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Probabilistic Rank-One Tensor Analysis With
Concurrent Regularizations

Yang Zhou ', Haiping Lu

Abstract—Subspace learning for tensors attracts increasing
interest in recent years, leading to the development of multilinear
extensions of principal component analysis (PCA) and proba-
bilistic PCA (PPCA). Existing multilinear PPCAs are based on
the Tucker or CANDECOMP/PARAFAC (CP) models. Although
both kinds of multilinear PPCAs have shown their effectiveness
in dealing with tensors, they also have their own limitations.
Tucker-based multilinear PPCAs have a restrictive subspace rep-
resentation and suffer from rotational ambiguity, while CP-based
ones are more prone to overfitting. To address these problems, we
propose probabilistic rank-one tensor analysis (PROTA), a CP-
based multilinear PPCA. PROTA has a more flexible subspace
representation than Tucker-based PPCAs, and avoids rotational
ambiguity. To alleviate overfitting for CP-based PPCAs, we pro-
pose two simple and effective regularization strategies, named as
concurrent regularizations (CRs). By adjusting the noise variance
or the moments of latent features, our strategies concurrently and
coherently penalize the entire subspace. This relaxes unneces-
sary scale restrictions and gains more flexibility in regularizing
CP-based PPCAs. To take full advantage of the probabilistic
framework, we further propose a Bayesian treatment of PROTA,
which achieves both automatic feature determination and robust-
ness against overfitting. Experiments on synthetic and real-world
datasets demonstrate the superiority of PROTA in subspace esti-
mation and classification, as well as the effectiveness of CRs in
alleviating overfitting.

Index Terms—Bayesian inference, dimensionality reduction,
machine learning, probabilistic PCA, tensor analysis.

I. INTRODUCTION

ULTIWAY or multidimensional arrays, also known as

tensors, are abundant in real-world applications, such
as signal processing, computer vision, social network analy-
sis, and so on [1]-[3]. The order of a tensor is the number
of dimensions of the array, and a mode is one dimension
of it. For example, a graylevel image can be represented
by a second-order tensor (matrix) with the dimensions of
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height x width, and a gait silhouette sequence can be orga-
nized as a third-order tensor of height x width x time. By
preserving the structural information in each mode, tensors
can naturally characterize data from multiple aspects, provid-
ing compact and meaningful representations. Tensorial data
are typically high dimensional, and difficult to be directly
handled in their original space. In addition, interesting latent
information or interactions among multiple modes often lie in
a low-dimensional subspace [4]. Therefore, subspace learn-
ing, as a useful technique for dimensionality reduction, is
frequently used to represent high-dimensional tensors in a low-
dimensional subspace without losing much useful underlying
information or structures.

Principal component analysis (PCA) [5] is one of the
most popular subspace learning techniques. It aims to find
a subspace that preserves maximum data variance. In the
past few decades, many PCA extensions have been proposed.
Among them, one important and fundamental representative
is probabilistic PCA (PPCA) [6]. PPCA reformulates PCA
under the probabilistic framework by learning a generative
model that relates low-dimensional latent features with high-
dimensional observations. In this way, PPCA obtains two
main advantages over PCA: 1) it can capture data uncer-
tainty and handle missing values and 2) it enables automatic
model selection or incorporation of certain desirable prop-
erties, such as robustness [7], sparsity [8], and large-margin
separability [9].

Although PCA and PPCA have wide applications, they
have limitations in dealing with fensors. Since PCA and
PPCA can only take vectors as inputs, they have to vec-
torize or reshape tensors into vectors first. This breaks the
meaningful tensor structures, and leads to larger parameter
sizes and higher memory demands [10]. To address these
problems, two kinds of multilinear PCA extensions have
been proposed, which learn subspaces directly from tenso-
rial inputs for preserving structural information. One is based
on the Tucker model [11] that projects high-dimensional ten-
sors into low-dimensional tensors [12]-[16]. The other is
based on the CANDECOMP/PARAFAC (CP) model [17], [18]
that projects high-dimensional tensors into low-dimensional
vectors [19]-[21].

Along this line, several multilinear PPCA extensions have
been proposed to take advantages of both probabilistic mod-
els and tensor representations. Most of them are based on
the Tucker model. For example, matrix-variate factor anal-
ysis (MVFA) [22] attempts to extend PPCA for matrix
inputs. It constructs a bilinear Tucker model to relate each
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matrix observation to a low-dimensional latent matrix via
column and row factor matrices. Probabilistic second-order
PCA (PSOPCA) [23] provides a probabilistic interpretation of
bilinear PCAs by employing matrix-variate normal distribu-
tions [24] and variational approximation techniques. Bilinear
PCAA (BPPCA) [25] further adds two extra noise terms into
the PSOPCA model. This leads to tractable probability density
functions and closed-form updates for maximum-likelihood
estimation (MLE).

Compared with Tucker-based approaches, CP-based PPCAs
are relatively under-developed. To the best of our knowledge,
tensor Bayesian vectorial dimension reduction (TBVDR) [26]
is the only existing CP-based multilinear PPCA. It introduces
an additional linear projection into the CP model, so that the
model complexity and the number of extracted features can
be controlled separately. There are also several related works
on probabilistic/Bayesian CP decomposition (CPD), which
were developed for tensor completion but can be applied to
subspace learning. Bayesian probabilistic tensor factorization
(BPTF) [27] formalizes the collaborative filtering problem as
a CPD with time factors and smooth constraints for capturing
temporal correlations. It is further extended to a parameter-free
Bayesian version to automatically control the model complex-
ity. Bayesian CP factorization (BCPF) [28] applies automatic
relevance determination (ARD) [29], [30] for CPD, so that the
CP rank can be determined automatically. Variational Bayesian
tensor CPD (VBTCP) [31] extends BCPF to deal with noisy
complex-valued tensors, and imposes orthogonal constraints
on one or more dimensions.

Although both Tucker- and CP-based multilinear PPCAs
have shown their effectiveness in dealing with tensors, they
have their own limitations. Tucker-based approaches suffer
from rotational ambiguity [6], [32], in the sense that their
solutions with and without rotation transformations are equally
good, and have a compact yet restrictive subspace representa-
tion. On the other hand, CP-based ones are more flexible in
representing subspaces without rotational ambiguity, whereas
they are more prone to overfitting, leading to poor generaliza-
tion abilities. A few regularization strategies have been studied
in Bayesian CPD methods for alleviating overfitting. However,
they are designed for tensor completion, taking no prior knowl-
edge of subspace learning into account and introducing strong
restrictions into the CP model.

To address the above problems, we propose probabilistic
rank-one tensor analysis (PROTA) with concurrent regulariza-
tions (CRs). Our contributions are threefold.

1) We propose PROTA, a new CP-based multilinear PPCA,
which represents each observation as a linear combina-
tion of rank-one tensors. Compared with Tucker-based
PPCAs, PROTA is more flexible in capturing data char-
acteristics, and avoids rotational ambiguity. Its advan-
tages over existing CP-based PPCAs are described in
the next contribution.

2) To alleviate overfitting for CP-based PPCAs, we pro-
pose two simple and effective regularization strategies
in PROTA, named as CRs, where we control the
model complexity by adjusting the noise variance or
the moments of latent features. Different from existing
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TABLE I
CONVENTION OF NOTATIONS

Notation Description

Zm the mth latent vector

Xm the mth observed tensor

In the mode-n dimension of observed tensors

Xon(n) the mode-n unfolding of X,

u the mode-n factor matrix

u) the mode-n complement factor matrix with U =
UM e...outthout-De. . .ouUul)

vec(Xm) the vector stacked by the columns of X,

diag(Xm) the vector formed by the diagonal elements of X,

diag" (z,,,)  the Nth order diagonal tensor formed by z,

o the outer product

® the Kronecker product

® the Hadamard (entrywise) product

® the Khatri-Rao (column-wise Kronecker) product

Bayesian CPDs that penalize each factor independently,
we make use of the group-wise scale invariance of
the CP model to concurrently and coherently regular-
ize the entire subspace, while keeping the latent features
unconstrained. As a result, our new regularizations avoid
imposing unnecessary restrictions, leading to a more
flexible and effective way of regularizing CP-based
PPCAs.

3) To fully utilize the probabilistic framework, we recast
the idea of entire subspace regularization as prior dis-
tributions, and further propose a Bayesian treatment of
PROTA, along with model estimation schemes via vari-
ational inference. It inherits both the ability of Bayesian
CPD methods in automatically pruning irrelevant fea-
tures and the robustness of CRs against overfitting.

