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Learning Relationship-Enhanced Semantic Graph
for Fine-Grained Image–Text Matching
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Abstract—Image–text matching of natural scenes has been
a popular research topic in both computer vision and natural
language processing communities. Recently, fine-grained image–
text matching has shown its significant advance in inferring
the high-level semantic correspondence by aggregating pair-
wise region–word similarity, but it remains challenging mainly
due to insufficient representation of high-order semantic con-
cepts and their explicit connections in one modality as its
matched in another modality. To tackle this issue, we propose a
relationship-enhanced semantic graph (ReSG) model, which can
improve the image–text representations by learning their locally
discriminative semantic concepts and then organizing their rela-
tionships in a contextual order. To be specific, two tailored graph
encoders, visual relationship-enhanced graph (VReG) and textual
relationship-enhanced graph (TReG), are respectively exploited
to encode the high-level semantic concepts of corresponding
instances and their semantic relationships. Meanwhile, the rep-
resentations of each graph node are optimized by aggregating
semantically contextual information to enhance the node-level
semantic correspondence. Further, the hard-negative triplet rank-
ing loss, center hinge loss, and positive–negative margin loss
are jointly leveraged to learn the fine-grained correspondence
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between the ReSG representations of image and text, whereby the
discriminative cross-modal embeddings can be explicitly obtained
to benefit various image–text matching tasks in a more inter-
pretable way. Extensive experiments verify the advantages of the
proposed fine-grained graph matching approach, by achieving the
state-of-the-art image–text matching results on public benchmark
datasets.

Index Terms—Contextual information, high-level semantic con-
cept, image–text matching, relationship-enhanced graph.

I. INTRODUCTION

W ITH the fast development of multimedia technology,
multimedia data, such as image and text, has been

emerging rapidly and accumulated explosively on the Internet.
In order to maximally benefit from the richness of multimedia
data, image–text matching has become an essential technique
for searching engine as well as multimedia data management
system, featuring on providing flexible retrieval experience
to index semantically relevant instance from one modality to
another modality. In recent years, image–text matching has
attracted considerable attention in multimedia community, and
such technique has been widely applied for various appli-
cations, such as image–sentence matching [1], cross-modal
retrieval [2], image captioning [3], visual question answer-
ing [4], and so forth. In this work, we mainly focus on the
problem of the image–text matching, which aims to measure
the similarity between images and textual sentences, for exam-
ple, given an image query to find similar sentences, namely,
image-to-text matching, and given a sentence query to retrieve
semantically matched images, called text-to-image retrieval.

The key challenge of image–text matching lies in correctly
understanding their semantic concepts, discover their full
latent semantic correspondence and measuring their semantic
similarity. In recent years, a great deal of research has been
devoted to bridge the semantic gap between image and textual
sentences, either in learning global correspondence [5], [6] or
local correspondence [7]. The global correspondence learning
methods aim to jointly project the entire image and text data
into a common latent space for heterogeneity minimization,
whereby the mapping features of image and text in such latent
space can be directly measured. Remarkably, these approaches
attempt global representations to express the whole image and
sentence, which ignore the importance of local cross-modal
similarities and are therefore limited on the simple image–text
matching scenario that contains only a single object. Since
the semantically relevant data of different modalities often
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Fig. 1. Illustration of different semantic matching mechanisms.

have an unequal amount of information, such globally seman-
tic matching approaches often degrade their performance for
more realistic cases that involve complex natural scenes.

Local correspondence learning, aiming to capture the fine-
grained interplay between image and text data, is another more
interpretable branch of image–text matching way [8]–[11].
Along this line, salient image patches are detected and image–
text similarity scores are aggregated by all or salient region–
word pairs, which have gained significant improvements over
previous global correspondence learning works. As illustrated
in Fig. 1, the upper pictures and captions are quite similar, but
which show the different scenes. For instance, the main objects
person, black snow suit, skis, and snow are appeared in the top-
left scene, while the object black snow suit disappears in the
top-right scene and hill appears. Under such circumstances,
the local correspondence learning methods are able to distin-
guish these differences. Although a lot of progress has been
developed in this learning area, it is still a challenge problem
mainly due to the complex visual semantic discrepancy. More
specifically, the aforementioned methods often ignore the rela-
tionships between different fine-grained patches. In practice, a
natural scene contains not only several objects but also exhibits
their interactions, relative positions, and high-level semantic
relationships, which are equally important to the image–text
matching problem.

Inspired by recent advances in graph representation, scene
graphs are popularized to model the objects and their relation-
ships formally and have quickly become an efficient tool in
high-level semantic understanding tasks [12], [13]. Although
these graph matching methods have shown the impressive
image–text matching performance, the derived semantic con-
cepts within these models are generally tangled with each
other and the importance of different relationships are not
fully exploited. It is noted that different organizations of
semantic concepts may lead to completely diverse seman-
tic meanings, which would have different contributions for
image–text matching. As shown in Fig. 1, the bottom scenes
almost share the similar objects and captions, but the relative
positions between the detected objects are slightly different,
for example, holding specified in the left scene and surfing
revealed in the right scene. Therefore, it is necessary to pay

more attention to some informative relationships for discrim-
inative analysis. In addition, sentence descriptions are weak
annotations, where the words in a sentence correspond to some
particular, but unknown regions in the image. For fine-grained
image–text matching, the efficient extraction of the meaningful
words and their semantic relationships is imperative to further
guide the fine-grained object correspondence learning.

Motivated by the rapid success of graph representation
that can flexibly learn high-level semantic concepts and their
relationships, we propose a relationship-enhanced semantic
graph (ReSG) model, which can enhance the image–text rep-
resentations to boost fine-grained cross-modal matching. To
be specific, two tailored graph models, visual relationship-
enhanced graph (VReG) and textual relationship-enhanced
graph (TReG), are respectively exploited to encode the
high-level semantic concepts of corresponding instances and
their semantic relationships contextually. The VReG encoder
enhances the representations of each node on the visual graph
by aggregating useful concept information from other nodes
and weighting their contextual relationships, while the TReG
encoder exploits a bidirectional semantic graph to jointly
encode the forward and backward relationship information.
As a result, the relationship-enhanced semantic features can be
well aggregated in each graph, and the image–text matching
problem can be converted into finding the similarity between
these two tailored graphs. The proposed approach improves
the state-of-the-art methods by providing the following four
contributions.

