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Abstract—Ordinal attribute has all the common characteristics
of a nominal one but it differs from the nominal one by hav-
ing naturally ordered possible values (also called categories
interchangeably). In clustering analysis tasks, categorical data
composed of both ordinal and nominal attributes (also called
mixed-categorical data interchangeably) are common. Under this
circumstance, existing distance and similarity measures suffer
from at least one of the following two drawbacks: 1) directly
treat ordinal attributes as nominal ones, and thus ignore the
order information from them and 2) suppose all the attributes
are independent of each other, measure the distance between two
categories from a target attribute without considering the valu-
able information provided by the other attributes that correlate
with the target one. These two drawbacks may twist the natural
distances of attributes and further lead to unsatisfactory clus-
tering results. This article, therefore, presents an entropy-based
distance metric that quantifies the distance between categories
by exploiting the information provided by different attributes
that correlate with the target one. It also preserves the order
relationship among ordinal categories during the distance mea-
surement. Since attributes are usually correlated in different
degrees, we also define the interdependence between different
types of attributes to weight their contributions in forming dis-
tances. The proposed metric overcomes the two above-mentioned
drawbacks for mixed-categorical data clustering. More impor-
tant, it conceptually unifies the distances of ordinal and nominal
attributes to avoid information loss during clustering. Moreover,
it is parameter free, and will not bring extra computational cost
compared to the existing state-of-the-art counterparts. Extensive
experiments show the superiority of the proposed distance metric.

Index Terms—Clustering analysis, interdependence, ordinal-
and-nominal-attribute data, unified distance metric (UDM).
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I. INTRODUCTION

CATEGORICAL data are common in clustering analysis
tasks, and attributes composing categorical data can be

divided into two classes, that is: 1) nominal attribute and 2)
ordinal attribute [1], [2], as shown in Fig. 1. Ordinal attribute
has all of the characteristics of the nominal one, but it differs
from the nominal one by having naturally ordered possible
values (also called categories interchangeably) [3], [4]. In clus-
tering analysis tasks, it is common that a categorical data
consists of both nominal and ordinal attributes [5]. Table I
demonstrates a fragment of such a categorical dataset extracted
from a teaching assistant (TA) evaluation dataset, where the
two ordinal attributes, “Attribute 1” and “Attribute 2,” record
the helpfulness and professional level of each TA, respectively;
the two nominal attributes, “Attribute 3” and “Attribute 4,”
record the corresponding course and course type, respectively;
and the “Label” attribute records whether the TAs have been
awarded. In this mixed-categorical dataset, it is obvious that
the values of Label are relevant to the ordering information
of the ordinal categories. For example, the values that are
closer to “Agree” in Attribute 1 and Attribute 2 tend to indi-
cate the label “Yes.” If we treat them as nominal ones, such
information will be ignored and may lead to unsatisfactory
clustering results. Therefore, ordinal and nominal attributes
should be treated differently in the clustering analysis of such
data.

Unfortunately, most existing categorical data similar-
ity/distance measures are proposed provided that the categor-
ical dataset consists of nominal attributes only [6]. Among
these measures, the simplest and most popular one is the
Hamming distance [7], which directly assigns distance “0”
to identical categories and distance “1” to any pair of
unequal categories. Goodall’s similarity measure (GSM) [8]
directly assigns similarity 0 to any pair of unequal categories,
and attempts to measure similarity for identical categories
by exploiting their statistical information (i.e., occurrence
frequencies). Later, association-based [9], Ahmad’s [10], and
context-based [11], [12] distance metrics have been proposed.
They adopt a similar basic idea to exploit interattribute
relationship information for more reasonable distance mea-
surement. Nevertheless, since they rely on the information
offered by the related attributes, they are incompetent for the
datasets that comprise independent attributes. To solve this
problem, Jia’s distance metric (JDM) [13] is proposed, which
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Fig. 1. Relationship among different attribute types. “v-bad” and “v-good”
indicate very-bad and very-good, respectively.

TABLE I
FRAGMENT OF THE TA EVALUATION DATASET

further exploits the occurrence frequency of the target cat-
egories. However, all the above-mentioned measures/metrics
ignore the order relationship among categories when pro-
cessing ordinal attributes, and are thus inappropriate for the
clustering of datasets with ordinal attributes.

In the literature, Lin’s similarity measure (LSM) [14] and
ordinal distance metric [15] take into account the order relation-
ship from the perspective of information theory. However, they
have not addressed the distance measurement problem in the
nominal case, and are thus inappropriate for the datasets with
nominal attributes. A more straightforward solution is numerical
coding (NC), which codes ordinal categories into consecutive
integers and nominal categories into binary attributes, and then
treat the coded data as a numerical one in clustering analysis.
Although the order relationship is preserved in this way, the
statistical information of categories is ignored and there is an
awkward gap between ordinal and nominal attributes, which
may cause misinterpretation of the distances.

Most recently, an entropy-based distance metric (EBDM)
[16] proposes unifying the distance concept for ordinal and
nominal attributes to avoid information loss caused by the
awkward gap. However, it only exploits the occurrence
frequency of the target categories, and does not consider the
valuable information provided by the other attributes. Many
existing works (see [9]–[13]) have shown that information
extracted from the correlated attributes is very useful for defin-
ing distances in categorical data clustering. Taking the data
fragment shown in Table I as an example, suppose ordinal
Attribute 1 and nominal Attribute 4 are interdependent, the dis-
tance between “Agree” and “Marginal” of Attribute 1 should
be very short from the perspective of Attribute 4, because the
corresponding values of these two categories are all the same
in Attribute 4. Evidently, distances defined without sufficiently
exploiting such information will be somewhat unreasonable,
and will therefore affect clustering performance. Therefore,
properly exploiting the information offered by heterogeneous
ordinal and nominal attributes and reasonably quantifying the
interattribute dependence are both key factors for correctly
defining distances in mixed-categorical data clustering.

Ideally, a comprehensive distance metric should take into
account the following five aspects: 1) intraattribute statistical

TABLE II
ASPECTS CONSIDERED BY DIFFERENT MEASURES/METRICS

information; 2) interattribute correlation information;
3) attribute weighting; 4) order relationship among ordinal
categories; and 5) unification of the distance definitions. By
taking into account the former two aspects, a measure like
JDM [13] will be robust to the interdependence degrees
among attributes. The third aspect is important because
the information offered by different attributes will have
different contributions in forming distances. The fourth
aspect ensures that a metric does not roughly treat ordinal
attributes as nominal ones, while the last aspect guarantees
that the distances of ordinal and nominal attributes are
defined in a unified manner to eliminate the information
loss caused by awkwardly combining different types of
distances. Aspects that are taken into account by different
metrics are summarized in Table II, where “Intra.,” “Inter.,”
“Weight,” “Order,” and “Unif.” indicate the above-mentioned
five aspects, respectively. Obviously, all existing metrics have
at least two defects, and may thus yield unsatisfactory results
in mixed-categorical data clustering [16]–[19]. Therefore, it is
necessary to propose a distance metric that comprehensively
takes into account all five aspects for mixed-categorical data
clustering.