We presented a preliminary work called probabilistic rank-
one matrix analysis (PROMA) only for second-order tensors
in [33]. This paper differs from [33] in three aspects.

1) Generalized Model: We generalize PROMA to PROTA

for dealing with higher-order tensors.

2) New Regularization Strategy: We propose a new CR
strategy, which is more effective in alleviating overfitting
than the one proposed in [33].

3) Bayesian Extension: We recast the new regularization
into a prior distribution, and further propose a Bayesian
extension of PROTA for both robustness against overfit-
ting and automatic feature determination.

4) Additional Experiments: We conduct additional experi-
ments on both 2-D and 3-D real-world datasets.

II. PRELIMINARIES

This section introduces basic multilinear notations and oper-
ations used in this paper, and provides a brief review on PPCA
and its multilinear extensions.

A. Notations and Multilinear Operations

Vectors are denoted by bold lowercase letters (x). Matrices
are denoted by bold uppercase letters (X). Tensors are denoted
by calligraphic letters (X). The transpose of a vector or
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matrix is denoted by T, Symbols o, ®, ®, and © denote
the outer, Kronecker, Hadamard (entrywise), and Khatri-Rao
(column-wise Kronecker) products, respectively.! (-) denotes
the expectation with respect to a certain distribution. vec(-) is
the vectorization operator that turns a tensor into a column vec-
tor. For a vector x, diag" (x) is the Nth-order diagonal tensor
formed by x. For a matrix X € RI>2, tr(X) is its matrix trace.
Ga(x|a, b) denotes the gamma distribution with the hyperpa-
rameters a and b. Table I summarizes the notations used in
this paper.

1) Matrix-Variate Normal Distribution [24]: A random
matrix X € R/1*%2 that follows the matrix-variate normal dis-
tribution N7, 1, (X|E, T, ¥2) with the mean matrix E, column
covariance matrix ¥; € RN and row covariance matrix
¥, € R2*2 has the following probability density function:

p(X) = ()~ 2l 3 "2k 3y 2l
1 —_ ~ —_ L}
exp{—itr(El X -8 (X - a)T)}.

The matrix-variate normal distribution is related to the
multivariate normal distribution in the following way:
pX) = N}I,IZ(X|E, Y1, Xp) if and only if p(vec(X)) =
N(vecX)|vec(E), Ty ® X1). N(vec(X)|vec(E), T ® Xy)
denotes a multivariate normal distribution, whose mean and
covariance matrix are given by vec(E) and X ® X,
respectively.

For an Nth-order tensor X € R/1**IV it is addressed by
N indices {i,,}il\’= . Each i,, addresses the mode-n of X.

Mode-n Unfolding: Xy € RIvUcxl-ixhipxIy)
denotes the mode-n unfolding matrix of X', where each column
of X, is an I,-dimensional mode-n vector of X.

Mode-n Product: Y = X x, UM e RIv<xPuxxln depotes
the mode-n product of X by a matrix U™ e R/*/» whose
entries are given by

I
VGt oonin) = D Xt yin) - U Gy ).
in=1
Multilinear Product: The multilinear product of X by N
matrices {U"™ e R/»*I }2’:1 is denoted by

V=X x; UV x ... xy UM = x xN_ v,

B. Probabilistic PCA

Classical PPCA method is designed only for vector inputs.
It learns a subspace from high-dimensional observed vectors
by estimating the following latent variable model:

x=Wz+pu+e (1)

where x € R is the observation; z € R with p(z) = N(z|0,1)
is the latent variable that serves as the low-dimensional rep-
resentation of x; I is the identity matrix with an appropriate
size; W € R/*F is the factor loading matrix that spans the P-
dimensional latent subspace; € € R with p(e) = N (¢€|0, a2l
is the random noise with the variance o2; and [ is the mean
vector.

Iplease refer to [34, Sec. 12.3] and [35, Sec. 2.6] for the formal definitions
and their relationships.
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With the above model, PPCA generalizes PCA to take
advantage of the probabilistic framework. It also lays the
foundations of probabilistic interpretations for other subspace
learning techniques such as linear discriminant analysis and
canonical component analysis [36]. Despite its success, PPCA
still has some limitations. When the observations are tensors,
PPCA has to first reshape them into vectors, which breaks the
tensor structures and discards some useful data information.

C. Tucker-Based Multilinear PPCAs

To overcome the above limitation, several Tucker-based
multilinear PPCAs [22], [23], [25] have been proposed. These
methods directly formulate tensorial observations in the Tucker
model without vectorization, so that the tensor structures
can be preserved. Typically, they represent each Nth-order
observed tensor X € RIX*IN a5 follows:

Xx=zxV vl 15 1¢ @

where Z € RP1>X*PN g the Nth-order low-dimensional latent
tensor with P, < I,, V?® e RIxPn — (V(I”), ...,Vg:)) is the
mode-n factor matrix, = is the mean tensor, and & is the
random noise following p(vec(E)) = N (vec(€)]0, o*T) with
the noise variance o2.

Compared with PPCA, Tucker-based multilinear PPCAs
have lower model complexity and a smaller parameter size.
Specifically, to learn a P = ]_[fqul P,-dimensional subspace
from Nth-order tensors X € RIX*IN_ they only need
to estimate YN, I,P, parameters for {V®}V_ rather than
P 1—[2\/:1 I, ones for W as in PPCA. However, as will be
shown in the next section, such compact subspace represen-
tation is relatively restrictive and may limit the flexibility of
Tucker-based PPCAs in capturing data characteristics.

D. CP-Based Multilinear PPCAs

CP-based multilinear PPCAs such as TBVDR [26] use the
CP model for preserving the tensor structures. They have a
more flexible subspace representation, whereas are more prone
to overfitting than Tucker-based PPCAs. To alleviate overfit-
ting, existing Bayesian CPD methods have studied several reg-
ularization strategies. However, these strategies are designed
in the context of tensor completion. They bring strong restric-
tions into the CP model and can exclude good solutions for
CP-based PPCAs. These issues (points) will be analyzed in
detail when presenting PROTA in Sections III-B and III-E.

III. PROBABILISTIC RANK-ONE TENSOR ANALYSIS

This section proposes PROTA with CRs to address the
problems of existing multilinear PPCAs. PROTA has both
the flexible CP-based subspace representation and robustness
against overfitting.

A. PROTA Model

PROTA is based on the CP model. It relates each Nth-order
observed tensor X € R/1**IV to a latent vector z € RF by
representing A’ as a linear combination of P rank-one tensors
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as follows [34], [35]:

P
— (1) 2
X = Zzpup oul(,)

U’ e 3)

o ~-oul(,N)+5

= dlagN (z) xN

n=1

where we have assumed that data are centered with zero
mean, diag"(z) € RP**P is the Nth-order diagonal tensor
whose super-diagonal elements are given by z with p(z) =
N@0,1), U" e RP = @\, ... ul’) is the mode-n
factor matrix, and £ is the Nth-order noise tensor following
p(vec(€)) = N (vec(€)|0, o21) with the variance 2.

1) Conditional Distributions: Let I = []\_, I, be the num-
ber of features in X. By vectorizing the both sides of (3) with
vec(uy out? o ouf ) —u ou) Ve ou, we
have vec(X) = Z;’_] zpup M ou (N b ® ® ul(,l) + vec(€),
and obtain the conditional dlStI‘lbllthIl p(X]z) in a vectorized
form as follows:

p(vec(X)|z) = N <vec(X) Wz, 021) (4)

O UD is the
)® (N=1) ®

where W € RIP = (wy, ..., wp) = UM .
joint factor matrix, and w, € R with w, =
-® ul(,l) is the pth column of W.
Let X(,) be the mode-n unfolding of X and 1) = [T, .
The CP model (3) can also be expanded along the nth mode
(see [34, Sec. 12.5.4] for more details). This leads to p(X|z)

in an unfolded form as follows:

T
p(Xanl2) =N,m,(n)<X<,,>|U<">diag(z)u<" ) ol 01> 5)

where U7 ¢ RI™ %P (u(" ),...,u Me...o
Urthour-Deo...o U(l) is the mode-n complement factor
matrix.