1) A relationship-enhanced graph matching network is
explicitly developed to improve the image–text represen-
tation, with each graph node aggregating semantically
contextual information to learn fine-grained correspon-
dence.

2) A bidirectional textual graph encoder is discrimina-
tively proposed to jointly encode the object-level and
relationship-level features for text data while embedding
the forward and backward contextual information.

3) The center hinge loss and positive–negative margin loss
are introduced to guide the fine-grained object corre-
spondence and relationship correspondence learning.

4) Extensive experiments verify the advantages of the
proposed approach under various image–text matching
scenarios and show its superiority over the state of the
arts.

The remainder of this article is structured as follows.
Section II surveys the existing multiview and cross-modal
anomaly detection works, and Section III elaborates the
proposed relationship-enhanced graph model in detail. The
experimental results are provided in Section IV. Finally, we
draw a conclusion in Section V.

II. RELATED WORK

The key issue of image–text matching is to measure the
semantic similarity between visual and textual inputs, and var-
ious kinds of matching works have been developed, either in
global matching or local matching ways. This section briefly
surveys the representative methods of these two aspects.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 07:12:31 UTC from IEEE Xplore.  Restrictions apply. 



950 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 54, NO. 2, FEBRUARY 2024

A. Global Matching Methods

Global matching methods mainly learn the semantic cor-
respondence between the whole image and sentence. Along
this line, canonical correlation analysis (CCA) [14] is possi-
bly the most popular baseline for image–text matching, which
aims to find linear projections that maximize the correlation
between the projected vectors from different modalities. Later,
many improved extensions, for example, latent subspace anal-
ysis (LSA) [15] and correlated subspace learning (CSL) [16],
have also been developed. It is noted that these methods
often limit their capacities for processing large-scale and
high-dimensional multimodal data [17]. Alternatively, cross-
modal hashing, aiming to transform the high-dimensional
data into compact binary codes [18], [19], has also been
developed to reduce storage cost and speed up the retrieval
speed. Nevertheless, these methods inevitably impose addi-
tional binary constraints during the hash code learning process,
which may accumulate large quantization error to degrade the
matching performance.

With the recent advances of deep learning in multimedia
applications, deep neural network (DNN) is popularized
to extract powerful visual and textual features. Along this
way, Andrew et al. [20] exploited a deep CCA struc-
ture to maximize the correlation between image and text
data. Feng et al. [21] addressed a correspondence autoen-
coder (Corr-AE) to correlate hidden representations of image
and text modalities. Huang et al. [22] presented a selec-
tive multimodal long short-term memory network (sm-
LSTM) for instance-aware image and sentence matching.
Huang et al. [11] exploited a modal-adversarial hybrid trans-
fer network (MHTN) to handle the insufficient training data
within cross-modal retrieval tasks. Gu et al. [23] incorporated
generative processes into the image–text embedding learning
process, while Wehrmann and Barros [24] designed an effi-
cient character-level inception module to learn textual semantic
embeddings. Similarly, Faghri et al. [6] exploited the hardest
negative samples to learn the multimodal embeddings, while
Wang et al. [25] investigated two-branch neural networks to
learn an explicit shared latent embedding space. Differently,
Peng and Qi [26] addressed a reinforced cross-media bidirec-
tional translation approach to model the correlation between
visual and textual descriptions. It is noted that the primary
drawback of these methods is that they generally consider the
correspondence between the entire image and sentence [27],
[28], which often ignore their fine-grained correspondence. As
a result, their cross-modal matching performances are often
not satisfactory for more realistic cases that involve complex
natural scenes.

B. Local Matching Methods

The local matching methods primarily explore the local
alignment between image regions and sentence words, for rea-
son that the words in a sentence correspond to some particular
regions in an image. Accordingly, Karpathy and Fei-Fei [8]
leveraged multimodal RNN to detect local image regions and
align them with words in the sentence. Huang et al. [11] uti-
lized a multiregional CNN to predict the semantic concepts

and employed a conventional LSTM to perform image–
sentence matching. Wang et al. [7] considered the fine-grained
cross-modal interactions and designed cross-modal adaptive
message passing (CAMP) to filter out irrelevant information.
Besides, some works focus on salient regions and words by
using an attention mechanism. For instance, Nam et al. [9]
proposed dual attention networks (DANs) to attend salient
regions in images and specific words in text data. Similarly,
Lee et al. [10] employed the stacked cross attention to attend
salient regions and key words. Wei et al. [29] presented a
multimodality cross attention (MMCA) network for image and
sentence matching by jointly modeling the intramodality and
intermodality relationships in a unified deep model. Within
these approaches, the image–text similarities are aggregated
by salient region–word pairs with various kinds of attention
mechanisms. Nevertheless, these methods often ignore the
fine-grained relationships within the salient regions or words,
and their local correspondences are not sufficiently exploited
for better cross-modal retrieval performance.

In recent years, some approaches attempt multilevel
information to learn more precise image–text correspondence.
For instance, Ma et al. [1] jointly mapped global image–text
pair, local regions, and words into a common space and implic-
itly learned the region–word correspondence. Wu et al. [30]
exploited the local and global semantic consistencies to guide
the learning of common embeddings. Qi et al. [31] presented
the cross-media relation attention network to explore global,
local, and relation alignments across different media types.
Xu et al. [32] jointly utilized cross-modal attention for local
alignment and multilabel prediction for global semantic con-
sistency. Peng et al. [33] proposed a multilevel adaptive
alignment approach to explore global, local, and relation align-
ments. Wang et al. [34] exploited the consensus information by
computing the statistical co-occurrence correlations between
the semantic concepts from the image captioning corpus
and deploying the constructed concept correlation to yield
the consensus-aware concept representations. It is noted that
these approaches still lack of mining the object relationships
between different local patches, which could provide rich
complementary hints for fine-grained correlation learning.