In this article, we propose such a distance metric. The
main difficulty lies in how to reasonably define a distance
by quantifying the information extracted from the different
types of interattribute relationships (i.e., those between ordinal
attributes, those between nominal attributes, and those between
ordinal and nominal attributes) caused by the natural differ-
ences between ordinal and nominal attributes. The basic idea
is to conceptually unify the distance indicated in different sit-
uations from the perspective of information theory [20], [21].
More specifically, we use information amount (i.e., entropy)
of categories quantified according to different attributes to
indicate their distance, because dissimilar categories usually
have corresponding dissimilar values on the other attributes,
which can be properly quantified in a unified way by entropy.
Through our design, the distances indicated by the information
extracted under the different types of interattribute relation-
ships can be conceptually unified, and the order relationship
among ordinal categories can also be preserved. In addition,
since attributes are usually interdependent in different degrees,
the information offered by them may have different contri-
butions in distance measurement. Hence, we also propose a
measure to quantify the interdependence under the different
types of interattribute relationship in a unified way provided
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that two attributes are interdependent if two data objects show
their consistency on these two attributes (e.g., having identi-
cal values on each of the two attributes). In practice, we use
the percentage of inspected object pairs that show the consis-
tency to quantify the interdependence. Consequently, a unified
mixed-categorical data distance metric is formed by weighting
the distances measured on different attributes according to the
interdependence. Experiments conducted in this article show
that the proposed distance metric can reasonably quantify dis-
tances and outperforms the existing counterparts in clustering
analysis. The main contributions of this article are four-fold.

1) A series of rules has been formed to offer guidance about
how to design a mixed-categorical data distance met-
ric that can comprehensively take into account all five
aspects shown in Table II for distance measurement.

2) Distance of ordinal and nominal attributes is defined in
a unified way from the perspective of information the-
ory. This definition takes into account both intra- and
inter-attribute statistical information while preserving
the order relationship among ordinal categories.

3) Interdependence is quantified in a unified way for
the three types of interattribute relationship: a) those
between ordinal attributes; b) those between nominal
attributes; and c) those between ordinal and nominal
attributes.

4) A unified and parameter-free distance metric is formed
by integrating the proposed distance definition and
interdependence measure. In comparison with the coun-
terparts, the proposed metric is more comprehensive and
effective, and is competent for the distance measurement
in the clustering analysis of mixed-categorical data.

The remainder of this article is organized as follows.
Section II reviews the existing related works. Section III
presents the details of the proposed distance metric. The exper-
imental results are demonstrated and discussed in Section IV.
Finally, we draw a conclusion in Section V.

II. OVERVIEW OF EXISTING RELATED WORKS

A. Existing Distance and Similarity Measures

The traditional Hamming distance metric (HDM) [7] is
commonly used in categorical data clustering analysis. It
assigns binary distances 0 and 1 to each pair of identi-
cal and unequal categories, respectively. Similarly, Goodall’s
measure [8] assigns 0 similarity to each pair of unequal cat-
egories, but attempts to distinguish the similarity between
different pairs of identical categories by exploiting the occur-
rence frequency of them. Association-based [9], Ahmad’s [10],
and context-based [11], [12] distance metrics adopt a similar
basic idea that similar probability distributions of the cor-
responding values on the other attributes indicates a shorter
distance between two categories. Since the association-based
metric and Ahmad’s metric treats each attribute equally, which
is obviously unreasonable [22], [23], context-based metric fur-
ther selects a set of more dependent attributes as the context
for distance measurement. However, since they all rely on the
interdependence of attributes, they may fail when all of the
attributes are independent of each other. Although JDM [13]

solves this problem by further considering the intraattribute
statistical information, all the above-mentioned six metrics
are still inappropriate for mixed-categorical data, as they are
designed for nominal data only.

In the literature, LSM [14] and the ordinal distance met-
ric [15] have been proposed to especially exploit the order
information for ordinal data distance measurement. They
both quantify similarities/distances from the perspective of
information theory and preserve the order relationship among
ordinal categories. However, they did not exploit the valu-
able interattribute correlation information, and cannot properly
address the distance measurement problem of ordinal and
nominal attributes. NC that simply assigns consecutive integers
to the ordinal categories and converts each nominal category
into a binary attribute is a feasible solution. Nevertheless,
since it ignores the statistical information of categories, the
natural intercategory distances will be twisted. It also creates
more attributes due to the coding of nominal categories. These
defects may surely influence the efficiency and accuracy of
clustering analysis. EBDM [16] extends the metric proposed
in [15] by unifying the distance concept of ordinal and nominal
attributes, and is thus suitable for the distance measurement
of mixed-categorical data. However, it still has not exploited
the valuable information that can be extracted from the inter-
attribute relationship, which makes it somewhat unreasonable.

B. Existing Interdependence Measures

Symmetric uncertainty [24] and interdependence redun-
dancy [13] are two interdependence measures adopted by
categorical data distance metrics proposed in [12] and [13],
respectively. Both of these two interdependence measures are
symmetrical, and they calculate dependence degrees between
categorical attributes from the perspective of information
theory. Symmetric uncertainty is based on information
gain [25], and interdependence redundancy is based on mutual
information [26]. Actually, the concepts of information gain
and mutual information are equivalent to each other in the
scenario of interattribute dependence measurement [27]. These
two measures differ from each other in how they compensate
for the bias of information gain and mutual information toward
attributes with more values. Symmetric uncertainty divides the
information gain of two attributes by their total entropy, while
interdependence redundancy divides the mutual information of
two attributes by their joint entropy. However, they are both
inappropriate for the interdependence measurement of ordinal
attributes, because they did not take into account the order
relationship among the ordinal categories.

Spearman’s rank correlation [28], Kendall’s tau coeffi-
cient (KTC) [29], and rank mutual information [30] are three
interdependence measures designed for ordinal data. The for-
mer two adopt a similar basic idea that the dependence degree
between two attributes will be high when their correspond-
ing values reflect a higher degree of agreement in terms
of the order [31]–[34]. The difference is that Spearman’s
rank correlation measures interdependence based on the “rank
difference” between two attributes, while KTC quantifies
interdependence based on the “concordance” between the
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corresponding value pairs of two attributes. The latter one (i.e.,
rank mutual information) takes into account the order rela-
tionship of ordinal attributes by computing mutual information
based on dominance rough set [35]–[39]. However, these three
measures do not apply to nominal attributes because they all
measure interdependence based on the order of categories.

III. PROPOSED METRIC

We first formulate the problem of mixed-categorical data
distance measurement, discuss the challenging issues, and
make an overview of the proposed metric in Section III-A.
Then, we give the technical details and discussions in the
remaining part of this section.

A. Preliminaries

Given a categorical dataset with N data objects X =
{x1, x2, . . . , xN} represented by d attributes A1, A2, . . . , Ad,
which have v1, v2, . . . , vd categories, respectively (the vec-
tors and matrices are indicated by boldface hereinafter). It is
assumed that the former dord and the latter dnom attributes are
ordinal and nominal, respectively, where d = dord + dnom. A
category of an attribute is denoted in the form of or,t, where
r ∈ {1, 2, . . . , d} is the sequential number of attribute Ar that
or,t belongs to, and t ∈ {1, 2, . . . , vr} is the sequential num-
ber of or,t. If Ar is an ordinal attribute (i.e., r ≤ dord), its vr

categories are naturally ordered as or,1 � or,2 � · · · � or,vr ,
where the symbol “�” indicates that the categories on its left
rank higher than the categories on its right. A data object
xi = {xi1, xi2, . . . , xid}, i ∈ {1, 2, . . . , N}, is represented by
d categories, each of which belongs to an attribute. For two
objects xi and xj, their distance Dist(xi, xj) consists of d
subdistances measured between their 1st, 2nd, . . . , dth values.
Measure the distance between their rth values is equivalent
to measure the distance between the two corresponding cat-
egories of Ar. Suppose Ar and As are interdependent, the
distance between or,t and or,h measured according to As is
denoted as ϕAs(or,t, or,h)·R(Ar, As), where ϕAs(or,t, or,h) is the
distance between or,t and or,h indicated by As, and R(Ar, As)