2) Log-Likelihood Function: Combining (3) with the above
probabilistic model specifications, we complete the PROTA
model. Given the dataset of M tensorial examples {X;, }m 1
we can obtain the “complete-data” log-likelihood £ =
Yot p Koy 2) = 30 (I p Koy |2m) + Inp(2))
from (5), where X,y is the mode-n unfolding of X}, and z,,
with p(z,,) = N (2,]0, I) is an example of the latent variable z.
Then, the MLE of the PROTA parameters 6 = {{U™}V nel> o2}
can be obtained by maximizing the posterior expectation of £
(see the supplementary material for detailed derivations)

r =

M
L6) =Y (Inp(Xnew|zm) + Inp@n))

m=1

=_Z[ Ino? + <z zm>

* za_2<HXm<n> — U"diag(z,)U")

T
4
+ const. (6)

B. Connections With Existing PPCAs

After formally presenting the PROTA model for general ten-
sors, this section studies the connections between PROTA with
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other PPCAs. In what follows, different PPCA models are
compared in a typical scenario of subspace learning, where
the subspace dimensionality P is predetermined.

1) Connections With PPCA: First, we explore the connec-
tions between PPCA and its multilinear extensions.

Proposition 1: Given P = ]_[ﬁlvzl P,, the Tucker and CP
models, (2) and (3), are equivalent to the PPCA model (1)
with the factor matrices WTiker — VIV & ... @ V() and
W = UM o ... o UD), respectively.

Proof: The above conclusion can be drawn by vec-

torizing the Tucker and CP models, (2) and (3), and
applying vec(Z XN V(”) )y = (VW ® ... @ ViD)z
and Vec(diagN(z) xn=1 U(”)T) UM o ... @ UD)g,

respectively. |

Proposition 1 implies that the PPCA model can be viewed as
the Tucker and CP ones with specific parameterizations of the
factor matrix W. It also indicates that the subspaces learned
by Tucker- and CP-based multilinear PPCAs are spanned by
the columns of WTUker and WCP | respectively.

2) Connections With Tucker-Based PPCAs: The CP model
is commonly considered as a special case of the Tucker one,
where the core tensor Z in (2) is super-diagonal with P =
Py = --- = Py. However, we can view their relationships
from an opposite perspective, when the CP and Tucker models
are used to extract the same number of features with P =
[Toe1 Pa

Theorem 1: Given P = ]_[n | Pn, the Tucker model (2) can
be written as a special case of the CP model (3).

Proof: By expanding the tensor multiplication, the Tucker
model (2) can be rewritten in the following summation form:

N P,
X:Z ZZ(il,..

n=1 \i,=1

= diagV(z) x\_, VT 4 ¢

(OIS v

LIN)V;, covi |+ €&

where V) e RI*P is constructed by (P/P,) repeated factors

V,(.f) (i, = 1,...,Py,). Therefore, the Tucker model can be

written as a CP model with the parameterized factor matrices

(VN ]
n=

Generalized Subspace Representation: Theorem 1 implies
that the CP model is in fact more general than the Tucker
one in the scenario of subspace learning. To make this clear,
we discuss the Tucker and CP models with N = 2 in detail,
while similar conclusions can be drawn for higher-order cases.
Given N = 2 and P = P + P3, the Tucker model (2) becomes

Z ZiiVOVOT 4+ E = VO diag@VOT +E (7)

i1, =1
Py Py
e N e e
where VO = v{V, . vV v v and VO =
P, 1 1
—————
... 0.

We can view (7) as a specific CP model (3) whose fac-
tor matrices U and U® are given by P, and P; repeated
VE]I) (ip, = 1,...,Pp) and Vg) (ip = 1,...,P>), respec-
tively. Combining (7) with Proposition 1, we have WTucker —
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VO VD = vOovD = (v§2)®vgl), vg)@vgl), ...,vft,zz) ®
V(ll), V(lz) ® Vg), e, vg) ® V;;ll)). This is a relatively restric-
tive subspace representation, since each column of V@ is
reused to construct multiple subspace bases. For example, the
first Py columns of WTUKeT can only capture some common

information, since they are constructed by the same factor Vgl)

and different Vl@s.

In contrast, the CP model (3) represents the latent sub-
space by WEP = U@ oud = (u(lz) ®uil), e, ul(Dz) ®ug)).
Such subspace representation is much more flexible than its
Tucker-based counterpart, since each subspace basis ul(,z) ®u,(,1)
(» = 1,...,P) is allowed to be constructed by distinct
pair of factors. Therefore, PROTA generalizes Tucker-based
PPCAs and has more flexibility in capturing data character-
istics. However, the generalized subspace representation also
makes the CP model more prone to overfitting than the Tucker
one, since it has more parameters to be estimated.

Avoided Rotational Ambiguity: Apart form the more flex-
ible subspace representation, PROTA also puts an edge over
Tucker-based PPCAs in learning subspaces without rotational
ambiguity. It is well known that the Tucker model suffers from
rotational ambiguity, whose solutions with and without rota-
tion transformations are equally good in the sense of yielding
the maximum likelihood [25]. This implies that Tucker-based
PPCAs can only find arbitrary bases of the latent subspace.
In contrast, PROTA is based on the CP model, whose solu-
tions are unique up to rotation transformations. Formally, let
U™ e RI"*P be the maximum-likelihood solution in terms of
L(0) (6). For an arbitrary orthogonal matrix R € RP*F the
rotation transformation U®R yields ﬁ(ﬁ(”)R) < E(ﬁ(")),2
and thus is not the maximum-likelihood solution anymore.
This means that PROTA can find the exact coordinate axes
rather than just the subspace bases, which facilitates certain
applications, such as data interpretation and visualization.

3) Connections With CP-Based PPCAs: To the best of our
knowledge, TBVDR [26] is the only existing CP-based PPCA.
It introduces an additional linear projection W € RF*€ into
the CP model (3) and defines z = Wjh, where h € RZ ~
N(0,1) serves as the latent features. In this way, TBVDR
can control the complexity of the CP model (reflected by
P) and the number of the latent features Q separately. Such
modification can be viewed as specifying z ~ A (0, WhW;lr),
which is restrictive in capturing general data characteristics.
Different from TBVDR, we simply model the latent features z
as independent identically distributed (i.i.d.) Gaussian without
additional constraints. Instead, we impose proper regulariza-
tions on the factor matrices U™ to alleviate overfitting (see
Section III-D). In addition, we further propose a Bayesian
treatment of PROTA in Section III-E to achieve both automatic
feature determination and robustness against overfitting.

C. ECM Algorithm for PROTA

This section develops an EM-type algorithm for estimat-
ing the PROTA parameters. Although it is intractable to

2For clarity, we omit the parameters other than UM, that is, {U(k)}k#n and
2 .
o“,in 6.
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maximize (6) with respect to all the factor matrices {U(")}fl\'=1
simultaneously, it is easy to solve U™ of each mode sequen-
tially provided that the others are fixed. We achieve this
by using the expectation-conditional maximization (ECM)
approach [37], which leads to both closed-form solutions and
good convergence properties. The ECM algorithm consists
of the expectation (E-step) and the conditional maximization
(CM-step).

E-Step: In this step, we calculate the expectations
(z,,) and (zmz;) with respect to the posterior distribu-
tion p(z;|vec(&,,;)). Using Bayes’s rule for Gaussian vari-
ables (see [38, Sec. 2.3.3] for more details), we can derive
p(Zm|vec(X,y,)) from (4) as follows:

P(2Zm|vec(Xy)) = N(ZmIMqWTvec(Xm), GZM*I) (8)

where M = W'W + ¢2I is a P x P matrix. Then given the

model parameters at the kth iteration 0®, the expectations
(z,,) and (zmz;) can be computed by

(zm) = MW vee(Xy) ©)

(mz)) = M+ (@) )" (10)

CM-Step: In this step, we partition the model parameters 6

into three groups: U™, U" ), and o2. Then, we alternately

maximize £(6) (6) with respect to each group of the param-

eters with the others fixed. With fixed U®) and o2, we can
estimate U™ by solving [(3£(6))/(dU™)] = 0 and obtain

M
U™ = |:Z Xm(n)U("_)diag((Zrn>)i|

m=1

M -1
[Z%z?ﬁ) ® U<”)TU<">} . an

m=1
After estimating all the factor matrices (n = 1,...,N),
the noise variance o2 can be estimated by solving

[(3L(6))/(30?)] = 0 with {UM}N_| fixed, leading to

1 M
~2 T
Y7 {tr<X"’<H>X’”<”))
m=1

_ — (XU diag((zm))ﬁ(”)T>}. (12)

By alternating between the E-step and CM-step, we can find
the MLE solutions for {U(”)}ﬁ:’:l and o2. Besides the closed-
form updates, the ECM algorithm monotonically increases the
log-likelihood (6) at each iteration, and achieves a provable
convergence guarantee [37]. The detailed derivations for (11)
and (12) can be found in the supplementary material.

D. Concurrent Regularizations for CP-Based PPCAs

Next, we develop regularization strategies for PROTA to
achieve robustness against overfitting.

