dataset.

Through the above analysis, it can be concluded that finding
suitable cluster-wise semantic relations as supervisory infor-
mation for different datasets is a challenging task. To address
this issue, we adopt the strategy of weighted average, which
helps to mitigate the different requirements to a certain extent.
The results demonstrate that JSPSH performs better than
JSPSH-2 and JSPSH-3 in most cases.

Furthermore, the effectiveness of the interaction term in
the hash function learning phase can be demonstrated by
comparing JSPSH-4 and JSPSH. It can be seen that the
retrieval performance of JSPSH has always been better than
that of JSPSH-4. This proves that the interaction term we
proposed can effectively strengthen the interaction between
modalities, further narrow the heterogeneous gap, and achieve
better retrieval results. Besides, the performance of JSPSH
significantly outperforms that of JSPSH-5, indicating that
high-dimensional sparse hash codes possess a stronger repre-
sentation capability compared to traditional dense hash codes,
given the same number of hash bits.

E. Further Analyses
1) Parameter Sensitive: We conducted experiments on the

MIRFlickr dataset to analyze the sensitivity of parameters α,

Fig. 8. The convergence curves on MIRFlickr and IAPR TC-12 datasets.

β, γ , and µ. Parameter α adjusts the proportion of sample-wise
and cluster-wise semantic relationships, while parameters β,
γ , and µ are weights of three different auxiliary terms, namely
quantization error term, error correction term, and interaction
term. Figure 1 shows the corresponding mAP performance.
Our observations are as follows:

• Parameter α: When a is small (α < 10), its impact on
the retrieval performance is relatively slight. However,
when a is large (α > 10), the retrieval performance drops
significantly. This is because the cluster-wise semantic
relationship should be an auxiliary to the sample-wise
semantic relationship in JSPSH. When α is excessively
large, the cluster-wise semantic relationship dominates,
subverting the primary and secondary relationship, and
leading to a decline in retrieval performance.

• Parameters β, γ , and µ: These parameters correspond to
auxiliary terms and the performance of JSPSH is not so
sensitive to them. Only when their values are too large,
such as µ = 1000, does the retrieval performance drop
significantly.

2) Convergence Analysis: In Section III-E, we provide a
theoretical analysis of the convergence of JSPSH. To gain
a deeper understanding, we conduct additional experiments
on MIRFlickr and IAPR TC-12 datasets to further analyze
the convergence empirically. Fig. 8 presents the convergence
results, where we normalize the objective function value for
ease of observation. It is worth noting that after a single
iteration, we observe a sharp drop in the objective value
and the model consistently converges after five iterations.
These findings provide additional evidence of the efficient and
effective convergence of our proposed model.

3) Comparison With Deep Hashing Methods: To further
validate the efficacy of JSPSH, we conducted a comparison
study with some state-of-the-art deep cross-modal hashing
methods, including DCMH [43], SSAH [44], EDGH [45],
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TABLE V
THE MAP RESULTS OF THE PROPOSED JSPSH AND OTHER

DEEP BASELINES ON MIRFLICKR DATASET

MLCAH [69], DADH [70], CPAH [71], MLSPH [72],
DMFH [51], and MDCH [73], on the MIRFlickr dataset.
To ensure a fair comparison, same as [12], [29], and [30],
we replaced the shallow features used in the prior experiment
with 4096-dimensional CNN features that were extracted
using the pre-trained CNN-F network [74] on ImageNet [75].
Table V represents the mAP results, and for all baselines,
we directly report the results from the original papers.
As demonstrated, JSPSH consistently outperforms all the base-
lines. A plausible reason may be that deep hashing methods
tend to relax the discrete constraints of hash codes and
optimize the objective function in batches. In contrast, JSPSH
can effectively guarantee the quality of the hash codes by
designing a discrete update algorithm and updating it in a
global manner. Besides, when the dense hash code length is
reduced, there is a notable decline in the performance of these
deep hashing methods. Conversely, JSPSH still achieves stable
performance under the same circumstances. Furthermore, even
with a hash code length of 4 bits, JSPSH surpasses the majority
of deep methods, highlighting the expressive capability of
sparse hash codes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach Joint
Semantic Preserving Sparse Hashing (JSPSH) for cross-modal
retrieval. It overcomes the limitations of existing methods that
only consider sample-wise semantic relationships. We have
proposed a new concept of cluster-wise semantic relationships
that takes into account the distribution of labels to identify
which samples should be closer to each other. By preserv-
ing both sample-wise and cluster-wise semantic relationships,
JSPSH is able to learn more efficient hash codes. Additionally,
to capture more precise semantic information, we have utilized
high-dimensional sparse hash codes that are more expressive
for multi-modal data representation than traditional dense
hash codes. To further bridge the gap between heterogeneous
modalities, we have proposed an interaction term during hash
functions learning to align the hash codes of different modal-
ities. The experimental results demonstrate that the proposed
JSPSH outperforms existing state-of-the-art methods.

Although the effectiveness of the proposed cluster-wise
semantic relationship has been demonstrated in improving
retrieval performance, the k-means clustering algorithm used

in this paper still has some limitations in capturing this
relationship. Specifically, since the number of clusters for
the labels is unknown, we adopt a compromise strategy that
involves selecting different numbers of clusters and performing
a weighted average on the results. However, as shown in
Section IV-D, this strategy is not always the optimal solution.
In future work, we plan to explore new methods to obtain more
effective cluster-wise semantic information, thereby further
improving retrieval performance.
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