With more recent research topics focusing on the objects and
relationships in the scene [35]–[37], graph models are intro-
duced to model the objects and relationships interpretably. For
instance, Yuan et al. [36] employed the cross-modal graph
to mine the intermodality relationships among the RGB-D
scenes. Liu et al. [37] proposed a language-guided graph
representation to capture the grounding entities and their rela-
tions and developed a cross-modal graph matching strategy for
multiple-phrase visual grounding task. For image–text match-
ing, Wang et al. [12] utilized the graph model to model the
image and text and jointly characterized the objects and rela-
tionships for the efficient image–text retrieval. Liu et al. [13]
modeled the object, relation, and attribute as a structured
phrase and designed a graph-structured matching network
(GSMN) to learn fine-grained image–text correspondence. In
a sense, the semantic relationships between textual words are
very weak, and these graph models do not sufficiently consider
the bidirectional contextual relationships in a sentence and the
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Fig. 2. Schematic architecture of the proposed framework with ReSG encoders.

derived graph models are not discriminative enough. Different
from existing approaches, the proposed framework aims to
discriminatively discover the latent relationships between the
salient image patches and key words, while aggregating more
semantically contextual information for inferring fine-grained
image–text similarity.

III. PROPOSED METHOD

The overall framework of the proposed model is illustrated
in Fig. 2, which consists of two tailored graph encoders, that
is, VReG and TReG. The VReG encoder enhances the rep-
resentations of each node on the visual graph by aggregating
useful concept information from other nodes and weighting
their contextual relationships, while the TReG encoder exploits
a bidirectional semantic graph to jointly encode the forward
and backward relationship information. These two models are
trained correlatively by an efficient loss function, and the
derived relationship-enhanced graph model can be well uti-
lized to perform image–text matching. This section shall first
elaborate these two graph encoders in tandem and then detail
the loss function for fine-grained correspondence learning.

A. Visual Relationship-Enhanced Graph

1) Visual Feature Embedding: For fine-grained image anal-
ysis, it is imperative and efficient to detect the salient
image patches, while depicting their relationships. Similar to
work [10], we utilize ResNet-101 [38] as the basic network
and employ bottom-up-attention [39] to detect the instances
and salient objects in an image. Accordingly, the category
of instance and the object attribute can be well obtained.
Experimentally, the pretraining region features provided from
work [10] are selected for fast training, and we denote the set
of object features as C = {c1, c2, . . . , cno}, C ∈ R

n0×2048,
where no is the number of detected objects in an image.

Further, a fully connect layer is then applied to transform these
object features to a d-dimensional embedding space

Hv =WlC+ bl (1)

where {Wl, bl} are the trainable parameters of the fully con-
nect layer. Accordingly, a group of visual object features
Hv = {h1, h2, . . . , hno}, Hv ∈ R

n0×d can be obtained, where
hi is the ith feature vector of the detected object in an image.

2) Contextual Visual Graph Encoder: As shown in Fig. 1,
the left-bottom image is expressed as “a man holding a surf-
board and staring out into the sea,” while the right-bottom
image is displayed as “a man is surfing on a surfboard.”
It can be found that the significant objects, such as “man,”
“surfboard,” and “sea,” are detected in both images. If we
only utilize the region features to express the image, these
two images may be judged as similar ones. Apparently, the
relationship of “holding” or “surfing” is the key difference
between these two scenes. In general, the object detection
often extracts a fixed number of salient regions, and some
images may not have such number of significant regions.
Therefore, the detected image patches may exist overlap
between regional expressions, and we can assume that there
are potential connections between the significant regions. To
this end, we design an undirected weighted relationship graph
Gv = (Vv, Ev), where node Vv ∈ Hv is the set of object
features and edge Ev represents the relationship between two
connected nodes and regularized by weighted adjacent matrix
Av ∈ R

n0×n0 . Note that the weights of edges indicate the
degree of relationship between two connected nodes, and the
weighted edge ev

ij between the ith object and the jth object is
computed by

ev
ij = ReLU

((
Wv

1hv
i + bv

1

)(
Wv

2hv
j + bv

2

))
(2)

where {Wv
1, bv

1, Wv
2, bv

2} are the trainable parameters to cal-
culate the weights of graph edges. Accordingly, the weighted
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adjacent matrix can be defined as

Av
(i,j) =

{
ev

ij, if i �=j
0, else .

(3)

Accordingly, the contextual visual graph Gv can be well
constructed, which can well utilized to model the relationship
associations between different visual objects.

3) Visual Relationship-Enhanced Aggregator: The visual
graph is able to model the semantic relationship between dif-
ferent image objects, and the image objects can aggregate
significant information that related to each other by using the
weighted edges. To this end, the graph nodes are aggregated
with other semantically correlated objects by

vi = ReLU

⎛
⎝

no∑
j=1

Av
(i,j) ×

(
Wv

chv
j + bv

c

)
+ hv

i

⎞
⎠ (4)

where {Wv
c, bv

c} are the trainable convolution parameters,
vi∈R1×D is the ith node in visual graph. Further, these updated
visual features V = {v1, v2, . . . , vno} are further normalized
with �2 norm: V = ‖V‖2, and the relationship-enhanced
visual features are aggregated in the final graph representation
V = {ν1, ν2, . . . , νno} ∈ R

n0×D.

B. Textual Relationship-Enhanced Graph

Textual relationship mining is a task of understanding the
fine-grained parts of a natural language sentence. In general,
the text data is a sequence with tagging information, and the
bidirectional analysis of text data is also of crucial impor-
tance to the discriminative analysis. For instance, the meanings
of sentences “a man is surfing the wave on his surfboard”
and “a man is surfing down a hill of sand” are different. If
we read the sentences phrase by phrase from front to back,
the word “man” will first appear, and followed by the word
“surfing” in the mind. Under such circumstances, the pictures
described by these two captions might be the same in your
mind. Differently, if we read the sentences word by word from
back to front, “wave on his surfboard” or “a hill of sand” will
first appear in mind, which directly shows the different sce-
narios. Therefore, we argue that the high-level text feature
representations derived from forward and backward under-
standing of sentence are more discriminative to characterize
the word-level semantic information.

1) Bidirectional Textual Feature Embedding: In a sense,
sentence descriptions are weak annotations, which make it dif-
ficult to guide the fine-grained object correspondence learning.
Differing from other methods that directly embed the index
of the word vocabulary as word features [40], we enhance the
representation by incorporating the part-of-speech information
into text, and take the word as the smallest unit to extract tex-
tual information in a sentence. Formally, given a text T, we
first utilize one-hot vector Ii

word to represent the index position
of the ith word in the entire vocabulary, and then map this
word into a 300 dims vector through the embedding matrix
We_word. Then, we select the spacy tool to detect the part-
of-speech vector Ii

pos of the ith word, and map this vector
into a 15 dims vector through the embedding matrix We_pos.