1) Ly Regularization: A conventional way of regular-
izations is introducing certain regularization terms into the
log-likelihood function (6). This leads to a regularized CM-
step that gives preference to solutions with desirable prop-
erties. The most popular representative of this approach is

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 25,2021 at 01:53:20 UTC from IEEE Xplore. Restrictions apply.



ZHOU et al.: PROTA WITH CRs

L, regularization, which penalizes larger norms and enforces
smoothness on the factor matrices. Specifically, it regularizes
the log-likelihood function (6) as follows:

N
20y = £(8) — y Ztr(U(")U(")T)

n:l N :
=L£O) -y Y Y |u (13)
p=1n=1

where y is the regularization parameter. By maximizing (13)
with respect to U™, we can obtain the following regularized
CM-step for each factor matrix:

M
o = |:Z Xm(n)U(n_)diag((Zm))j|

m=1

M -1
[Z(zng) & Ut) Tyt 4 yl:| (14)
m=1

where the L, regularization term y I improves the conditioning
of the inverse, and leads to more stable and robust solutions
against overfitting.

2) Scale Restriction: Although L, regularization has been
widely used, it introduces strong scale restrictions into the
CP model and is not flexible enough for regularizing PROTA.
Recall that the subspace learned by PROTA is spanned by
the columns of W = UM @ ... © UM, For better general-
ization, we eventually pursuit robust/smoothed estimations for
the entire subspace W rather than the individual factor matri-
ces U™, L, regularization gives preference to a smoothed W
by independently restricting the norms of all the factors to
be small. However, we could still obtain a smoothed W for
the CP model even if certain factors u,(,”) have large norms,
since the log-likelihood (6) is invariant to the scale transforma-
tions uf” — sul”, ul ) — s7lul" (s # 0). Therefore, L,
regularization introduces strong scale restrictions into the CP
model, and may exclude some good solutions in terms of (6).
Can we relax such scale restrictions in regularizing PROTA?

3) Concurrent Regularizations: To address the above
problem, we propose two strategies, named as variance-based
and moment-based CRs, respectively. Our aim is to regular-
ize the entire subspace in a concurrent and coherent way, so
that the strong scale restrictions of L, regularization can be
avoided.

Variance-Based CR: PROTA can be implicitly regularized
by adjusting the noise level of the CP model (3). Specifically,
we replace the noise variance o> by a fixed regularization
parameter y without further updating. Adjusting o2 to an
appropriate level makes the bias-variance tradeoff for the
CP model and, thus, improves the generalization ability of
PROTA. In more detail, variance-based CR regularizes the
E-step for more robust expectation estimations. It solves the
ill-conditioned problems of M~! involved in computing (z,,)
via (9), and (z,,z, ) via (10), as follows:

m
M=W'W+yL (15)

In this way, we avoid directly restricting the scale of each fac-

tor u,(,"), and regularize the entire subspace and the CP model
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Algorithm 1 PROTA With Variance-Based CR

1: Input: Dataset {Xm}%;l’ the number of extracted features P,
and the regularization parameter y .
: Initialize {U(”) }LV: | and o’ randomly, and normalize each col-
umn of U™ to have unit norm.
: Set the noise variance o2 = y.
repeat
Compute (z;,) and (zmz;) via (9) and (10), respectively.
for n=1to N do
Update the mode-n factor matrices U™ via (11).
end for
: until convergence.
: Output: The factor matrices {U(") }{1\,:1'

[\

@YX IUNRW

—_

concurrently. Algorithm 1 gives the pseudocode of PROTA
with variance-based CR.

Moment-Based CR: Besides variance-based CR that intro-
duces implicit regularization via adjusting the noise variance
o2, we propose moment-based CR to explicitly regularize the
second-order moment (Zmz;l) (10) as follows:

14

<zmz;)MCR ="M+ (z) () T+ 21 (16)

where the noise variance o2 still serves a model parameter
to be estimated rather than the regularization parameter as in
variance-based CR. Moment-based CR improves the condi-
tioning of (zmz;), and solves the possibly ill-posed inverse
in the U® update (11). To make this clear, substituting (16)
into (11) leads to

M
fj(n) — |:Z Xm(n)U(”)diag((Zm)):|

m=1

Iy -1
|:Z<Zmzl> s U Tyt 4 yA("_)] (17)

m=1

where A7) =1® (U("_)TU(”_)) is a P x P diagonal matrix
whose pth diagonal element is the norm of the pth complement
factor ||u1(," |12,

Similar to L, regularization, moment-based CR regularizes

the log-likelihood function as follows:

N
LMCR gy — £(8) — y Ztr(U<">A("‘)U(">T)
n=1

— £(0) — yNtr(wa)

P N
—£® -V ] Hul(,")

p=1n=1

2
. (18)

Compared (18) with (13), moment-based CR essentially penal-
izes the entire subspace W rather than each factor matrix
U™, 1t also generalizes L, regularization by adopting A ")
instead of an identity matrix to penalize each mode-n factor in
a weighted manner. Moment-based CR not only favors indi-
vidual factors ul(,") with smaller norms but also those leading
to smaller norms [|w,[2 = [T, w12 = fuS” |2 uy" )2
for each subspace basis wy. In this way, a mode-n factor u,(,n)
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Algorithm 2 PROTA With Moment-Based CR

1: Input: Dataset {Xm}%zl, the number of extracted features P,
and the regularization parameter y.
2: Initialize {U(”)}nN: | and o? randomly, and normalize each col-

umn of U™ to have unit norm.
: repeat
Compute (z;;) and (zng) via (9) and (10), respectively.
forn=1to N do
Update the mode-n factor matrices U® via (17).
end for
Update the noise variance o2 via (12).
: until convergence.
: Output: The factor matrices {U(") }2/:1

o2,

SV RINE W

—_

and the noise variance

is allowed to have a relatively large norm as long as the norm
of the corresponding subspace basis w,, is small.

In this way, moment-based CR relaxes the scale restrictions
of L, regularization, allows PROTA to search larger solution
space and, thus, has potential to learn better subspaces. It is
also worth noting that with the update of each factor matrix,
the elements of A" ) in (18) are also updated accordingly.
This indicates that MCR adaptively adjusts its regularization
strength to coherently regularize all the factor matrices in
the sense of penalizing large ||wp||2. Because of the above-
mentioned benefits, MCR has an edge over L, regularization
in alleviating overfitting for CP-based PPCAs.

Remarks: Different from variance-based CR that can be
applicable for both Tucker-based and CP-based PPCAs,
moment-based CR can only be applied to PROTA or other
CP-based PPCAs, because its capability of entire subspace reg-
ularization relies on the group-wise scale invariance of the CP
model. We provide the detailed derivations of (14) and (17) in
the supplementary material. Algorithm 2 gives the pseudocode
of PROTA with moment-based CR.

E. PROTA With Bayesian CR

To fully utilize the probabilistic framework, we further
propose a Bayesian treatment of PROTA, along with the
model estimation schemes via variational inference. It is
based on a probabilistic implementation of moment-based CR,
and achieves automatic feature determination and robustness
against overfitting.

1) Model Specification (Prior Distributions): To regular-
ize the entire subspace W in a Bayesian treatment, we recast
moment-based CR as prior distributions, and specify them over
each factor matrix U™ as follows:

P o I
U<")~]_[N<u§,">|0, (y(r)<”u,(,n)H >> 1) (19)
p=1

where y is the regularization parameter, T = 1/0? is the
precision (inverse of the noise variance), and (7) is the expec-
tation obtained from the variational posterior g(r) shown
in (26).

The above prior distribution provides a probabilistic imple-
mentation of moment-based CR, which essentially leads to
a similar likelihood function as (18). If (||u,(," )||2) becomes
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large, ug’) tends to be small. When the inverse variance
y{T){( ||ul(,” )||2) concentrates at large values, u,(,") is constrained
to be zero. In this case, u,(,”) and the corresponding latent fea-
ture have no effect on explaining the training data and, thus,
can be pruned from the PROTA model.

Recall that we have specified the latent feature z,, ~ N (0, I)
without further constraints. To complete the Bayesian spec-
ification of the PROTA model, we introduce a conjugate

(gamma) prior over t. Thus,

t ~ Ga(t|ag, bo) (20)

where we follow the convention and set ag = by = 107° to
obtain a broad and noninformative prior for 7.

Remarks: As in the ARD framework [30], a conjugate prior
can also be specified over the regularization parameter y so
that y can be optimized like other random variables. However,
we find such optimization leads to overfitting in our empir-
ical studies, as it only reflects which factors are relevant
to fitting the training set. Therefore, we still leave y as a
hyperparameter for improving the generalization ability.