is the interdependence degree of Ar and As that controls the
contribution of As in forming the overall distance between or,t

and or,h, which is denoted as �(or,t, or,h).
It is a challenging task to reasonably define a distance of

mixed-categorical data because the relationship among cat-
egories of ordinal and nominal attributes exists in different
ways, which yields different types of intercategory distance.
Let us take the dataset shown in Table III as an example.
Intuitively, the dissimilarity of “↑” and “↓” is lower than that
of “↑” and “∼” indicated by “A3,” because “↑” and “↓” have
common corresponding value (i.e., “�”), but “↑” and “∼” do
not. Also, the dissimilarity of “↑” and “↓” is higher than that
of “↑” and “∼” indicated by “A1” because the corresponding
values of “↑” and “↓” (i.e., {A} of “↑” and {C, C} of “↓”)
are with the larger order difference than that of “↑” and “∼”
(i.e., {A} of “↑” and {A, B} of “∼”). It is obvious that the
ordinal “A1” and the nominal “A3” indicate the distance in
different ways. Moreover, by considering the ordinal nature
of “A2,” the dissimilarity of “↑” and “↓” could not be lower

TABLE III
EXAMPLE OF MIXED-CATEGORICAL DATA SET. A1 IS AN ORDINAL

ATTRIBUTE WITH o1,1 = “A,” o1,2 = “B,” o1,3 = “C,” AND

o1,1 � o1,2 � o1,3. A2 IS AN ORDINAL ATTRIBUTE WITH o2,1 = “↑,”
o2,2 = “∼,” o2,3 = “↓,” AND o2,1 � o2,2 � o2,3. A3 IS A NOMINAL

ATTRIBUTE WITH o3,1 = “�,” o3,2 = “�,” AND o3,3 = “�”

than that of “↑” and “∼,” because the former two have larger
order difference. Apparently, there exists awkward gap among
the intercategory distance ϕAs(or,t, or,h) indicated in the fol-
lowing four situations: 1) both Ar and As are ordinal; 2) Ar

is ordinal and As is nominal; 3) Ar is nominal and As is ordi-
nal; and 4) both Ar and As are nominal. Combining these
types of distances that are not defined in a unified way to
form �(or,t, or,h) will surely cause information loss in clus-
tering analysis. In this article, we circumvent this issue by
adopting an information theory-based idea that two categories
containing more different information are usually more dissim-
ilar to each other. By quantifying the information of categories
indicated by different attributes using entropy, the distances
indicated in the above-mentioned four situations are unified
into homogeneous concepts and can thus be directly combined
for clustering analysis without causing information loss. We
will present the details of the unified distance definition in
Section III-B.

In practice, attributes are usually interdependent to a certain
degree. It turns out that the information from the different
attributes is of different importance in forming a distance.
Therefore, how to reasonably measure the interdependence
R(Ar, As) in the following three situations: 1) both Ar and As

are ordinal; 2) both Ar and As are nominal; and 3) Ar and As are
of different types, which are caused by the differences between
ordinal and nominal attributes, is also crucial to the success of
mixed-categorical data clustering. Although some interdepen-
dence measures [13], [24], [28]–[30] have been defined, they
are only applicable to one of the first two situations. How to
measure the interdependence in the third situation and how
to eliminate the concept gap among the three types of inter-
dependence are both nonstraightforward tasks that have yet
to be studied in the literature. Thus, we study the interde-
pendence in all three situations, and propose a measure that
quantifies the interdependence in a unified way. The proposed
measure uses the number of object pairs that indicate the
dependence between two attributes in a nonconflicting way
to indicate the interdependence degree. The details of the
proposed unified interdependence measure will be presented
in Section III-C.

B. Entropy-Based Distance Definition

Distance ϕAs(or,t, or,h) can be defined according to rule 1.
Rule 1: Given two interdependent attributes Ar and As, if

or,t and or,h of Ar have no common corresponding values on
As, distance ϕAs(or,t, or,h) can be quantified by summing up
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the entropy values of the two joint probability distributions of
or,t’s and or,h’s corresponding values on As.

Remark 1: Given joint probability distributions P(or,t, As)

= {p(or,t, os,1), p(or,t, os,2), . . . , p(or,t, os,vs)} and P(or,h, As)

= {p(or,h, os,1), p(or,h, os,2), . . . , p(or,h, os,vs)}, we note that
the entropy E(or,t, As) = −∑vs

u=1 p(or,t, os,u) log2 p(or,t, os,u)

of P(or,t, As) and the entropy E(or,h, As) = −∑vs
u=1 p(or,h,

os,u) log2 p(or,h, os,u) of P(or,h, As) quantify the information
amount of or,t and or,h, respectively, according to As. Here,
p(or,t, os,u) is a joint probability defined as p(or,t, os,u) =
[(σor,t∧os,u(X))/N], where σor,t∧os,u(X) is a function counting
the number of objects in X with their rth and sth values equal
to or,t and os,u, respectively. It is intuitive that larger amount
of different information contained by two different categories
indicates that they are more dissimilar. Therefore, if or,t and
or,h have no common corresponding values on As, they contain
totally different information indicated by As, and the distance
ϕAs(or,t, or,h) can be quantified by

ϕAs

(
or,t, or,h

) =
{∑

g={t,h} E
(
or,g, As

)
, if t 
= h

0, if t = h
. (1)

The distance in the case t = h is 0 because the distance
between a category to itself is always zero.

The distance described by (1) is defined under the hypoth-
esis that or,t and or,h do not have common information from
the perspective of As. However, in practice, the common part
of their information, if any, is counted twice by (1), which is
unreasonable. Thus, rule 2 is yielded.

Rule 2: or,t and or,h should be treated as a whole to avoid
the double counting of their common information.

Remark 2: Given two joint probability distributions
P(or,t, As) and P(or,h, As), if or,t and or,h are teated as a whole,
a new joint probability distribution P(or,th, As) = {p(or,th,

os,1), p(or,th, os,2), . . . , p(or,th, os,vs)} is yielded, where
p(or,th, os,1) = p(or,t, os,1) + p(or,h, os,1), p(or,th, os,2) =
p(or,t, os,2) + p(or,h, os,2), . . . , p(or,th, os,vs) = p(or,t, os,vs)+
p(or,h, os,vs)}. Based on P(or,th, As), the distance is
redefined as

ϕAs

(
or,t, or,h

) =
{

E
(
or,th, As

)
, if t 
= h

0, if t = h
(2)

where E(or,th, As) = −∑vs
u=1 p(or,th, os,u) log2 p(or,th, os,u).

If there is no common information contained by or,t

and or,h, E(or,th, As) = ∑
g={t,h} E(or,g, As) is consis-

tent with rule 1; if there exists common information,
E(or,th, As) <

∑
g={t,h} E(or,g, As) is consistent with rule 2.

According to the definition of entropy [25], a larger vs may
result in a larger ϕAs(or,t, or,h). But this effect does not cor-
rectly reveal the true contribution of As. This is called vs-effect
hereinafter, and rule 3 is yielded accordingly.

Rule 3: vs-effect should be eliminated when computing
ϕAs(or,t, or,h).

Remark 3: Standard information SAs = − log2(1/vs) that
calculates the maximum entropy of an attribute (i.e., entropy
of an attribute when the occurrence frequency of its categories
are identical) is presented in [16] for eliminating the vs-effect.

Hence, we adopt it to redefine the distance as

ϕAs

(
or,t, or,h

) =
{

E(or,th,As)
SAs

, if t 
= h

0, if t = h
. (3)

If Ar is an ordinal attribute, the order relationship among
its categories should not be ignored. Then, we have rule 4.