Accordingly, we concatenate these two embedding vectors as
the word representation vector

wi = Concat
(

We_wordIi
word, We_posIi

pos

)
(5)

where wi ∈ R
1×315 is the ith word vector that contains the

index and part-of-speech information in the sentence. As dis-
cussed in Section II, the object relationships between different
words are important for high-level semantic understanding
tasks. Differing from exiting methods that directly employ
Bi-GRU to encode the text into global features [7], [41],
we construct two relation graphs by, respectively, aggregat-
ing forward contextual information and backward contextual
information. To be specific, the feature derived from forward
GRU is sequentially aggregated from the first word until the
last word of the sentence

→
h

t

i =
−→

GRU(wi),
→
h

t

i ∈ R
1×da (6)

where
→
h

i

t is the ith forward hidden state that aggregated the
word feature in forward direction, and da is the aggregated
feature dimension. In backward GRU, the feature representa-
tion of words is aggregated in reverse order from the last word
to the first word of the sentence

←
h

t

i =
←−

GRU(wi),
←
h

t

i ∈ R
1×da (7)

where
←
h

t

i is the ith backward hidden state that aggregated the
word feature in backward direction. Accordingly, two kinds of

contextual feature vectors
→
H

t
= {→h

t

1,
→
h

t

2, . . . ,
→
h

t

nw
}∈Rnw×da

and
←
H

t
={←h

t

1,
←
h

t

2, . . . ,
←
h

t

nw
}∈Rnw×da are discriminatively

obtained to characterize each word, respectively, memorizing
all word vectors in forward and backward orders.

2) Bidirectional Textual Graph Encoder: The Bi-GRU
network performs well in memorizing the neighboring word
information in a sentence, but which lacks of interaction
between key words that are far from each other. For instance,
as shown in Fig. 2, the backbone words of textual data are
“woman,” “riding,” and “horse,” and these keywords are not
adjacent. Therefore, the features derived only from Bi-GRU
network cannot aggregate all the relationships and interac-
tions between these keywords. Specifically, the graph structure
is also appropriate for characterizing the relationships in a
sentence [40], and we further organize the word features of
the input sentence into a contextual graph. To this end, we
build up a bidirectional weighted relation graph to enhance
the word representation, while considering the semantic cor-
relation between the keywords in a contextual semantic order.
Accordingly, two directed weighted graphs Gt

f = (Vt
f , Et

f ) and
Gt

b = (Vt
b, Et

b) are exploited to, respectively, characterize the
forward relationship and backward relationship in the textual

sequence, where Vt
f (or Vt

b) is the set of word features
→
H

t
(or

←
H

t
) and edge set Et

f (or Et
b) is described by weighted adja-

cent matrix At
f (or At

b). To construct the textual relationship,

we calculate the cosine distance between word features in
→
H

t

and
←
H

t
. Note that different word relationships would have dif-

ferent contributions to characterize the sentence and some of

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 07:12:31 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: LEARNING ReSG FOR FINE-GRAINED IMAGE–TEXT MATCHING 953

Fig. 3. Overview of constructing bidirectional textual graphs.

them are even redundant. For the ith word vector
→
h

t

i (or
←
h

t

i),
its relationship with other word vectors will be ranked accord-
ing to their cosine distances. The edge exists between the ith
word and the jth word if their cosine distance is ranked within
top k neighbors. As depicted in Fig. 3, we calculate the for-

ward weight
→
e

t

ij and backward weight
←
e

t

ij to represent the
graph edge, respectively, via the following equations:

→
e

t

ij = ReLU

((→
W

t

1

→
h

t

i +
→
b

t

1

)(→
W

t

2

→
h

t

j +
→
b

t

2

))
(8)

←
e

t

ij = ReLU

((←
W

t

1

←
h

t

i +
←
b

t

1

)(←
W

t

2

←
h

j

t +
←
b

t

2

))
(9)

where {→W
t

1,
→
b

t

1,
→
W

t

2,
→
b

t

2} and {←W
t

1,
←
b

t

1,
←
W

t

2,
←
b

t

2} are, respec-
tively, the trainable parameters to calculate the weighted edge
of forward and backward graphs. Then, the weighted adja-
cency matrices of the forward relation graph and backward
relation graph can be, respectively, defined as

Af
(i,j) =

⎧
⎨
⎩
→
e

t

ij, if
→
h

t

j ∈ Nk

(→
h

t

i

)
, i �=j

0, otherwise
(10)

Ab
(i,j) =

⎧⎨
⎩
←
e

t

ij, if
←
h

t

j ∈ Nk

(←
h

t

i

)
, i �=j

0, otherwise
(11)

where Nk(·) is the top-k nearest neighbor set that ranked by
the cosine distances, Af ∈ R

nw×nw and Ab ∈ R
nw×nw are,

respectively, the weighted adjacency matrices of corresponding
forward relation graph and backward relation graph.

3) Textual Relationship-Enhanced Aggregator: Within the
constructed graphs, the bidirectional word features are updated
and aggregated with word affinities in the sentence. In for-
ward relationship-enhanced graph or backward relationship-
enhanced graph, the edge and weight, respectively, represent
the semantic association and their degree between two words.
Therefore, other words are attended to the current word by the
weighted edges, and the aggregated word features are seman-
tically correlated with other words. Accordingly, the updating
vectors are formulated by

→
ti = ReLU

⎛
⎝

nw∑
j=1

A(i,j)
f ×

(→
W

t

f

→
h

t

j +
→
b

t
)⎞

⎠+→h
t

i (12)

←
ti = ReLU

⎛
⎝

nw∑
j=1

A(i,j)
b ×

(←
W

t

b

←
h

t

j +
←
b

t
)⎞

⎠+←h
t

i (13)

where {→W
t

f ,
→
b

t
} and {←W

t

b,
←
b

t
} are trainable convolution

parameters, respectively, for forward and backward relation
graphs. Consequently, the updated forward word feature vector

Tf = {
→
t 1,
→
t 2, . . . ,

→
t nw} ∈ R

nw×D and backward word feature

vector Tb = {
←
t 1,
←
t 2, . . . ,

←
t nw} ∈ R

nw×D are well obtained.
Finally, we further average these updated word vectors and
normalize them with �2 norm

T =
∥∥∥∥

Tf + Tb

2

∥∥∥∥
2

(14)

where T = {τ 1, τ 2, . . . , τ nw} ∈ R
nw×D is the final bidirec-

tional relationship-enhanced word feature vectors.