Joint Distribution: Let the dataset be D = {Xm}%: 1» and the
variable set be © = {{z,,}!_,, {U™}_ '7}. Combining the
conditional distribution (4) and the above priors, the complete
PROTA model can be obtained by

p(@. ) = [{p(Xalz. {0 }. 7 )pzn) | [TP(U" )p(o):
e

2) Variational Inference: Armed with the above results,
the PROTA model can be learned by estimating the poste-
rior distribution p(®|D) = [(p(D, ®))/(fp(D, ®)dO)]. Since
p(®]|D) is generally intractable, we apply variational Bayesian
(VB) methods [39] for the model estimation. VB methods seek
a variational distribution ¢(®) to approximate the true poste-
rior by minimizing the KL divergence KL(g(®)|p(®|D)) =
Inp(D) — L(g) or equivalently maximizing the variational
lower bound L(q) = [ q(®) In{[(p(D, ©))/(q(®))]}d®.

To achieve this, we assume that g(®) is factorized as

4(©) = [Ta@» [Ta(U" )a(o).

Then, the optimal distribution of the jth parameter set in terms
of maxy;e,) L£(g) takes the following form:

Ing;(©;) o< (Inp(D, ©)) e\, (23)

where (-)g\@; denotes the expectation with respect to the vari-
ational distributions of all random variables in ® except ©;.

Variational Posterior Distributions: Substituting the joint
distribution (21) into the explicit forms (23), we can obtain
the desirable variational posterior distributions for each set of
random variables in ® as follows:

(22)

q(2n) = N (2ZplZm, Z,) (24
q(U(")) = Nip, (U(") o™ 1, z(n)) (25)
q(t) = Ga(tlac, br) (26)
where the posterior parameters can be updated by
Zn = (1) Z4(W) "vec(X;,) 27)

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 25,2021 at 01:53:20 UTC from IEEE Xplore. Restrictions apply.



ZHOU et al.: PROTA WITH CRs

Algorithm 3 PROTA With Bayesian CR

1: Input: Dataset {Xm}%: 1» and the regularization parameter y .
2: Initialize {U(”)}f;’_l and o2 randomly.

3: repeat B

4 Update the latent features z,, via (24).

5 forn=1to N do

6: Update the mode-n factor matrices U® via (25).

7 end for

8 Update the precision t via (26).

9: until convergence.

10: Output: The variational distributions (24), (25), (26).

x, = (m(wTW) + I>_1 (28)
M
U = 3~ X (U ding (2 2 29)
m=1 y .
T { (1) (Z(Zmzrz> + yI) ® <U('1_)TU(11_)>}
m=1
(30)
1 N
s =a0+§M1_[In (31)
1 v
be = bo+ 5 Y (Ivec(X,) — Wa ) (32)
m=1

The derivations of the joint distribution (21) and the expec-
tations involved in the above variational updates can be
found in the supplementary material. Algorithm 3 shows the
pseudocode for PROTA with Bayesian CR.

Connections With Bayesian CPDs: PROTA also has close
connections with Bayesian CPD methods [27], [28], [31],
[40]. They are all based on the CP model and incorporate
regularizations. However, PROTA tailors the CP model for
multilinear subspace learning, and utilizes very distinct reg-
ularization strategies. Bayesian CPD methods adapt the CP
model for tensor completion. They commonly assume that the
latent features z and the factor matrices U™ play the same
role in explaining tensor inputs, and regularize them equally
and independently. Such assumption is reasonable for tensor
completion, whereas could be too restrictive for other appli-
cations. For instance, many Bayesian CPD methods employ
ARD for automatic CP rank determination. This in fact can
be viewed as imposing L, regularization on both the factors
and latent features with data-dependent regularization param-
eters. As discussed in Section III-E, such L, regularization
brings strong scale restrictions into the CP model. In con-
trast, PROTA advocates that U™ needs proper regularizations
while z should remain unconstrained. This motivates our CRs
to concurrently and coherently regularize the entire subspace,
leading to a more flexible and effective way of regularizing
CP-based PPCAs.

F. Algorithmic Issues

Initialization: For PROTA with variance- and moment-based
CRs, the factor matrices {U(")}n'\/:l are randomly initialized by
sampling from the standard uniform distribution. Then they are

3503

normalized to have unit column norms, which leads to good
performance empirically. For PROTA with Bayesian CR, we
randomly initialize U by sampling from A/(0, 1). The noise
variance o2 (1/7) is initialized to be data variance for all the
regularized PROTAs.

Prediction: With the learned PROTA model, we can project
a high-dimensional tensor X into the low-dimensional latent
subspace. This is achieved by computing the expectation of z
with respect to p(z|X) (8) and (27) for the ECM-based and
Bayesian PROTA, respectively.

Time Complexity: Suppose the input dataset consists of
M tensors {X, € RIXINM  Tet [ = [TV I, be the
number of input features, and P be the number of extracted
features. ECM-based and Bayesian PROTA have comparable
time complexity. At each iteration, they take O(MIP?) for
expectation computations, O(MIP) for (variational) parameter
updates, and 0(P3) for matrix inverse. Therefore, the over-
all time complexity of PROTA at each iteration is dominated
by O(MIP?> 4 P3), which is comparable with that of existing
EM-based and Bayesian PPCAs.

IV. EXPERIMENTS

This section evaluates the performance of PROTA in sub-
space estimation and classification on synthetic and real-world
datasets.

A. Subspace Estimation on Synthetic Data

We first validate the capability of the PROTA model in sub-
space estimation without regularization on synthetic datasets.
The synthetic tensors are generated from the CP model (3) as
follows: M latent vectors {z, € R " }fn/[:l are drawn from a
standard Gaussian distribution A (0, Ip+), and N factor matri-
ces {UM* e RPN are constructed by drawing each row
from A (0, Ip+). Then the observed tensors are generated by
X, = diag"(z,,) ngl ym=T + & form=1,...,M, where
E(ir, ..., in) ~ N(0,02) is the i.i.d. random noise with the
variance 2.

In this experiment, we generate multiple 3-D synthetic
datasets under varying noise levels. Each dataset consists of
M = 1000 examples of third-order (N = 3) tensors with the
size of 10 x 10 x 10 and the true dimensionality P* = 8.
Based on Proposition 1, such synthetic tensors lie in the sub-
space spanned by the columns of W* = UM* o ... @ UD*,
We use the arc length distance ||B]2 between the estimated
subspace W and the ground truth W* as the criterion to mea-
sure the accuracy of subspace estimation. The pth element of
B is given by arccos(Ap), where A, is the pth largest singular
value of WTW* [25].

Given the true dimensionality P*, PROTA is compared with
the competing multilinear PCAs and PPCAs: MPCA, TRDO,
and TBVDR, as well as Bayesian CPDs: BCPF and VBTCP.
Results of all the methods are averaged over ten repetitions
of the above data generations. To estimate the P*-dimensional
latent subspace, the reduced dimensions of each mode are set
to (P*)1/N) for MPCA, and P* for TROD, BCPF, TBTCP,
TBVDR, and PROTA. In addition, to reduce the variability
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TABLE II
AVERAGE ARC LENGTH DISTANCES AND RUNNING TIME ON 3-D SYNTHETIC DATASETS UNDER VARYING NOISE LEVELS (BEST; SECOND BEST)

SNR 0 dB 10 dB 20 dB 50 dB 100 dB Time (s)
MPCA 3.57+£0.10 3.58+0.10 3.58+0.10 3.58+ 0.10 3.58+0.10 2.76
TROD 1.78+0.15 1.60+0.44 1.60£0.43 1.61+0.43 1.614+0.43 1.52
BCPF 0.23+0.20 0.13+0.16 0.11+£0.16 0.06+0.12 0.06£0.12 2.84
VBTCP 0.77£1.04 0.524+1.04 0.87£1.16 1.14+1.12 1.144+1.12 9.83

TBVDR 0.89+0.86 1.92+0.41 1.10+£0.76 1.34+£0.76 1.38+0.80 0.52
PROTA 0.6940.76 0.04+0.01 1.17e-2+0.42¢-2 3.58e-4+1.15e-4 1.16e-6+0.38e-6 1.82

caused by random initializations, BCPF and PROTA are ran-
domly initialized ten times, and the subspace yielding the
largest log-likelihood (or variational lower bound) is used for
test.