Rule 4: If Ar is ordinal, any pairs of distances of Ar mea-
sured according to As should satisfy: if or,t � or,p � or,u �
or,h or or,t � or,p � or,u � or,h, then ϕAs(or,t, or,h) ≥
ϕAs(or,p, or,u), where t, p, u, h ∈ {1, 2, . . . , vr}. Here, the sym-
bol “�” (“�”) indicates that the categories on its left rank not
lower (higher) than the categories on its right.

Remark 4: rule 4 is to ensure that the distance between two
categories (e.g., or,t and or,h) is not smaller than the distance
between another two categories that are ordered between them
(e.g., or,p and or,u). In other words, it guarantees that the dis-
tances defined for ordinal categories do not violate their order
relationship. Thus, the distance is redefined as

ϕAs

(
or,t, or,h

)=

⎧
⎪⎪⎨

⎪⎪⎩

∑max(t,h)−1
g=min(t,h)

E(or,gw,As)
SAs

, if t 
= h, r≤dord

E(or,th,As)
SAs

, if t 
= h, r>dord

0, if t = h

(4)

where w = g + 1. In this way, order relationship among ordi-
nal categories is preserved and the measured distances are
consistent with rule 4.

Consequently, we have intercategory distance

�
(
or,t, or,h

) = 1

d

d∑

s=1

ϕAs

(
or,t, or,h

)
(5)

and the distance between two data objects can be written as

Dist
(
xi, xj

) =
√
√
√
√

d∑

r=1

�
(
xir, xjr

)2 (6)

where xir and xjr are the rth values of xi and xj, respectively.
Distance defined by (5) assumes that each attribute con-

tributes equally in forming �(or,t, or,h). However, in real
categorical datasets, attributes are usually interdependent in
different degrees, and thus have different contributions. In
Section III-C, we further discuss how to quantify the inter-
dependence for the attributes of mixed-categorical data.

C. Concordant-Based Interdependence Measure

If the interdependence degree R(Ar, As) between Ar and As

is low, ϕAs(or,t, or,h) will be “unreliable,” which means that the
distances measured according to the information offered by As

should contribute less in forming �(or,t, or,h). This is because
that a low R(Ar, As) indicates that As does not contain much
information about Ar. Hence, the contributions of different
attributes should be weighted according to the interdepen-
dence. For mixed-categorical data, interattribute relationship
exists in the following three cases.

1) Case 1: Both Ar and As are nominal.
2) Case 2: Ar and As are of the different attribute types.
3) Case 3: Both Ar and As are ordinal.

Subsequently, we have rule 5 as follows.
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Rule 5: In cases 1 and 2, Ar and As should be treated as
nominal ones for computing R(Ar, As). In case 3, Ar and As

should be treated as ordinal ones for computing R(Ar, As).
Remark 5: case 1 is very common, and has been widely

studied by the existing works, (see [9]–[13]). In case 2, an
ordinal attribute can be viewed as a special case of the nominal
attribute that the categories are with order constraints. Since
the nominal attribute does not have such order information,
the interdependence in case 2 can just exist in a nominal
level. So Ar and As should be treated as nominal ones to
measure their interdependence degree. In case 3, since Ar

and As are both ordinal, the interdependence surely exists
in an ordinal level. To sum up, there are two types of
interdependence.

1) Type-1: Ordinal-level interdependence in case 3.
2) Type-2: Nominal-level interdependence in cases 1 and 2.
The difficulty lies in how to make the definitions of these

two types of interdependence unified. Then, we have rule 6
as follows.

Rule 6: The two types of interdependence can be concep-
tually unified by counting the number of data object pairs
that indicate the interdependence between two attributes in a
nonconflicting way.

Remark 6: The existing nominal-level [13], [24] and
ordinal-level [28]–[30] interdependence measures quantify the
interdependence from different perspectives. Combining them
for attributes weighting will surely cause information loss. The
heterogeneous interdependence is caused by the two different
attribute types. So we unify the interdependence as the number
of inspected data object pairs that indicate the interdependence
between two attributes in a nonconflicting way. To find out
such “nonconflicting” object pairs, a series of concepts about
“concordant” is defined as follows. The concept concordant is
derived from the definition of KTC [29]. Since KTC is only
feasible for the type-1 interdependence, we refine the concept
of concordant, and define its variations to unify the two types
of interdependence.

Definition 1: xi and xj are equal-concordant on Ar and As,
if xir = xjr and xis = xjs.

Remark 7: Definition 1 applies to both the two types of
interdependence, because xir = xjr and xis = xjs indicate that
Ar and As have consistent behavior indicated by xi and xj.
KTC ignores the situation of equal-concordant, and subtracts
the number of “concordance” by the number of “discordance,”
which may result in negative interdependence that is unsuitable
for the attributes weighting in this article.

Then, we define three concordant-related concepts that only
apply to the type-1 interdependence.

Definition 2: xi and xj are positive-concordant on Ar and
As, if xir ≺ xjr and xis ≺ xjs, or xir � xjr and xis � xjs.

Definition 3: xi and xj are negative-concordant on Ar and
As, if xir ≺ xjr and xis � xjs, or xir � xjr and xis ≺ xjs.

Definition 4: For Ar and As, all the object pairs that are
positive-concordant, and all the object pairs that are negative-
concordant, are concordant-conflict to each other.

Remark 8: Concordant-conflict is defined because positive-
concordant and negative-concordant are opposite to each other
in indicating the consistency of two attributes.

We use the percentage of object pairs that are
nonconcordant-conflict to quantify the type-1 interdependence

Rord(Ar, As) = C=
r,s+

(
max

(
Cord+

r,s , Cord-
r,s

)− min
(
Cord+

r,s , Cord-
r,s

))

N(N − 1)/2
(7)

where C=
r,s, Cord +

r,s , and Cord −
r,s are the total number of

object pairs that are equal-concordant, positive-concordant,
and negative-concordant, respectively.

Then, we define four concordant-related concepts that only
apply to type-2 interdependence.

Definition 5: xi and xj are unequal-concordant on Ar and
As, if xir 
= xjr and xis 
= xjs.

Remark 9: Since there is no order relationship among
nominal categories, unequal-concordant is also a kind of con-
sistency of Ar and As indicated by xi and xj, because by
changing the perspective from xi to xj, it can be found that
the object values on Ar and As have changed.

Definition 6: Two object sets Xor,t,os,g and Xor,h,os,u are
unequal-concordant on Ar and As, if or,t 
= or,h and os,g 
=
os,u.

Remark 10: In Definition 6, the notation Xor,t,os,g represents
an object set containing all the objects in X with their rth
values equal to or,t and sth values equal to os,g. In this defi-
nition, Xor,t,os,g and Xor,h,os,u are unequal-concordant because
any pairs of objects between them are unequal-concordant
according to Definition 5. For Xor,t,os,g and Xor,h,os,u , there are
|Xor,t,os,g |×|Xor,h,os,u | unequal-concordant object pairs in total,
where |Xor,t,os,g | and |Xor,h,os,u | are the numbers of objects in
Xor,t,os,g and Xor,h,os,u , respectively.

Definition 7: A pair of unequal-concordant object sets
Xor,t,os,g and Xor,h,os,u and another pair of unequal-concordant
object sets Xor,t,os,u and Xor,h,os,g are concordant-conflict to
each other, if os,g 
= os,u.

Remark 11: In Definition 7, the sth values of the objects
are completely reversed in the two pairs of object sets. Hence,
they are conflicting in indicating consistency of Ar and As.