C. Similarity Function

In the ReSG model, the visual graph nodes
V = {ν1, ν2, . . . , νno} and textual graph nodes
T = {τ 1, τ 2, . . . , τ nw} are aggregated with the relationship-
enhanced semantic features, each of which is a D-dimension
vector. Inspired by work [12], we utilize the cosine distance
to measure the similarity between two node vectors νi and τ j

as τT
j νi. Accordingly, we calculate the similarity scores of all

visual and textual graph nodes, and then get an nw×no score
matrix. That is, each node in visual and textual graphs will
match with nodes from another modality graph to learn the
node correspondence. For the cross-modal matching problem,
we first find the maximum value of each row to pick up the
most related visual object (or textual word), and then sum
these matched values to express the overall similarity score
S(V, T ) [or S(T ,V)]

S(V, T ) =
nw∑
j=1

maxi∈[1,no]

(
τT

j νi

)
(15)

S(T ,V) =
no∑

i=1

maxj∈[1,nw]
(
νT

i τ j
)
. (16)

D. Loss Function

The triplet loss is often utilized to regularize the correspon-
dence between image and text, which forces the similarity
score of the matched image–text pairs to be generally larger
than the similarity score of the unmatched ones by a mar-
gin [10], [42]. As suggested in work [10], the loss regulariza-
tion of most difficult negative samples often achieves better
performance than the loss aggregation of all negative sam-
ples. Inspired by this finding, we focus on optimizing the hard
negative samples that produce the highest loss and define the
hard-negative triplet ranking loss Lhntr as

Lhntr =
∑

(V,T )

([
α − S(V, T )+ S

(
V, T̂−

)]
+

+
[
α − S(T ,V)+ S

(
T , V̂−

)]
+

)
(17)

where [·]+ = max(·, 0) and α serves as a margin parameter. T̂−
and V̂− are the hard negative samples, respectively, obtained
by T̂− = argmaxT− S(V, T−) and V̂− = argmaxV− S(V−, T ),
T− and V− are negative samples. In general, the hard-negative
triplet ranking loss aims at enforcing the gap of similarity
between the matched pairs and the unmatched paired converge
to margin. However, it cannot ensure the similarity of matched
pairs to be larger. To tackle this issue, as show in Fig. 2, we
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Algorithm 1 Optimization Pseudocode for ReSG Framework

input: The image feature Hv, text feature {→H
t
,
←
H

t
};

1: Construct VSeG model Gv with initialized network parameter θGv : Wl,
bl, Wv

1, bv
1, Wv

2, bv
2, Wv

c, bv
c;

2: Construct TSeG model Gt with initialized network parameter θGt :

We_word ,We_pos,
→
W

t

1,
→
b

t

1,
→
W

t

2,
→
b

t

2,
←
W

t

1,
←
b

t

1,
←
W

t

2,
←
b

t

2,
→
W

t

f ,
→
b

t
,

←
W

t

f ,
←
b

t
;

3: Initialize hyperparameters: k, α, δ, β, γ , λ1, λ2, η;
4: repeat
5: Calculate Av via Eq. (3);
6: Calculate Af via Eq. (10) and Ab via Eq. (11);
7: Update graph nodes V via Eq. (4) and T via Eq. (14);
8: Calculate loss L via Eq. (20);
9: Update θGv as: θGv = θGv − η ∂L

∂θGv ;

10: Update θGt as: θGt = θGt − η ∂L
∂θGt

;
11: until (convergency or reaching maximum iterations)
output: θGv and θGt

design an auxiliary constraint Lcen, called center hinge loss, to
increase the absolute score of matched pairs while decreasing
the absolute score of unmatched pairs

Lcen =
∑

(V,T )

⎛
⎝∑

V−

([
S(V, T−)− γ

]
+
)

+
∑
T −

([
S(T ,V−)− γ

]
+
)
+ (

[β − S(V, T )]+
))

(18)

where β and γ are hyperparameters. In addition, we impose
another auxiliary constraint Lpnm, called positive–negative
margin loss, to increase the distance between the hard positive
pairs and hard negative pairs in each modalities

Lpnm =
∑

(V,T )

([
δ − S

(
V, V̂+

)
+ S

(
V, V̂−

)]
+

+
[
δ − S

(
T , T̂+

)
+ S

(
T , T̂−

)]
+

)
(19)

where δ is a margin parameter. T̂+ and V̂+ are the hard posi-
tive samples, respectively, denoted as T̂+ = argminT S(V, T )

and V̂+ = argminV S(V, T ), (V, T ). For efficient image–text
matching, the regularization of different loss functions should
be exploited in an integrated way, and the following objective
function is utilized to learn the fine-grained correspondence:

L = Lhntr + λ1Lcen + λ2Lpnm (20)

where λ1 and λ2 are balance parameters. Through the joint
exploitation of (20), we utilize the Adam optimizer with 25
epochs for the optimization process, which can be iteratively
solved until the convergence is reached. Let η be the learning
rate in the Adam optimizer, the optimal parameters can be
well obtained via Algorithm 1. Consequently, the semantic
correspondence derived from image and text is semantically
meaningful for benefiting various image–text matching tasks.

IV. EXPERIMENT

This section conducts a series of quantitative experiments
to validate the efficiency of the proposed framework on

fine-grained image–text matching task. The experiments and
analysis will be detailed in the following sections.

A. Dataset and Evaluation Metric

Two public available multimodal datasets, that is,
MSCOCO [43] and Flickr30K [44], are chosen in the experi-
ments. MSCOCO contains 123 287 images, and each image is
annotated with five captions. The widely used splitting scheme
contains 113 287 images for training, 5000 images for val-
idation, and 5000 images for testing [8]. Flickr30K contains
31 000 images collected from the Flickr website with five cap-
tions. Following the splitting scheme in [6] and [8], we select
1000 images for validation and 1000 images for testing and
the rest for training. Meanwhile, the results for both 1k and
5k test sets are reported. In the case of 1k images, the results
are averaged by performing a five-fold cross-validation on the
5k splitting test.