Table II shows the average arc length distances and running
time on the 3-D synthetic datasets under varying noise levels.
As can be seen, PROTA is as efficient as other tensor-based
PPCAs. Moreover, it can accurately estimate the ground truth
subspace when the noise level is low, and outperforms other
methods in the noisy cases except SNR = 0 dB. This confirms
the ability of PROTA in fitting the ideal data. Since MPCA is
based on the Tucker model, it fails to perform well in learn-
ing the subspace generated from the CP model. On the other
hand, BCPF, VBTCP, and TBVDR have the CP-based sub-
space representation and thus obtain better results. However,
they tend to be trapped into local optimums when SNR
becomes larger and, thus, fail to accurately recovery the true
subspace.

B. Classification on 2-D Images

This section evaluates the classification performance of
PROTA on two image datasets. The first one is a subset from
the CMU PIE database [41]. It consists of 9987 face images
from 68 subjects, with seven poses (C05, C07, C09, C27, C29,
C37, and C11) of at most 45 degrees of pose variations, and
under 21 illumination conditions (02—-22). The second one is
the COIL20 dataset [42]. It includes 1440 images of 20 objects
taken from 72 views varying at every five degrees of rotations.
All face images are normalized to 32 x 32 graylevel pixels.

1) Algorithms and Their Settings: PROTA is compared
against linear baselines: PCA and PPCA; Tucker-based
PCA: MPCA [16]; CP-based PCAs: TROD [19] and
UMPCA [20]; Tucker-based PPCAs: PSOPCA and BPPCA;
Bayesian CPDs: BCPF [28] and VBTCP [31]; and CP-based
PPCA: TBVDR [26]. BPPCA has both MLE and MAP imple-
mentations. Here, we follow the settings in [25] that apply the
MLE-based one for classification. We test PROTA equipped
with four regularization strategies, including L, regulariza-
tion, variance-based CR, moment-based CR, and Bayesian
CR, which are denoted by the superscripts L, VCR MCR
and BCR | respectively. PROTAVCR for 2-D tensors is the
PROMA algorithm in [33]. For fair comparisons, we also test
PSOPCA and BPPCA with variance-based CR, and TBVDR
with moment-based CR.

2) Extracted Feature Numbers: We set PCA and MPCA
to preserve 97% energy, after verifying that preserving more

energy just leads to similar results. Up to 1023, 32, 961, and
961 features are tested for PPCA, UMPCA, PSOPCA, and
BPPCA, respectively. They are the maximum numbers of fea-
tures that can be extracted by these methods. TROD, BCPF,
VBTCP, TBVDR, and PROTA are tested up to P = 600
features, since their maximum numbers of extracted features
are not bounded by the input dimensionality.

3) Regularization Parameters: For all the regularized meth-
ods except PROTAVCR | we select the regularization param-
eters from {10’5, 1074, ..., 105}, and then report the best
results. For PROTAVCR | we select the best parameter from
{0.162,0.562, 62,262, 1062}, where 62 is the noise variance
learned by PROTA with P =1 [33].

Iteration Number and Convergence Criterion: The maxi-
mum iteration numbers for MPCA, TROD, and UMPCA are
set to their default settings with up to 1, 10, and 10 itera-
tions, respectively. For probabilistic methods, such as PPCA,
PSOPCA, BPPCA, BCPF, VBTCP, TBVDR, and PROTA,
we iterate them until convergence or 500 iterations, where
we define a method converges if the relative change of
the log-likelihood or the variational lower bound is smaller
than 107>,

4) Experimental Setup: Each dataset is randomly split into
training and test sets so that each class has L images for train-
ing, and the remaining for test. After subspace learning, we
sort the extracted features based on their corresponding Fisher
scores [43] in descending order. Then, different numbers of
the extracted features (up to the maximums) are fed into the
nearest neighbor classifier to obtain classification results. For
each method and L, we report the best averaged classification
accuracies over ten such random splits. The best and the sec-
ond best results are highlighted to be bold and underlined,
respectively. The comparable results in terms of #-test with a
p-value of 0.05 are marked by *.

5) Results and Analysis: Table III shows the classifica-
tion accuracies on the CMU PIE dataset. As can be seen,
PROTAMCR consistently achieves the best performance with
statistical significance in all the cases. PROTAVCR is the sec-
ond best method, and PROTABCR obtains the third best overall
results. BPPCA with variance-based CR (BPPCAVR) also
performs reasonably well, whereas it is much worse than
PROTAMCR by 5.69% on average. This could be attributed to
not only the CP model in capturing data characteristics with
more flexibility but also moment-based CR in alleviating over-
fitting. Although BCPF and VBTCP are also based on the CP
model and impose regularizations, they perform much worse
than PROTA. A possible reason could be that Bayesian CPD
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TABLE III
CLASSIFICATION ACCURACIES (MEAN=STD.%) ON THE CMU PIE DATASET (BEST; SECOND BEST; COMPARABLE* BASED ON ¢-TEST WITH p = 0.05)

L 2 3 4 6 8 10 20

PCA 26.4143.35 37.25+£1.50  43.0442.51 49.5042.14  52.08+2.58 60.68+1.74 66.26+0.87 82.40+0.64
PPCA 24.4142.14 38.0040.94 45.48+1.82 51.2440.93 55.5440.99 64.25+1.25 69.8240.48 86.6610.92
MPCA 35.2742.97 46.2542.56 51.74+1.79 56.61+1.63 59.6040.58 66.754+0.66  71.48+0.78 84.35+0.88
UMPCA 29.0843.06 38.1142.11 42.5243.42 48.3443.03 51.04+3.05 58.12+3.31 61.61+3.24  76.38+2.39
TROD 34.5241.84 42924275 47.9042.52 52.9241.87 56.334+1.52  63.30+0.93 67.70+1.21 81.07+£1.54
PSOPCA 31.094+2.27 39.214+1.91 45.79+1.76 5238+1.14  56.60+1.28 63.9941.09 68.76+£1.22 84.37+0.97
PSOPCAVCR | 3515+1.23 44.9241.23 50.614£2.05 56.02+1.16 60.324+1.02  67.77+0.81 71.7141.16 85.72+0.65
BPPCA 36.07+1.88 47.4141.93 53.2342.39 59.2542.27 63.8441.81 71.1441.13 74.834-2.00 88.060.51
BPPCAVCR 37.23+2.71 47.674+1.91 54.034+2.37 60.214+1.70  63.91+1.88 71.024+1.97 75.0940.83 87.78-£0.94
BCPF 32214130 43.3042.07 50.70+1.87 57.744+1.64  61.83+£0.91 69.7740.67 74.8340.61 81.27+1.10
VBTCP 35.504+2.25 47464230  54.2042.64  59.7542.38 61.96+1.82 61.4243.08 65.054+4.97 77.52+4.54
TBVDR 36.45+1.29  4533+£1.00  50.88+1.44  55.2340.99 59.204+1.06  66.63+£1.07 71.5140.84 87.78-0.90
TBVDRMCR 35.534+1.10 44.2840.97 51.2641.45 56.2641.02 60.094-0.70 67.3441.04 72.2140.82 87.8740.86
PROTA 2 35.15+£1.89  47.17+1.15 56.4042.16 62.13+1.74  65.77+1.43 73.624+1.42  77.97+0.76 89.72+0.51
PROTAVCR 42234173 53.70+1.71*  59.9941.68  65.72+1.65*  69.074+1.23*  75.304£1.27*  79.1240.92 89.38-+0.61
PROTAMCR 44.28+1.94*  54.67+1.76*  61.07+1.40*  66.03+0.93*  69.55+1.40*  76.16+1.02*  80.18+0.87*  90.54+0.68*
PROTABCR 40.61+1.84 51.78+1.71 58.48+1.21 64.07+1.17 68.164+1.04  74.85+£1.32  78.5141.01 90.02+0.69

TABLE IV

CLASSIFICATION ACCURACIES (MEAN=£STD.%) ON THE COIL20 DATASET (BEST; SECOND BEST; COMPARABLE* BASED ON ¢-TEST WITH p = 0.05)