Definition 8: If a pair of sets Xor,t,os,g and Xor,h,os,u , and
another pair of sets Xor,t,os,u and Xor,h,os,g , are concordant-
conflict to each other, the pair with larger number of object
pairs are judged to be positive-concordant, and the remaining
pair are judged to be negative-concordant.

Remark 12: The role of Definitions 7 and 8 for type-2
interdependence measurement is equivalent to the role of
Definitions 2–4 for type-1 interdependence measurement.

Similar to (7), we have the type-2 interdependence

Rnom(Ar, As) = C=
r,s+

∑vr−1
t=1

∑vr
h=t+1

(
Cnom+

r,s (t, h)−Cnom-
r,s (t, h)

)

N(N − 1)/2
(8)

where Cnom +
r,s and Cnom −

r,s are two vr × vr upper triangu-
lar matrices containing the numbers of object pairs that
are positive-concordant and negative-concordant, respectively.
Cnom +

r,s (t, h) = ∑vs−1
g=1

∑vs
u=g+1 max(|Xor,t,os,g | × |Xor,h,os,u |,

|Xor,t,os,u | × |Xor,h,os,g |) is an element of Cnom+
r,s and Cnom −

r,s

(t, h) = ∑vs−1
g=1

∑vs
u=g+1 min(|Xor,t,os,g | × |Xor,h,os,u |, |Xor,t,os,u |

×|Xor,h,os,g |) is an element of Cnom-
r,s .
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The proposed interdependence measure described by (7)
and (8) is summarized as follows:

R(Ar, As) =
{

Rord(Ar, As), if r, s ≤ dord

Rnom(Ar, As), else.
(9)

R(Ar, As) satisfies: 1) 0 ≤ R(Ar, As) ≤ 1; 2) R(Ar, As) =
R(As, Ar); and 3) R(Ar, As) = 1 if r = s.

Remark 13: Although (7) and (8) are a little different
in the form, they have the homogeneous concept, that is,
nonconcordant-conflict object pairs as a percentage of the total
number of object pairs. Hence, the two types of interdepen-
dence measured by (9) are unified in concept and comparable
in magnitude.

D. Unified Distance Metric

With R(Ar, As) defined in Section III-C, contributions of
different attributes are weighted in forming �(or,t, or,h) by

�
(
or,t, or,h

) = 1

d

d∑

s=1

R(Ar, As) · ϕAs

(
or,t, or,h

)
. (10)

A unified distance metric (UDM) is thus formed, which is
described by (4), (6), (9), and (10). Here, we demonstrate the
computation process of �(o1,1, o1,3) for the dataset shown in
Table III to further explain the details of UDM.

Example 1: Interdependence degrees are computed as fol-
lows. R(A1, A1) = [(2 + (8 − 0))/(5 × 4 ÷ 2)] = 1 because
all the inspected data object pairs are not concordant-conflict;
R(A1, A2) = Rord(A1, A2) = [(1 + (7 − 0))/(5 × 4 ÷ 2)] =
0.8, where C=

1,2 = 1 is obtained by the inspecting object pair
{x4, x5}, Cord+

1,2 = 7 is obtained by inspecting {x1, x3}, {x1, x4},
{x1, x5}, {x2, x4}, {x2, x5}, {x3, x4}, and {x3, x5}, and Cord−

1,2= 0; R(A1, A3) = Rnom(A1, A3) = [(0 + (2 − 0) + (1 − 1)+
(2 − 0))/(5 × 4 ÷ 2)] = 0.4, where C=

1,3 = 0,
Cnom−

1,3 (1, 2) = 0, and Cnom−
1,3 (2, 3) = 0. Cnom+

1,3 (1, 2) = 2 is
obtained by inspecting {x1, x3} and {x2, x3}, Cnom+

1,3 (1, 3) −
Cnom−

1,3 (1, 3) = 1 − 1 is obtained by inspecting {x1, x4}
and {x2, x5}, and Cnom+

1,3 (2, 3) = 2 is obtained by
inspecting {x3, x4} and {x3, x5}; with R(A1, A1), R(A1, A2),
and R(A1, A3), �(o1,1, o1,3) is computed as follows.
ϕA1(o1,1, o1,3) = [(−[2/5] log2 [2/5] − [1/5] log2 [1/5]) +
(−[1/5] log2 [1/5] − [2/5] log2 [2/5])]/(− log2 [1/3]) = 1.25,
where E(o1,12, A1) = −(2/5) log2(2/5) − (1/5) log2(1/5),
E(o1,23, A1) = −(1/5) log2(1/5)−(2/5) log2(2/5), and SA1 =
− log2(1/3). In the same way, we have ϕA2(o1,1, o1,3) = 1.25,
and ϕA3(o1,1, o1,3) = 1.76. Then we have �(o1,1, o1,3) =
(1/3) × (1 × 1.25 + 0.8 × 1.25 + 0.4 × 1.76) = 0.98.

As a distance metric, UDM satisfies the following four
conditions for all or,t, or,h, or,p with r ∈ {1, 2, . . . , d} and
t, h, p ∈ {1, 2, . . . , vr}:

1) 0 ≤ �(or,t, or,h);
2) �(or,t, or,h) = 0 ⇔ or,t = or,h;
3) �(or,t, or,h) = �(or,h, or,t);
4) �(or,t, or,h) ≤ �(or,t, or,p) + �(or,p, or,h)

and also satisfies the following four conditions for all
xi, xj, xl ∈ X:

1) 0 ≤ Dist(xi, xj);
2) Dist(xi, xj) = 0 ⇔ xi = xj;

Algorithm 1 Distance Measurement Using UDM
Input: Data set X = {x1, x2, . . . , xN}
Output: Dist(xi, xj) with i, j ∈ {1, 2, . . . , N}

1: for r = 1 to d do
2: for s = 1 to d do
3: Calculate R(Ar, As) according to Eq. (9);
4: end for
5: end for
6: for r = 1 to d do
7: for s = 1 to d do
8: Calculate the distance between xir and xjr

9: according to As by using Eq. (4);
10: end for
11: Calculate the overall distance between xir and xjr

12: by using Eq. (10);
13: end for
14: Calculate Dist(xi, xj) by using Eq. (6).

3) Dist(xi, xj) = Dist(xj, xi);
4) Dist(xi, xj) ≤ Dist(xi, xl) + Dist(xl, xj).
The algorithm of distance measurement using UDM is sum-

marized as Algorithm 1. To save computation cost, d vr × vr

distance matrices Mr, r ∈ {1, 2, . . . , d}, that contain inter-
category distances of the d attributes calculated by (10), is
maintained during distance measurement. With these distance
matrices, the distance between any two of the data objects can
be directly read off.

Time complexity for the distance measurement using UDM
is O(d2N), which is the same as the distance metrics proposed
in [9]–[13]. The time complexity consists of three parts.

1) O(d2N) for calculating interdependence degrees.
2) O(d2N) for generating distance matrices.
3) O(d) for reading off distance between two data objects.