To quantitatively evaluate the matching performance, we
report the score of Recall@K, which is the percentage of
queries whose ground truth is ranked within top K instances,
with higher score indicating the better performance [41].
Meanwhile, we also report “mR” score for overall evalua-
tion, which averages all the recall values to assess the overall
performance for both image-to-text matching and text-to-
image matching tasks. In addition, mean average precision
(mAP) [45], defined as the average AP of all queries, is also
utilized for cross-modal matching evaluation. Accordingly,
quantitative evaluation results of the image-to-text (I→T)
matching and text-to-image (T→I) matching are reported.

B. Implementation Details

In the implementation, the proposed framework is imple-
mented in the pytorch platform. For text representation learn-
ing, the word embedding size and the part-of-speech embed-
ding size are, respectively, set at 300 and 15. The dimension
of the word vector is fixed at 315, while the dimension of the
joint embedding space D is set at 2048, the dimension da is
set to 512, and the dimension d is set to 2048. For image
representation learning, the pretrained visual features with
36 patches provided by SCAN [10] is selected for training,
and each patch is characterized with 2048-dimension vector.
Within the bidirectional graphs in text branch, k in (10) and
(11) is set at 2. For the regularization parameters, we set the
margin values as α = 0.2 and δ = 0.7, the hyperparame-
ters as β = 0.7 and γ = 0.3, and the weights as λ1 = 0.3
and λ2 = 0.1. Similar to [32] and [46], we combine the
results from two trained models by averaging their similarity
scores and utilize the Adam optimizer with 20 epochs for the
training process. Meanwhile, the initial learning rate is set at
0.0002, with decaying 10% every 5 epochs for both Flickr30k
and MSCOCO datasets. In the experiments, we compare
the proposed model with state-of-the-art competing methods,
that is, global matching methods (WayNet [17], OEM [5],
DSPE [42], DPC [27], GXN [28], and VSE++ [6]), local
matching methods (CRAN [31], sm-LSTM [22], SCO [11],
SCAN [10], CAMP [7], CASC [32], and MMCA [29]), and
relationship matching methods (SGM [12], VSRN [46], and
GSMN [13]). Alternatively, we also refer to the work [34]

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 07:12:31 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: LEARNING ReSG FOR FINE-GRAINED IMAGE–TEXT MATCHING 955

TABLE I
IMAGE–TEXT MATCHING RESULTS ON THE FLIKER30K DATASET, AND

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

and select the pretrained 300-dim GloVe vector trained on
the Wikipedia dataset to initialize the text feature vector. The
results obtained by this way are marked as “ReSG*.”

C. Results of Image–Text Matching Performance

The image–text matching results tested on different datasets
are shown in Tables I and II, it can be found that the
global matching methods have delivered relatively lower recall
scores, for reason that the semantic correlation between the
image and text is not well exploited by these global matching
methods. Specifically, WayNet utilizes generative models to
extract the global features of images and texts, which gener-
ally ignores the salient image structure embedded in real-world
data and often degrades its performance in practice. In addi-
tion, the R@1 scores I→T task obtained by the GXN [28]
method is only equal to 56.8 and 68.5, respectively, tested
on Flickr30K and MSCOCO 1K datasets, which are rela-
tively poor for real applications. Comparatively speaking, the
local matching and relationship matching methods are able to
deliver better image–text matching performance. For instance,
SCAN [10] and MMCA [29] both employ the cross-model
attention to attend salient regions and key words and capture
the fine-grained interplay between vision and language, which
generally performs better than the global matching methods.
For instance, the R@5 scores of I→T task obtained by the
MMCA method are reached up to 92.8 and 95.6, respectively,
tested on Flickr30K and MSCOCO 1K datasets. This indi-
cates that the MMCA method is capable of returning much
more similar samples in the retrieval results, which plays an
important role for a practical retrieval system.

Further, the performances delivered by SGM, VSRN, and
GSMN methods are generally better than that obtained by
global matching methods (e.g., GXN [28] and VSE++ [6])
and local matching methods (e.g., SCAN [10] and CAMP [7]).

That is, the high-level semantic relationships can provide
valuable information for fine-grained image–text matching.
It is noted that SGM, VSRN, and GSMN methods also
explore the higher-order concepts and their semantic relation-
ship. Nevertheless, SGM and GSMN methods only consider
one directional relationship for textual data, while the VSRN
approach only reasons the relationships of image patches.
In contrast to this, the proposed ReSG framework improves
the textual graph representation by extracting bidirectional
textual semantic relationship, while considering more dis-
criminative loss function to learn the fine-grained semantic
correspondence. As shown in Table I, it can be observed
that the proposed ReSG framework has yielded comparable
and even better performances than that obtained by other
baselines. Specifically, the proposed ReSG* framework out-
performs the state-of-the-art baselines by achieving the best
R@1 scores on different datasets. For instance, the proposed
ReSG* framework outperforms the global matching meth-
ods and local matching methods by a large margin and also
gains the R@1 improvements of 5.9% at I→T matching task
and 4.1% at T→I matching task in comparison with the
VSRN method. This indicates that the proposed framework is
capable of indexing much more similar samples in the cross-
modal matching results. Although the R@5 score of I→T
task obtained by the proposed framework and tested on the
Fliker30K dataset is slightly lower than that obtained by the
GSMN [13] method, our proposed framework always delivers
the best mean recall scores in all retrieval tasks.

Besides, we further utilize mAP@K values to measure
the cross-modal retrieval performances. For mAP@K met-
ric, the larger value generally indicates the better cross-modal
matching performance. Since the mAP results obtained by
most competing works are not reported in their original
papers and their source codes are not released currently, we
compare the proposed framework with four state-of-the-art
baselines, that is, VSE++ [6], SCAN [10], CAMP [7], and
VSRN [46]. As shown in Table III, it can be observed that the
proposed approach has yielded the better image–text retrieval
performance than that obtained by the competing baselines.
For instance, the mAP@10 scores of I→T task obtained by
the CAMP [7] and VSRN [46] methods, respectively, reach
to 65.2% and 70.0%, when tested on the Flickr30K dataset.
In contrast, the mAP@10 score of I→T task obtained by
the proposed approach reaches up to 73.1% when evaluated
on the Flickr30K dataset. That is, the proposed framework
performs well in fine-grained cross-modal retrieval tasks.
The main superiorities contributed to these very competitive
performances are two-fold.