L 2 3 4 6 7 8 10

PCA 73.84+1.68 78.22£2.46 81.30+1.94 85.16£1.55 86.98+1.79 88.32+1.46 89.60+1.84 92.13+£1.12
PPCA 40.41£21.01  57.454£23.51 78.96+2.33 83.344+2.98 85.274+2.52 87.65+1.91 88.851+0.99 91.03+1.67
MPCA 73.86£2.06 77.56£1.90 80.37+1.94 83.63+£1.12 86.44+£1.59 87.07+1.44 88.64+1.77 90.69+1.21
UMPCA 77.22+2.44%  81.22+2.55* 83.91+3.12 86.05+2.09 87.74+1.40 88.73+1.52 90.11+£1.72 91.56+1.65
TROD 76.69£4.23*  81.65+4.11* 85.03+£2.39 88.90+2.60 90.88+1.67 92.06£1.56 92.63+1.45 94.31+1.46
PSOPCA 42.41£1.84 47.16£2.02 50.30+1.42 53.40+£1.57 56.05+0.92 57.35+0.57 58.98+1.75 62.311+1.44
PSOPCAVCR 50.06+3.19 56.96+3.49 58.58+3.58 62.45+2.33 65.57+£2.74 66.53+£1.90 69.05+1.90 72.99+1.72
BPPCA 72.36£6.40*  81.654+3.56*  85.32+3.44* 88.67+2.24 90.30£1.59 90.79£2.90 92.25+1.94 93.39+£1.30
BPPCAVCR 72.49+6.39*  81.2543.39*  85.33+3.79* 88.67+2.23 90.30+£1.58 90.82+1.58 92.28+1.92 93.37+1.32
BCPF 68.38+£2.91 72.75£2.82 75.01£2.82 77.97£1.10 80.59+2.69 82.25+2.09 83.59+0.71 85.01£1.93
VBTCP 67.04+5.16 72.64+3.18 74.65+2.16 79.19+3.08 81.58+3.33 83.0412.48 85.54+1.38 87.75+1.68
TBVDR 65.16£2.05 69.92+3.67 70.90£1.99 73.61£2.73 75.40£1.98 75.62+1.83 77.54+0.82 79.97+0.98
TBVDRMCR 65.96+2.23 72.25+2.87 75.16+£1.91 78.76+0.81 80.284+2.29 81.51+1.63 83.39+1.14 85.28+1.31
PROTAL2 73.87+4.04 80.43+2.22  85.1243.50* 88.04+2.17  91.91%1.61* 92.94+£1.86* 95.07+1.59*  95.62+1.59*
PROTAVCR 76.64£3.70*  82.2543.17*  86.60£2.10*  89.924+2.00*  91.70+£1.57* 92.52+1.18 93.59+1.05 94.74+1.38*
PROTAMCR 77.11£2.65*  82.504+2.62*  86.52+£2.40*  90.66+1.34*  92.42+1.91* 93.71+1.39*  94.794+1.16*  95.61+£1.53*
PROTABCR 76.54£2.79*  82.14+2.36*  87.00+2.57*  90.0741.60*  92.14+1.39* 92.67£1.19  93.97+£1.18*  95.30+1.43*

methods are not aware of the prior knowledge of subspace
learning and introduce unnecessary restrictions into the CP
model.

Table IV shows the classification results on the COIL20
dataset. Again, regularized PROTAs perform much better than
the competing methods in most cases, while only PROTAMCR
consistently obtains the top two results except L = 4.
Among the competing methods, TROD obtains better results
except L = 2,4, while it is still worse than PROTAMCR by
1.4% on average. In addition, the best Tucker-based PPCAs,
BPPCA, and BPPCAVCR, perform worse than CP-based meth-
ods, such as TROD and PROTA on the whole, especially
when L is large. This indicates that the Tucker model may
not be flexible enough in learning subspaces on the COIL20
dataset.

In summary, PROTA outperforms the competing methods
in most cases by taking advantages of both the CP model and
CRs. Among all the regularization strategies, moment-based
CR is the best one, which achieves the top two performance
in most cases. PROTAVCR and PROTABCR are generally bet-
ter than or at least comparable with PROTA%. Specifically,
PROTAMCR outperforms PROTAL2 and PROTAVCR by 6.47%
and 2.53% on average for all the 2-D datasets, respectively.
This demonstrates that by penalizing the entire subspace in a
concurrent and coherent way, the moment-based CR relaxes
unnecessary scale restrictions for the CP model, and could
further improve the performance of PROTA.

Although PROTABCR is a Bayesian extension of
PROTAMCR it has to employ variational inference to
approximate the true posterior for analytical tractability. This
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TABLE V
GAIT RECOGNITION RESULTS (%) ON THE USF GAIT DATASET (BEST; SECOND BEST)

Recognition Type Individual gait examples Gait sequences

Probe A B C D E A B C D E
PCA 49.79 44.68 27.38 18.18 16.78 76.06 70.73 53.66 26.87 25.58
PPCA 55.85 49.41 30.48 18.91 16.78 80.28 80.49 53.66 29.85 2791
MPCA 54.75 50.35 34.29 18.91 18.16 84.51 80.49 60.98 28.36 23.26
UMPCA 26.82 23.17 14.29 4.99 5.06 57.75 58.54 31.71 10.45 11.63
TROD 57.77 48.94 33.57 18.18 17.24 90.14 75.61 63.41 28.36 25.58
PSOPCA 15.27 12.06 9.29 8.21 6.67 28.17 21.95 17.07 19.40 11.63
PSOPCAYR 37.55 22.46 15.71 10.85 9.89 66.20 36.59 24.39 20.90 20.93
BPPCA 62.04 54.14 37.14 20.38 19.54 84.51 78.05 58.54 35.82 2791
BPPCAYR 60.94 53.19 36.67 19.94 18.16 91.55 80.49 68.29 29.85 23.26
BCPF 60.11 49.65 36.19 19.94 16.78 90.14 78.05 60.98 34.33 25.58
VBTCP 53.37 44.44 32.38 19.35 17.01 81.69 75.61 53.66 28.36 25.58
TBVDR 40.99 39.48 19.52 13.93 11.49 61.97 58.54 34.15 20.90 16.28
TBVDRMCR 56.95 52.01 30.71 20.53 19.54 78.87 78.05 51.22 32.84 27.91
PROTA 2 55.16 45.15 32.38 17.89 17.70 84.51 73.17 51.22 34.33 32.56
PROTAVR 63.14 5296 39.05 21.99 1862 | 90.14 7561 63.41 3582 2791
PROTAMCR 64.37 56.26 37.62 20.82 21.61 91.55 78.05 58.54 35.82 30.23
PROTABR 62.59 55.56 39.29 21.70 19.54 87.32 78.05 63.41 34.33 30.23

may lead to the degenerated performance of PROTABCR on
the CMU PIE dataset. Nevertheless, PROTABCR still achieves
similar performance with PROTAMCR on the COIL20 dataset.
More importantly, as will be shown in Section IV-D, it can
automatically determine the number of extracted features
P, which is more convenient to use in practice than other
regularized PROTAs.

C. Classification on 3-D Sequences

This section evaluates PROTA on two 3-D sequences (third-
order tensors) datasets. The first one is a subset of the USF gait
challenge dataset [44]. Following the standard settings of gait
recognition, we use the same gallery set with 731 examples
of 71 subjects (classes) for training as in [20], and select the
probes A (727 examples), B (423 examples), C (420 exam-
ples), D (682 examples), and E (435 examples) for test. So
there is no random partitioning of the training and test sets for
this dataset. All the gait examples are 32 x 22 x 10 (binary)
silhouette sequences.

The second one is the Cambridge-Gesture database [45],
which consists of 900 image sequences of nine hand ges-
tures (classes). Each gesture class includes 100 examples from
two subjects, under five illumination conditions, and with ten
motions. Following the same preprocessing steps in [46], we
select the middle 32 frames from each sequence, and resize
each image frame to 20 x 20, resulting in 20 x 20 x 32 ten-
sorial examples. For each gesture class, we randomly select L
examples for training, and the remaining for test. We report
the best averaged results over ten such training/test partitions.

We apply the similar algorithmic settings in Section IV-B
for PROTA and the competing methods. Since PSOPCA
and BPCCA are bilinear approaches and cannot be directly
applied to higher-order tensors, the tensorial examples are first
unfolded along the third mode into matrices, so that they can
be fed into PSOPCA and BPCCA. In addition to the recogni-
tion results of individual gait examples, we also report those
of gait sequences for the USF gait dataset, following [44].

Results and Analysis: Table V shows the gait recognition
results on the USF gait dataset. For classifying individ-
ual gait examples, CR-based PROTAs achieve good over-
all performance, which demonstrates again the effectiveness
of PROTA and CRs. In contrast, PROTAL2 obtains much
worse results than other regularized PROTAs. This indi-
cates that L, regularization could be too restrictive, and
may exclude good solutions for PROTA. For classifying gait
sequences, PROTAMCR obtains good overall results except
on Probe C, and PROTABCR js the second best method
except on Probe A. BPPCAVR outperforms others on Probes
B and C. PSOPCAVR and TBVDRMCR perform significantly
better than their plain versions. These indicate that besides
PROTA, CRs are also effective in alleviating overfitting for
other multilinear PPCAs.