We prove them in the following.
Theorem 1: Time complexity for calculating the interde-

pendence degree between each pair of d attributes is O(d2N).
Proof: Before calculating R(Ar, As), the rth and sth values

of the N data objects are scanned once to form a vr × vs

matrix Qr,s. An element Qr,s(t, g) records the occurrence
frequency of data objects in X with their rth and sth val-
ues equal to or,t and os,g, respectively. Time complexity
for obtaining Qr,s is O(N). Then, we select two different
rows from Qr,s [each row is a 1 × vs vector, and there are
vr(vr − 1)/2 pairs of different vectors], and multiply each
pair of the intervector values to form a vs × vs matrix.
In this way, vr(vr − 1)/2 matrices P1,2, P1,3, . . . , Pvr−1,vr

are produced, where Pt,h(g, u) = Qr,s(t, g) × Qr,s(h, u).
Time complexity for producing a matrix Pt,h is O(v2

s ), and
for producing vr(vr − 1)/2 matrices is O(v2

r v2
s ). With Qr,s

and P1,2, P1,3, . . . , Pvr−1,vr , R(Ar, As) is measured as fol-
lows. First, C=

r,s = ∑vr
t=1

∑vs
g=1 Qr,s(t, g)(Qr,s(t, g) − 1)/2 is

calculated with time complexity O(vrvs). For type-1 interde-
pendence, Cord +

r,s = ∑vr−1
t=1

∑vr
h=t+1

∑vs−1
g=1

∑vs
u=g+1 Pt,h(g, u)

and Cord −
r,s = ∑vr−1

h=1

∑vr
t=h+1

∑vs−1
u=1

∑vs
g=u+1 Pt,h(g, u) are

computed to obtain R(Ar, As) according to (7), which
has time complexity O(v2

r v2
s ). For type-2 interdependence,
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Cnom +
r,s (t, h) = ∑vs−1

g=1

∑vs
u=g+1 max(Pt,h(g, u), Pt,h(u, g)) and

Cnom −
r,s (t, h) = ∑vs−1

g=1

∑vs
u=g+1 min(Pt,h(g, u), Pt,h(u, g)) are

computed with time complexity O(v2
s ). Then we calculate

R(Ar, As) according to (8). In this process, Cnom+
r,s (t, h) and

Cnom −
r,s (t, h) with different t and h (t, h ∈ {1, 2, . . . , vr}) should

be generated vr(vr−1)/2 times. Therefore, time complexity for
calculating the type-2 R(Ar, As) is still O(v2

r v2
s ). Consequently,

overall time complexity for obtaining R(Ar, As) is O(N+v2
r v2

s ).
For d(d −1)/2 pairs of attributes in total, the time complexity
is O(d2N +d2V4), where V = max(v1, v2, . . . , vd). Since V is
a small constant from the practical viewpoint, the overall time
complexity for calculating interdependence degrees between
each pair of the d attributes is O(d2N).

Theorem 2: Time complexity for calculating the d distance
matrices is O(d2N).

Proof: Before calculating ϕAs(or,t, or,h), Qr,s is produced in
the same way as the proof of Theorem 1, and the time com-
plexity is O(N). If Ar is a nominal attribute, the tth and hth
rows of Qr,s should be added up and divided by N to form
a 1 × vs vector, which is the joint probability distribution of
the corresponding values of or,t and or,h. Then, we calculate
ϕAs(or,t, or,h) by (4) with time complexity O(vs). Since there
are vr(vr − 1)/2 distances between the categories of Ar, time
complexity for obtaining these distances according to As is
O(N + v2

r vs). If Ar is an ordinal attribute, the worst case time
complexity for calculating ϕAs(or,t, or,h) using (4) is O(vrvs).
Therefore, time complexity for obtaining the vr(vr − 1)/2 dis-
tances of Ar according to As is O(N + v3

r vs). By adopting
V = max(v1, v2, . . . , vd), time complexity for obtaining the
distances of Ar is O(N + V4). Since all the d attributes and
corresponding interdependence degrees should be considered
for calculating the distances of Ar, time complexity for obtain-
ing the distance matrix Mr of Ar is O(dN + dV4), and for
obtaining the d distance matrices is O(d2N + d2V4). Since V
is a small constant, the overall time complexity is O(d2N).

Theorem 3: The time complexity for reading off the dis-
tance between any two of the data objects is O(d).

Proof: For a pair of data objects xi and xj, the d distances
between their corresponding values are directly read off from
the d distance matrices Mr, r ∈ {1, 2, . . . , d}. Therefore, the
time complexity for reading off a distance is O(d).

IV. EXPERIMENTS

To evaluate the performance of UDM, we compare it with
the existing counterparts on 16 real and benchmark datasets.
Four validity indices are utilized to evaluate the performance,
and five experiments are designed to prove the effectiveness
of UDM from different aspects.

A. Experimental Settings

Six distance/similarity measures, including HDM [7],
GSM [8], LSM [14], context-based distance metric
(CBDM) [12], JDM [13], and EBDM [16], are selected
as counterparts of the proposed UDM. Among them, HDM,
GSM, and LSM are conventional categorical data metrics.
CBDM, which is the improved version of association-
based [9] and Ahmad’s [10] metrics, is a representative

metric that exploits interattribute relationship for categorical
data clustering. JDM and EBDM are both state-of-the-art
categorical data metrics. Since the intercategory distances
measured by EBDM and the proposed UDM can be utilized
for coding ordinal attributes into numerical ones, EBDM
coding (EBDMC) and UDM coding (UDMC) are also treated
as two counterparts. For completeness, the simple NC is
also treated as a counterpart. Since the distances of nominal
attributes measured by EBDM and UDM cannot be utilized
for coding nominal attribute, both of them adopt the binary
coding strategy of NC for nominal category coding.

All the selected distance/similarity measures are embedded
into a clustering algorithm, and their clustering performance
on different datasets are compared in Section IV-B. To bet-
ter evaluate the performance of different distance/similarity
measures, we embed NC, EBDMC, and UDMC into the sim-
plest k-MeanS (KMS) [40], and embed the remainders into
the simplest k-MoDes (KMD) [41].

Six representative categorical data clustering algorithms,
that is, the conventional KMD [41], entropy-based categor-
ical data clustering (ECC) [42], the representative attribute
weighting k-modes (WKM) [43], mixed attribute WKM
(MWKM) [44], and the state-of-the-art subspace clustering of
categories (SCC) [45] and attribute weighting object-cluster
similarity-based clustering (WOC) [46], are chosen for com-
parison in Section IV-C. Since the original distance/similarity
measures of KMD, WKM, and WOC can be easily replaced
by UDM without influencing their optimization process, we
also embed UDM into them to form another three counter-
parts. According to the suggestion in [44], the parameter of
WKM and MWKM (i.e., β) is set at 2, and the two parameters
of MWKM (i.e., Tv and Ts) are both set at 1. The parameter
θ of SCC is determined according to [45].

To verify the effectiveness of rules 1–6 presented in
Section III, we compare UDM with its five versions (denoted
as DM1–5, respectively) in Section IV-D. The former four are
formed according to (1)–(4), and are compared with UDM for
the justification of rules 1–4. DM5 is the version of UDM that
only adopts (8) for attributes weighting. Compare UDM with
DM5 can justify rules 5 and 6.

We collect 16 real and benchmark datasets, including six
mixed-categorical datasets, five ordinal datasets, and five
nominal datasets. Primary Tumor (abbreviated as Primary),
Hayes Roth (abbreviated as Hayes), Lymphography (abbrevi-
ated as Lym), Mammographic Mass (abbreviated as Mass),
and Nursery are benchmark datasets collected from the UCI
Machine Learning Repository1 [5]. Fruit is a real dataset col-
lected from a business survey of an advertising company.
Employee Rejection/Acceptance (abbreviated as Employee),
Lecturer Evaluation (abbreviated as Lecturer), and Social
Works (abbreviated as Social) are benchmark datasets col-
lected from the Weka website2 [47]. Photo Evaluation (abbre-
viated as Photo) and Internship Questionnaire (abbreviated as
Internship) are two real ordinal datasets collected from the stu-
dent questionnaires of the College of International Exchange

1http://archive.ics.uci.edu/ml/datasets.html
2https://www.cs.waikato.ac.nz/ml/weka/datasets.html

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 18,2022 at 03:45:47 UTC from IEEE Xplore.  Restrictions apply. 