1) The proposed relationship-enhanced graph model is ben-
eficial to capture fine-grained correspondence between
image and text data. Accordingly, the derived rela-
tion correspondence is able to guide the fine-grained
object correspondence learning, while the fine-grained
object correspondence simultaneously forces the network
to learn relation correspondence explicitly.

2) The designed loss function is able to well learn the fine-
grained object correspondence and relation correspon-
dence. Consequently, the derived relationship-enhanced
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TABLE II
QUANTITATIVE IMAGE–TEXT MATCHING RESULTS ON THE MSCOCO TEST SET, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE III
QUANTITATIVE COMPARISONS OF IMAGE–TEXT MATCHING PERFORMANCE (MAP@K), AND THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD. FOR SIMPLICITY, “*” IS THE ABBREVIATED FORM OF “MAP” IN THE TABLE

graph representations are more semantically meaningful
for the efficient image–text matching and retrieval tasks.

D. Ablation Studies

Within the proposed ReSG framework, two tailored graph
models (i.e., VReG and TReG) and discriminative loss func-
tions are carefully considered for the efficient image–text
matching. Next, we further evaluate the effectiveness of each
learning module and validate the performance of different
learning combinations.

1) Base: We remove the bidirectional relationship extrac-
tion in the text branch and semantic relationship extrac-
tion in the image branch, and ignore the auxiliary loss
and part-of-speech information.

2) VReG: Extension of the “base” model by adding the
semantic relationship extraction in the image branch.

3) TReG: Extension of the base model by adding the
bidirectional relationship extractor in the textual branch.

4) Pos: Extension of the base model by adding the part-of-
speech information into words.

5) Lpnm: Extension of the base model by adding the
positive–negative margin loss.

6) Lcen: Extension of the base model by adding the center
hinge loss.

The detailed combinations are shown in Table IV, in
which

√
means the embedding of such module, bg and fg,

respectively, denote the textual graph with backward and for-
ward relationship embeddings. It can be clearly observed that
the embedding of part-of-speech information, relationship-
enhanced graph, and auxiliary loss constraints has significantly
improved the image–text matching performances. From tasks
(4, 5, 6) or (9, 10, 11), it can be observed that if we only
leverage one auxiliary loss, the image–text matching results
may not be improved or even dropped, while the proposed
model performs much better if both of the positive–negative
margin loss and center hinge loss are embedded. From tasks
(6, 11, 12) or (15, 16, 17), it can be found that the embedding
of relationship-enhanced image features also yields the signif-
icant improvements, while the embedding of the bidirectional
textual relationship can improve the matching performance to
some degree. That is, the embedding of ReSG and the designed
loss functions are able to boost the image–text matching
performance.

Besides, we show the training times obtained by various
module combinations and different competing baselines, that
is, SCAN, VSRN, and GSMN. The model is trained on the
GPU NVIDIA RTX 2080Ti, the batch size within the SCAN
and VSRN methods is set at 128, while the batch sizes within
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TABLE IV
ABLATION STUDIES TESTED ON THE FLICKR30K DATASET (1K TEST), AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V
TRAINING TIMES OBTAINED BY DIFFERENT APPROACHES

AND TESTED ON THE FLICKR30K DATASET

the GSMN and the proposed ReSG approach are fixed to
be 64 and 100, respectively. As illustrated in Table V, the
proposed ReSG method achieves a good balance between the
time cost and image–text matching performance. Remarkably,
the proposed ReSG approach is running much faster than the
GSMN method. The main reason lies in that GSMN often
involves large iterations to convergence. Since the proposed
ReSG approach considers more modules and loss functions to
discriminatively learn the relationship-enhanced graph repre-
sentations, the execution time of training time could be much
higher than that obtained by the SCAN and VSRN methods.
Fortunately, the proposed ReSG method does not significantly
increase the training time to a large extent, while achiev-
ing the best image–text retrieval performances. Therefore, the
proposed ReSG approach is suitable for processing large-scale
image–text retrieval tasks from a practical viewpoint.

Further, we draw the loss curves to verify the validity of
the designed auxiliary loss functions. To be specific, we mon-
itor the variations of each loss function by adding or dropping
the positive–negative margin loss or center hinge loss from
the framework. As shown in Fig. 4, the blue curve in sub-
figure (a) shows the change of the positive–negative margin
loss Lpnm under λ2 = 0 (i.e., the positive–negative margin
loss is not embedded into the model), while the red curve

Fig. 4. Illustration of variations under different loss functions. (a) Lhntr loss.
(b) Lpnm loss. (c) Lcen loss. (d) R@1. (e) R@5. (f) R@10.

shows the change of the positive–negative margin loss under
λ2 = 0.1 (i.e., the positive–negative margin loss is embed-
ded into the model). In subfigure (b), the green curve shows
the change of the center hinge loss Lcen under λ1 = 0 (i.e.,
Lcen is not embedded into the model), while the red curve
shows the change of the center hinge loss Lcen under λ1 = 0.2
(i.e., Lcen is embedded into the model). After the loss con-
verges, it can be observed the positive–negative margin loss
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Fig. 5. Illustration of feature distance between 20 image examples and 100
captions (each image is annotated with five captions). (a) Before training.
(b) Base model. (c) Full model. (d) Cluster examples.

described by the red curve is converged at a lower rate than
the loss described by the blue curve, and the similar results
can be also found in the center hinge loss. This indicates that
the distances between the semantically irrelevant samples are
enlarged within the same modality, while the semantically rel-
evant samples are becoming closer. Meanwhile, it can be also
observed from R@1 results that the proposed model embedded
with positive–negative margin loss and the center hinge loss
often performs better that the model without corresponding
embeddings.

E. Visualization Analysis

To further demonstrate the interpretability of the proposed
model, we utilize the t-SNE algorithm to visualize the embed-
dings of 20 images and 100 corresponding captions on the
Flickr30K dataset. As shown in Fig. 5, it can be found that the
base model is able to cluster some similar images and captions
together, but which may have some overlaps among differ-
ent semantic representations. For instance, the image example
with ID “1089059626” and its relevant captions do not form
into an intensive cluster. In contrast to this, the proposed
ReSG framework can well put the feature embedding of two
similar modalities close together while pulling those of differ-
ent modalities away, and the derived feature embeddings are
discriminative for various image–text matching tasks.