Table VI shows the classification results on the Cambridge-
Gesture dataset. Similar to the experiments on other datasets,
PROTAVCR and PROTAMCR obtain the top two results
with statistical significance in most cases. In more detail,
PROTAMCR outperforms PROTAYCR and the best competing
method by 0.9% and 3.14% on average, respectively. Among
the competing methods, PPCA and MPCA achieve better over-
all performance, while the best Tucker-based PPCA, BPPCA,
obtains poor results. This can be attributed to the limited flex-
ibility of the Tucker model in capturing data characteristics as
well as the broken tensor structures due to unfolding.

It is also worth noting that the performance of PSOPCA and
BPPCA greatly depends on which mode is selected as the base
dimension for unfolding. In our experiments, the third mode,
the dimension of time, is the best choice for PSOPCA and
BPPCA. However, if the input tensors are unfolded along other
modes, PSOPCA and BPPCA can only obtain much worse
results (about 10%—-20% lower than their best).

D. Parameter Sensitivity and Convergence Study

This section studies the parameter sensitivity and the conver-
gence property of PROTA. We follow the same experimental
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TABLE VI
CLASSIFICATION ACCURACIES (MEANZSTD.%) ON THE CAMBRIDGE-GESTURE DATASET (BEST;
SECOND BEST; COMPARABLE* BASED ON #-TEST WITH p = 0.05)

L 5 10 15 20 25 30

PCA 29.5342.31 39.7543.62 46.60+2.45 51.3643.00 56.584+2.99 58.38+3.31
PPCA 43.86+2.75* 56.7342.01 62.054+3.35 66.06+2.10 68.274+2.26 67.874+3.14
MPCA 41.38+6.14* 54.68+4.49 61.114+3.04 68.74+1.93 70.0442.88 69.874+2.10
UMPCA 22.8443.34 28.104+2.23 30.314+1.86 31.0742.24 34.184+1.53 36.864+2.27
TROD 34.41+4.78 49.95+2.81 56.76+4.25 61.8243.13 66.01+£3.72 68.35+£1.12
PSOPCA 29.0843.15 40.164+2.41 44.63+3.41 50.04+3.42 55.56+2.05 55.8143.21
PSOPCAVCR 33.8245.37 43.4247.96 46.90+1.47 50.76+2.04 55.974+2.31 57.624+1.67
BPPCA 33.804+5.32 46.4443.62 52.434+2.87 59.3542.53 62.77+1.68 61.8443.10
BPPCAVCR 35.534+4.17 46.794+2.31 54.434+1.21 58.85+1.83 61.114+2.58 60.794+2.42
BCPF 31.354+3.55 40.60+2.75 46.63+2.28 52.13+2.60 55.514+3.05 58.68+1.44
VBTCP 31.2742.98 42.15+4.67 35.9245.63 40.85+5.20 37.114+13.53 38.4445.84
TBVDR 32.83+3.02 46.2843.53 52.93+2.71 58.2943.29 62.50+1.80 63.19+2.24
TBVDRMCR 37.3142.29 49.494+2.76 55.2443.35 60.224+1.67 63.85+1.84 64.214+2.22
PROTA L2 39.7145.13 54.9343.51 62.764+3.31 69.67+2.39* 70.4041.58 72.90+2.10
PROTAVCR 42.64+4.86* 59.074+3.37* 65.104+2.95* 69.74+3.13* 72.8343.16* 75.3542.38*
PROTAMCR 43.77+5.47* 59.85+3.82* 65.324+2.54* 71.32+1.82* 73.63+1.40* 76.24+1.92*
PROTABCR 39.85+4.78 56.80+2.39 62.974+3.09 69.38+2.07 73.484+1.53* 75.17+1.52*
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Fig. 1. Classification results of regularized PROTAs with different parameter settings on 2-D and 3-D datasets. (a) PROTAL2. (b) PROTAVCR, (¢) PROTAMCR,

(d) PROTABCR,

settings in Section IV-B, and conduct experiments on both 2-D
(CMU PIE, COIL20) and 3-D (Cambridge-Gesture) datasets.
Since the USF gait dataset is constructed by fixed training and
test sets without repeated random partitions, it is not included
in this paper for fair comparisons, while we have verified that
the behavior of PROTA on the USF gait dataset is not much
different from that on the other datasets. We report experimen-
tal results with moderate training sizes by setting L = 5 and
L = 15 for the 2-D and 3-D datasets, respectively.

Parameter Sensitivity: First, we study how different val-
ues of the regularization parameters affect the performance
of regularized PROTAs. Fig. 1 illustrates the classification
accuracies obtained by regularized PROTAs. At the begin-
ning, the performance of PROTA consistently improves as
the regularization parameters increase for all the datasets.
This demonstrates that imposing regularization on PROTA is
effective in alleviating overfitting.

Among the four regularized PROTAs, PROTAMCR and
PROTABCR consistently achieve good performance on all the
datasets when y is around 100-1000 and, thus, are less sensi-
tive in terms of different parameter configurations and datasets.
On the other hand, PROTAL2 and PROTAVCR are more sensi-
tive to the regularization parameters. Although the best value
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Fig. 2. Number of features extracted by PROTABCR 4t cach iteration with

different parameter settings on the (a) CMU PIE and (b) Cambridge-Gesture
datasets.

of yVCR varies a lot on different datasets, it is often close

to &2, the noise variance learned by performing PROTA with
P = 1. This suggests that plain PROTA (without regulariza-
tion) could be used to roughly determine the regularization
parameter for variance-based CR.

Number of Extracted Features: We investigate the behav-
ior of PROTABCR in pruning irrelevant features. Fig. 2 shows
how the feature number P of PROTABCR varies at each
iteration given different values of yB°R on the CMU PIE
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Fig. 3. Log-likelihood of regularized PROTAs at each iteration on the (a)
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and Cambridge-Gesture datasets. As can be seen, PROTABCR
prunes a large number of features after several iterations, indi-
cating its ability of automatic feature determination. Since
yBCR controls the range of variation that each subspace basis
w, can take, a larger yBCR will eliminate more features.
Considering PROTABCR is not sensitive to yBR as shown in,
it is relatively easy for PROTABCR to determine an appropriate
feature number with good performance.

Convergence: Finally, we study the convergence properties
of regularized PROTAs by fixing y/2 = 100, yVR/62 = 1,
yMCR — 100, and yBR = 100, respectively. From Fig. 1, such
parameter settings yield reasonably good performance for all
the datasets. Fig. 3 shows the log-likelihood (or variational
lower bound) of regularized PROTAs at each iteration on the
CMU PIE and Cambridge-Gesture datasets. As can be seen,
all PROTAs monotonically increase their objective functions
and converge properly.

In addition, the behavior of PROTA is affected by the
imposed regularization strategies. Moment-based CR leads to
higher log-likelihood than the variance-based one, which sug-
gests that PROTAMR fits the PROTA model better and is less
restrictive than PROTAYCR. On the other hand, PROTAYR
converges faster than PROTAMCR | This is because PROTAYCR
has no need to estimate the noise variance o2 while fix-
ing it to a relatively large value instead. By making the
bias-variance tradeoff, a larger o> improves the convergence
speed of PROTA though at the expense of goodness-of-fit. For
PROTABCR | the values of its objective function are smaller
than those of other regularized PROTAs. This is expected
because PROTABCR aims at maximizing the variational lower
bound rather than the log-likelihood.

V. CONCLUSION

We have proposed PROTA, a new CP-based multilinear
PPCA. Compared with Tucker-based PPCAs, PROTA has a
more flexible subspace representation, and does not suffer
from rotational ambiguity. Compared with existing CP-based
PPCAs, our new CRs penalize the entire subspace and avoid
introducing unnecessary restrictions into the CP model, mak-
ing PROTA more robust against overfitting. To fully utilize the
probabilistic framework, we have further proposed a Bayesian
treatment of PROTA, which achieves both automatic feature
determination and robustness against overfitting. Experiments
on both synthetic and real-world data have demonstrated the

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 7, JULY 2021

superiority of PROTA in subspace estimation and classifi-
cation, as well as the effectiveness of CRs in alleviating
overfitting for PROTA and other multilinear PPCAs.

Besides the classical Tucker and CP models, recently
some t-product-based tensor decomposition models have been
proposed [47]-[50], providing a new way of tensor analysis.
By utilizing the new tensor multiplication, that is, t-product,
along with a newly defined tensor rank, they have obtained the
state-of-the-art performance in many computer vision appli-
cations, such as image denoising and background modeling.
Despite of their success in image and video processing, we
did not find any work for incorporating t-product-based PCA
models into the probabilistic framework yet, which could be
an interesting future work.
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