766 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 2, FEBRUARY 2022

TABLE IV
STATISTICS OF THE 16 DATA SETS

of Shenzhen University and the Education University of Hong
Kong, respectively. All the five nominal datasets, that is,
Lenses, Soybean, Zoo, Voting Records (abbreviated as Voting),
and Tictac, are benchmark datasets collected from the UCI
Machine Learning Repository1 [5]. All the instances with
missing values are omitted. Both Primary and Mass datasets
have one numerical attribute, which has been omitted. Since
we focus on mixed-categorical data clustering, to ensure a
meaningful evaluation, we have made sure that the orders
among the categories of each ordinal attributes in the col-
lected datasets are related to the label classes. Statistics of
the datasets are shown in Table IV. “# Ins.,” “# Att.(O),” “#
Att.(N),” and “# Class” indicate the number of instances, ordi-
nal attributes, nominal attributes, and classes, respectively. In
the experiments, the sought number of clusters k is set at the
“true” number of label classes of each dataset.

Three validity indices, that is, clustering accuracy
(CA)3 [48], adjusted rand index (ARI) [49]–[51], and nor-
malized mutual information (NMI) [13], [52] are adopted for
the performance evaluation. CA is a popular and conventional
index, which has values in the interval [0, 1]. ARI is a popular
and powerful index, which has values in the interval [ − 1, 1].
NMI evaluates the clustering performance from the perspec-
tive of information theory and the values of NMI is in the
interval [0, 1]. For all the three above-mentioned indices, a
larger value indicates a better clustering performance.

The other validity index, that is, label-order consistency
(LOC), is defined in this article to evaluate if a metric cor-
rectly preserves the natural-order information for ordinal data
distance measurement. LOC is defined as

LOC =
∑

i,j,I,J
∑|cI |·|cJ |

h=1 ξ(Hi,j, HI,J(h))
∑

I,J |cI | · |cJ| (11)

where ci, cj, cI , and cJ are four object sets containing the
objects with ith, jth, Ith, and Jth benchmark class labels in X,
respectively, and the ordinal class labels satisfy I ≤ i < j < J
or I < i < j ≤ J. |ci|, |cj|, |cI |, and |cJ | are the number
of objects of ci, cj, cI , and cJ , respectively. Hi,j is a vec-
tor containing the |ci| × |cj| inter-object distances/similarities

3The CA here computes the matching rate based on the “best permutation
mapping” between the obtained clusters and true classes [48].

between ci and cj. HI,J is a vector containing the |cI | ×
|cJ| inter-object distances/similarities between cI and cJ , and
HI,J(h) is the hth value of HI,J . For a distance measure,
ξ(Hi,j, HI,J(h)) = 1 if mean (Hi,j) + std(Hi,j) < HI,J(h),
otherwise, ξ(Hi,j, HI,J(h)) = 0, while for a similarity mea-
sure, the opposite is true. The LOC values are in the interval
[0, 1], and a larger value indicates better performance. In gen-
eral, LOC measures the percentage of the inspected distance
pairs that are consistent with the order of labels. Therefore, we
choose the three monotonic datasets (i.e., Employee, Lecturer,
and Social datasets with both ordinal attributes and ordinal
labels [30], [53], [54]) for the LOC evaluation in Section IV-E.

To verify the time complexity analysis in Section III-D, we
also report the execution time of UDM and all the compared
distance and similarity measures in Sections VI-F. The results
of all the experiments involving the randomization process are
obtained by averaging the results of ten runs of the experi-
ments. All the experiments are coded by MATLAB R2019b
and implemented by a PC (Intel Xeon 3.30 GHz, 16-GB
RAM).

B. Evaluation of UDM Distance Metric

Clustering performance on the six mixed-categorical
datasets is shown in Table V. It can be observed that UDM
and UDMC outperform all the other counterparts on all the six
mixed-categorical datasets. Three more detailed observations
are discussed as follows.

1) Superiority of UDM is not that obvious on the Lym
dataset. In this dataset, the number of nominal attributes
is obviously larger than that of ordinal attributes, which
may thus weaken the superiority of UDM, because one
advantage of UDM is that it exploits heterogeneous
correlation information extracted from different types
attributes, and another advantage of UDM is that it pre-
serves order information of ordinal attributes for distance
measurement. In contrast, UDM obviously outperforms
the others on the three datasets with a similar number
of ordinal and nominal attributes (i.e., Hayes, Mass, and
Fruit) and the dataset with more ordinal attributes (i.e.,
Nursery).

2) The performance of NC, EBDMC, and UDMC is not
competitive on most datasets because they adopt the
same binary coding criteria for nominal attributes, which
may ignore the interattribute relationship information
and frequency of categories. Another reason is that the
KMS algorithm adopts them to compute the “mean” for
the coded categorical values, but categorical values are
naturally unsuitable for the mean arithmetic operation.

3) Performance of CBDM is not reported for Nursery
dataset because CBDM fails to measure distance for the
datasets with independent attributes like Nursery.

Clustering performance on the five ordinal datasets and five
nominal datasets is shown in Figs. 2 and 3. It can be observed
that UDM and UDMC perform well and are very competitive
on all the ordinal and nominal datasets. Six more detailed
observations are discussed as follows.

1) UDM, UDMC, EBDM, and EBDMC outperform the
other counterparts on all the ordinal datasets in general,
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TABLE V
CLUSTERING PERFORMANCE OF THE TEN DISTANCE AND SIMILARITY MEASURES ON THE SIX MIXED-CATEGORICAL DATA SETS. THE BEST AND

SECOND-BEST RESULTS ARE HIGHLIGHTED USING BOLDFACE AND UNDERLINE, RESPECTIVELY

Fig. 2. Clustering performance of the ten distance and similarity measures
on the five ordinal datasets.

because they preserve order relationship among ordinal
categories for more reasonable distance measurement.

2) UDM and UDMC perform better than EBDM and
EBDMC in general, because UDM and UDMC take
into account the intra- and inter-attribute statistical
information for distance measurement while EBDM
and EBDMC only consider the intraattribute statistical
information.

3) Superiority of UDM on the five nominal datasets is not
as significant as that on the five ordinal datasets, because
UDM is designed for mixed-categorical data, and the
unified distance and interdependence measures of it will
not have significant impacts on pure nominal datasets.

4) UDMC and EBDMC have identical performance as NC
on all the nominal datasets because they adopt the same
binary coding strategy for nominal attributes.

Fig. 3. Clustering performance of the ten distance and similarity measures
on the five nominal datasets.

5) JDM is very competitive on nominal datasets, because
it is a state-of-the-art distance metric that simultane-
ously exploits the intra- and inter-attribute information
for more accurate distance measurement.

6) CBDM fails to measure distances for Lenses dataset
because the Lenses dataset comprises independent
attributes.

In general, the results of this experiment indicate the supe-
riority of UDM in comparison with the existing distance and
similarity measures for categorical data clustering.

C. Comparison With Categorical Data Clustering Algorithms

The clustering performance of the six clustering algorithms
and the three UDM-based algorithms on the six mixed-
categorical datasets is demonstrated in Table VI. Clustering
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TABLE VI
CLUSTERING PERFORMANCE OF THE NINE CLUSTERING ALGORITHMS ON THE SIX MIXED-CATEGORICAL DATA SETS. THE SYMBOL “+” INDICATES

THAT THE PERFORMANCE OF KMD, WKM, AND WOC IS BOOSTED BY ADOPTING UDM

Fig. 4. Clustering performance of the nine clustering algorithms on the five
ordinal datasets.

performance on the five ordinal and five nominal datasets is
shown in Figs. 4 and 5. It can be observed that out of a total of
48 comparisons (18, 15, and 15 for mixed-categorical, ordi-
nal, and nominal datasets, respectively), almost all the best
performing algorithms are UDM-based. Four more detailed
observations are discussed as follows.