Further, we show the representative examples in Flickr30K
1K test data to visualize the learned components. More specif-
ically, we calculate the sum of weights of all the edges
connected to the nodes, and then utilize different colors to
visualize them on the detected regions. Representative exam-
ples are shown in Fig. 6(e), in which the sum of the weights
of the edges connected to the current region is ranked in the
top 15, and the warmer red indicates that the area aggregates
more relationship information from other objects. It can be

observed that the proposed graph model can better aggregate
most informative relationships into the representation of salient
image objects, such as racket, woman, and people behind her
in the first row, and ball and soccer players in the second
row. Further, we visualize the weighted adjacency matrices
of the forward and backward textual graph encoders, respec-
tively, shown in column (b) and column (c). It can be clearly
observed that the relationships between each pair of words are
quantitatively weighted in the forward topology graph and the
backward topology graph. On the one hand, most of the words
in the sentence, such as the, with, and as, are less informative,
and their aggregated weights are very small. This indicates
that the proposed textual model can well filter the redun-
dant information in the sentence. On the other hand, most
of the attribute words, instance words, and verbs are seman-
tically correlated with each other, for example, the semantic
relationships of most informative words are retained in the
backward graph. Therefore, the backward graph is valuable to
provide significant relationship information for discriminative
representation.

Besides, we further show some representative examples of
the proposed model in fine-grained image–text matching. As
shown in Fig. 7, the upper parts show the I→T matching
results specified by image query, while the lower parts dis-
play the T→I matching results specified by text query. For
I→T matching, two representative groups are presented, and
each group contains three very similar image queries associ-
ated with the ranked matching results. For T→I matching, we
also show two representative groups, and each group contains
two similar text queries associated with the ranked matching
results. From the retrieval results, it can be clearly observed
that the proposed model is able to distinguish the similar
queries well and have successfully indexed the most seman-
tically matched counterparts. For instance, on the one hand,
the text instances containing barking are successfully retrieved
in the second row, while the text examples containing holding
and fish are successfully indexed in the third row. On the other
hand, the images with semantic concepts swinging and hold-
ing, which also appeared in the text queries, are also indexed
successfully. That is, the proposed framework is capable of
capturing the fine-grained relationships between the images
and texts, leading to the outstanding matching performances.

F. Parameters Analysis

Within the proposed learning framework, several parameters
are involved, that is, λ1, λ2, the number of VReG layers, the
number of TReG layers, and the value of k in TReG. Next, we
select the Flickr30K dataset for evaluation and conduct exten-
sive experiments with different parameter values to investigate
the effect of these hyperparameters. As shown in Fig. 8, we
first vary the values of λ1 and λ2 in (20) with different values
(i.e., 0, 0.1, 0.3, 0.5, and 0.7), and record the R@1 values in
both I→T and T→I matching scenarios. It can be found that
the results perform well when λ1 is selected within the range
of [0.1, 0.5] and λ2 is chosen within the range of [0.1, 0.3]. In
the experiments, the settings of λ1 = 0.3 and λ2 = 0.1 often
deliver the competitive performances.
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Fig. 6. Visualization of semantic relationships, and each row is a matched image–text instance. (a) Raw text data. (b) Forward weights in textual graph.
(c) Backward weights in textual graph. (d) Raw image data. (e) Visualization of the summed graph edges.

Fig. 7. Representative examples of cross-modal matching results between images and texts. For ease of reference, some objects and attributes are marked
as blue in textual sentences, while the verbs are marked as red.

Moreover, we further explore the effect of feature extraction
layers within the proposed VReG and TReG models, and
assess the parameter k that influences the nearest neighbor

number in (10) and (11). Representative results tested on dif-
ferent values are shown in Fig. 9, it can be observed that
the settings of the TReG layer, VReG layer, and k nearest
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Fig. 8. Evaluation of different λ1 and λ2 values on the Flickr30k dataset,
and the best results are marked with yellow color. (a) T→I matching results.
(b) I→T matching results.

Fig. 9. Evaluation of VReG and TReG layer numbers, and nearest neighbor
number k on image retrieval.

neighbors, respectively, within the range of [1, 4], [1, 3], and
[1, 3], only induce a minor fluctuation to the cross-modal
retrieval performance. Specifically, the R@1 and R@5 results
become better until the numbers of VReG layers, TReG lay-
ers, and the value of k are, respectively, equal to 4, 2, and
2. Therefore, these parameters are generally insensitive to
the image–text retrieval performances within a wide range of
values.

V. CONCLUSION

In this article, we have proposed an efficient relationship-
enhanced graph model to achieve fine-grained image–text
matching. Within the proposed framework, two tailored
graph encoders, VReG and TReG, are, respectively, exploited
to encode the high-level semantic concepts of correspond-
ing instances and their contextual semantic relationships.
Specifically, the TReG encoder embeds the part-of-speech
information into node representation and considers forward–
backward topologies to discriminatively characterize the
relationship-enhanced textual features. Meanwhile, the repre-
sentations of each node on these graph models are optimized
by aggregating semantically contextual information, while
the hard-negative triplet ranking loss, center hinge loss, and
positive–negative margin loss are seamlessly integrated to
jointly learn the fine-grained correspondence between the
designed image and text graph representations. Accordingly,
the derived relationship-enhanced features aggregated in these
graph models can be well utilized for image–text matching in
a more interpretable and plausible way. Extensive experiments
evaluated on various kinds of image–text matching tasks have
shown its outstanding performance.

Along the line of the present work, several open problems
also deserve our further research. For example, the current

graph model often attempts to enhance the representations of
each node by aggregating useful concept information from
other nodes within each modality individually, which may loss
some local-graph correspondence across heterogeneous modal-
ities. Theoretically, it is also beneficial to pay more attention
on some informative cross-node relationships between some
salient regions and key words in a node-level fashion. Besides,
the salient object detection methods would also have an influ-
ence on the image–text matching results, and more robust
object detection methods deserve further investigation. We
shall leave these studies in our future works.
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