1) UDM boosts the clustering performance of KMD,
WKM, and WOC on almost all the 16 datasets, which
illustrates the effectiveness of UDM in the clustering
analysis of any type of categorical data.

2) For the five nominal datasets, UDM does not boost
the performance of KMD, WKM, and WOC a lot,
because the merits of UDM (i.e., preserving order

Fig. 5. Clustering performance of the nine clustering algorithms on the five
nominal datasets.

relationship and quantifying interdependence in a unified
way) will not have an obvious impact on nominal data
sets.

3) The performance of MWKM and SCC is competitive on
nominal datasets, because they are originally designed
for nominal data. Since they do not specifically exploit
the order information of ordinal attributes, their cluster-
ing performance is not that good on mixed-categorical
datasets and ordinal datasets.

4) Clustering performance of ECC and KMD is generally
not good, because they are conventional methods that
neither weight the attribute contribution nor exploit the
order information of ordinal attributes.
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Fig. 6. Clustering performance of DM1–5 and UDM on the six mixed-
categorical datasets (left six), five ordinal datasets (middle five), and five
nominal datasets (right five).

In general, UDM obviously boosts the performance of exist-
ing clustering algorithms, and UDM-based algorithms perform
very well in the clustering analysis of categorical data.

D. Effectiveness Verification of Rules 1–6

UDM is compared with DM1–5 in Fig. 6. According to
the results, UDM performs the best on all 16 datasets in gen-
eral, which proves the effectiveness of the rules presented in
Section III. Furthermore, it can be observed as follows.

1) DM2 outperforms DM1 on almost all the datasets, which
indicates that rule 2 can effectively avoid the “double
counting” problem caused by rule 1.

2) DM3 cannot outperform DM2 on most of the 16
datasets, because rule 3 (i.e., eliminating the “vs-effect”)
that guides the forming of DM3 is not intended to boost
the performance of DM2. rule 3 ensures that the con-
tribution of an attribute can be reasonably weighted
by using the interdependence measure proposed in
Section III-C.

3) DM4 outperforms DM1–3 on the 11 datasets with ordi-
nal attributes, which indicates the effectiveness of rule 4.
Since DM4 is equivalent to DM3 when processing nom-
inal data, their performance is the same on the five
nominal datasets.

4) DM5 evidently outperforms DM1–4 on the five nominal
datasets only, because DM5 is only suitable for nominal-
level interdependence measurement, which is consistent
with rule 5.

5) UDM outperforms DM5 on the 11 datasets with ordi-
nal attributes, which demonstrates the reasonableness of
rules 5 and 6. Since UDM is equivalent to DM5 when
processing nominal data, their performance is the same
on the five nominal datasets.

Fig. 7. LOC performance of the seven distance/similarity metrics: (a) sub-
LOC on Employee; (b) sub-LOC on Lecturer; (c) sub-LOC on Social; and
(d) overall LOC performance.

6) For Lenses and Tictac datasets, the performance of
DM1–5 and UDM is very close to each other, because
in these two datasets, most categories of the same
attribute have identical corresponding values on the
other attributes, which makes the distances measured by
DM1–5 and UDM very similar to each other.

E. Label-Order Consistency Evaluation of UDM

LOC performance of the compared metrics on the three
monotonic ordinal datasets (i.e., Employee, Lecturer, and
Social) is demonstrated in Fig. 7. This experiment evaluates
whether the existing distance/similarity measures violate the
natural-order relationship during distance measurement. Sub-
LOC values computed by

∑|cI |·|cJ |
h=1 ξ(Hi,j, HI,J(h))/(|cI | · |cJ |)

defined in (11) are preprocessed using min–max scaling and
demonstrated using grayscale mapping in Fig. 7(a)–(c). In
these three subfigures, the larger the sub-LOC values are, the
darker the corresponding grayscale blocks will be. According
to the definition of LOC, there are 294, 25, and 9 sub-LOCs in
total for Employee, Lecturer, and Social datasets, respectively.
Accordingly, there are 294×7, 25×7, and 9×7 grayscale
blocks indicating the sub-LOCs of the seven measures. In
each of Fig. 7(a)–(c), the corresponding range difference [see
the RD columns on the right of Fig. 7(a)–(c)] between two
pairs of class labels is also demonstrated for reference. RD
is computed by RD=|I − J| − |i − j|. According to the defi-
nition of LOC, there are 7, 3, and 2 possible RD values for
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Fig. 8. Execution time on Nursery and Synthetic datasets.

Employee, Lecturer, and Social datasets, respectively. Overall
LOC computed by (11) is also demonstrated in Fig. 7(d).

According to the results, it can be observed that the UDM
columns shown in Fig. 7(a)–(c) are the darkest in general, and
the overall LOC of UDM shown in Fig. 7(d) is higher than
all the counterparts. The comparison results intuitively show
that the distances between data objects measured by UDM
are more consistent with the order of their labels. Three more
detailed observations are discussed as follows.

1) LSM, EBDM, and UDM obviously outperform the other
counterparts, because they are capable to preserve the
order relationship among ordinal categories.

2) Compared to EBDM, the superiority of UDM is not
significant on Employee and Lecturer datasets. To under-
stand this, we should first know that the average inter-
dependence degree of Employee, Lecturer, and Social
datasets calculated using the proposed interdependence
measure are 0.0695, 0.0807, and 0.1989, respectively.
Obviously, Employee and Lecturer have relatively low
interdependence degrees, and thus UDM cannot ade-
quately extract valuable interattribute information for
distance measurement. This observation also indirectly
illustrates the effectiveness of the proposed interdepen-
dence measure.

3) Sub-LOC values of LSM, EBDM, and UDM are pro-
portional to the corresponding RD values. Intuitively,
according to the definition of LOC, it is hard for a mea-
sure to obtain a large LOC value when the two pairs of
class labels have small RD value.

F. Efficiency Evaluation of UDM

To evaluate the efficiency of UDM, the execution time of
UDM and all its counterparts is reported on the clustering
of the Nursery dataset and a generated synthetic dataset with
200 000 objects represented by five ordinal and five nominal
attributes, respectively, as illustrated in Fig. 8. For the synthetic
dataset, the number of clusters is set at 5. Nursery dataset is
chosen for the evaluation because its size is relatively large. To
evaluate the changing trend of the execution time, we perform
clustering on the datasets that are sampled using the different
sampling rates. It can be observed that UDM will not bring
extra computation cost in comparison with the state-of-the-art
measures, and the computation cost of UDM is almost linear
with data size, which is consistent with the time complexity
analysis in Section III-D.

V. CONCLUSION

This article has studied the distance measurement problems
under the circumstance of ordinal-and-nominal-attribute data
clustering. Several rules about how to exploit valuable but
heterogeneous information extracted from ordinal and nom-
inal attributes for distance measurement are formed according
to our studies. Based on the rules, a distance metric, which
quantifies the distances for ordinal and nominal attributes
according to extracted intra- and inter-attribute information
in a unified way, has been proposed for the distance mea-
surement of ordinal-and-nominal-attribute data. The proposed
metric is parameter-free and will not bring extra computation
cost compared to the existing state-of-the-art categorical data
measures/metrics. More important, it is suitable for processing
categorical data consisting of any-type attributes. Extensive
experiments have shown the superiority of the proposed
distance metric in categorical data clustering analysis.
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